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1 Introduction

Long embeddings are embeddings of R? to R™ which coincide with the standard linear
embedding outside a fixed ball in R7. We write K,, ; for the space Emb(R?, R") of long em-
beddings. As long embeddings are long immersions, there is a map K, ; — Imm(R7, R")
to the space of long immersions. Since the space Imm(R’, R™) is well-studied, we often
consider the difference between the two spaces:

K., = Emb(R’, R") = hofib, (K, ; — Imm(R’, R")).

Haefliger started to study higher dimensional embeddings. In 1966, Haefliger [Hae]
computed
molkn; (2n—3j—3=0, n—j>3).

(See [Bud] for the difference between Emb(S7,S™) and K, ;.) The result depends only on
parities of n and j. In 2004, Budney [Bud], by using Goodwillie’s result, further showed

Ton—3j—3Kn; (n—72>3, j#1)

depends only on parities of n and j. This type of bi-periodicity motivates us to study not
only isotopy classes of long embeddings but also higher homotopy of the space of long
embeddings.

In 2017, Fresse, Turchin and Willwacher [FTW], following Arone and Turchin, [AT 1,
AT 2] showed that if n — j > 3, j > 1, the rational homotopy 7.K, ; ® Q depends only
on the parities of n and j, up to degree shifts. This surprising result was shown by a
homotopy theoretical approach, called Goodwillie-Weiss [GW] embedding calculus.

Behind this bi-periodicity, there is a combinatorial object, called the hairy graph com-
plez. This complex HGC,, ; is generated by some kind of graphs, and its differential is
defined in terms of contractions of edges. The complex is defined so that it depends on
the parities of n and j only.

Theorem 1.1. /AT 1, AT 2, FTW] Forn —j >3, j > 1, there is an isomorphism
K ® Q = H(HGC, ).



Dually, there exists a zigzag of quasi-isomorphisms (in CDGAg)
NHGC,; & ... 5 Ap(Koy).

Here A P?Cf’w- stands for the free polynomial algebra generated by the linear dual space
of HGC,, ;. In other words, A HGC,, ; is a rational model of K, ; (n —j > 3).

Problem 1.2. Give a geometric meaning to the map I : H*(I?wa) — H*(K, ;. Q).
Does H*(HGC,, ;) represent non-trivial cohomology of K, ; whenn —j =2 ¢

One approach to this problem is configuration space integrals. Formally, configuration
space integrals give a map (of coefficient R)

I: E/Cw- — AR (Koy) (n—j>2,7>2)

from another graph complex (\JE’M In this approach, one must deal with potential
obstructions for I to be a cochain map. Moreover, to show [ is injective, one will be

required to give dual cycles of K,, ;. Computing H *(567”) is also a difficult problem.
We have a decomposition with respect to the first Betti number g, and the order k of

graphs v v v
GC,; =P GCo;(9) = EPEP GCjk, g).

920 920 k=1

Configuration space integrals in the case g = 0, 1, * = top (see Definition 3.8) is developed
by Bott[Bot] Cattaneo, Rossi|CR], Sakai and Watanabe [Sak, SW, Wat 1].

The aim of this article is the case ¢ = 2, x = top, which generalizes the simplest case
(9 =2, * = top, ) k = 3, developed in the author’s paper [Yos 1]. The results are very
likely to be generalized to the case g is higher.

2 Main Result

As a grawmplex for configuration space integrals, we use quite a different graph
complex DGC,, ;. In what follows, we often write DGC' and HGC for the dual graph
complexes and omit the symbol ~ and the subscripts n,j. The coefficients of graph
complexes are considered to be R when we define configuration space integrals.

Theorem 2.1 (Y.). Assume n —j > 2 and j > 2. Then, there exists a graph complex
DGC' and a zigzag o
HGC + DGC - Ar(Koj)
p

of cochain maps such that
(1) p* : H*?(DGC) — H"P(HGC) is surjective when n — j is even.
(2) If H € H*?(DGC(g = 2)) and I*(H) =0, then p*(H) = 0.



Ezample 2.2 (The simplest odd case [Yos 1]). Suppose (n,j) = (odd, odd), n —j > 2 and
j > 3. There exists a non-trivial graph cocycle in HGC"?(k = 3, g = 2) that includes the
2-loop hairy graph ©(1,0,1). See Figure 4. Hence, by computing the degree of the graph
O(1,0,1), we have

H3(n=i=2)+(- (K, Q) #0.

Ezample 2.3 (The simplest even case). Suppose (n,j) = (even, even), n—j > 2 and j > 2.
There exists a non-trivial graph cocycle in HGC™(k = 7,¢g = 2) that includes ©(3,2, 1).
Hence we have

00 (R, Q) 40

As a cororally of our Main Result, we have an alternative proof of the result shown by
Budney, Gabai [BG] and Watanabe [Wat 2].

Cororally 2.4. The (n — 1)-th homotopy group Tn,—1(Kyion)u of the unknot component
of the space of n-dimensional long knots has an infinite-rank subgroup.

3 Graph complexes and graph homologies

We introduce two graph complexes PGC,, ; and HGC), ; with a natural projection p :
PGC, ; — HGC,, ;. The graph complex DGC), ; in Theorem 2.1 is quasi-isomorphic to
PGC,, ;. Both complexes have decompositions with respect to the first Betti number g of
graphs and the order k of graphs, a notion that measures the complexity of graphs. See
Definition 3.7.

Several parts of the cohomology of HGC' are already computed. In particular, Co-
nant, Costello, Turchin and Weed [CCTW] showed that H*(HGC™"?(g = 2)) is infinite
dimensional. On the other hand, PGC has more graphs and hence is suited as a source
of morphisms.

The first graph complex PGC' is a cochain complex generated by connected plain
graphs.

Definition 3.1 (The plain graphs). Plain graphs are graphs which have two types of
vertices and two types of edges. White vertices have at least three dashed edges and no
solid edges, while black vertices have an arbitrary number of solid and dashed edges. Each
component has at least one black vertex. Double edges are allowed but no loop-edge is
allowed. A plain graph is admissible if it satisfies both of the following.

(1) Every black vertex without dashed edges must have at least three solid edges. Fvery
component has a black vertex with a dashed edge.

(II) The restriction to solid edges consists of disjoint broken lines.

Note that (I) 4+ (II) implies that every black vertex has at least one dashed edge and
at most two solid edges.
Define the degree |I'| = deg(I") of a graph I' by

(n = DIE...[ + (7 = DIE_| = n|Vo| = jIVi],



and black vertices respectively.

A label of a plain graph is a choice of an ordering of the set of vertices and edges and a
choice of orientations of edges. Each label gives an orientation of a graph. The orientation
is defined so that it depends only on parities of n and j.

Definition 3.2 (The plain graph complex). As a graded vector space,

Q{ Connected labeled admissible plain graphs}
’ Orientation relations
The differential dpge of PGC' is defined by the sum of contractions of edges except for
chords: dashed edges which connect two black vertices, and multiple edges: pairs of a
dashed edge and a solid edge which connect two black vertices, and double edges. See
Figure 2.
dpgc(r) = Z :|:F/€
ecE(T)
e£<® —— @

The signs of dpge(I') arises when labels of vertices and edges are permuted and when

d “jumps” vertices.

Figure 2: Example of the differential

Lemma 3.3. (PGC,dpgc) is a cochain complex.
The second complex HGC' is a cochain complex generated by hairy graphs.

Definition 3.4. Hairy graphs are admissible plain graphs with no solid edge such that
each black vertex has exactly one dashed edge. A segment -~ is called a hair.



Figure 3: Example of a hairy graph

Definition 3.5 (The hairy graph complex). As a graded vector space,

HGC,, — Q{ Connected labeled hairy gmphs}.

Orientation relations
The differential dgge of HGC' is defined by

dHGC = Z :|:F/€

ecE(T)

e=0-~ -0
Note that we do not perform contractions of hairs.
Remark 3.6. Strictly speaking, we must include loop edges for Theorem 1.1. However, as

mentioned in [AT 2], the difference is only 1-dimensional, so we exclude loop edges for
simplicity.

we have a decomposition

PGC =P P PCC(k, g).

920 k>1
with respect to the first Betti number g, and the order k. A similar decomposition exists
for HGC.

Notation 3.8. We say a non-admissible graph is non-degenerate if any white vertex has
exactly one dashed edge and any black vertex has exactly one dashed edge. The subspace of
PCG and HGC generated by non-degenerate graphs is written as PGC'P and HGC™P,
respectively. The kernel of the differential is written as H'?(PGC') and H"?(HGC)). Note
that If (n,j) = (3,1), H?(HGC) = H°(HGC) is isomorphic to the space of Vassiliev
mvariants.

Theorem 3.9 ([Yos 2]). The projection PGC'"P — HGC™ induces an epimorphism
between the top cohomologies.

Proof. (Sketch) Dually, we show the map: x, : Hi,,(HGC) = Hy,,(PGC') induced by the
inclusion is injective. In fact, we can construct a left inverse

0s : Hipp(PGC) = Hyop(HGC),  0.xx =1d

by induction on the number of black vertices. This construction of o, is motivated by
Bar-Natan’s construction [Bar] of y=! : A(S') — B. O
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Remark 3.10. Consider the complex fPGC' generated by plain graphs which satisfy the
first condition (I) of Definition 3.1. fPGC has a good description in terms of graph
operads used in [AT 2|. The author believes fPGC' is quasi-isomorphic to HGC'.

4 Construction of cycles: ribbon presentations

This section is the main part of this article and is based on the author’s paper [Yos 1]. Let
E>1,p,r>1,q>0, p+qg+r+1 = k. In this section, we construct (k(n—j—2)+(j—1))-
cycles

d(©(p,q,)) : (S"7 ) x ST = Ky
by the operation which we call perturbation of ribbon presentations with one node. The
cycle d(©(p, q,7)) is detected by the hairy graph ©(p, ¢, ) whose three edges of “©” have
p, ¢, r hairs respectively. See Figure 4.
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Figure 4: The hairy graph ©(p,q,r)

We construct the cycles as follows. First, we give a diagram D(O(p,q,r)) from the
hairy graph O(p,q,r). From this diagram, we give a ribbon presentation P(O(p,q,r)).
We see that such a ribbon presentation gives S7=! x (S"7772)** cycle of embedded sub-
manifolds (= R’) in R™. Then the desired cycle d(©(p, q,r)) : ST x (S" 2% - K,
is obtained by giving a path of immersions to the trivial immersion. The path also gives
the parameterization of the embedded submanifolds.

Our construction is analogous to the construction of wheel-like cycles given by Sakai
and Watanabe [Wat 1, SW],

cp o (SMTITRYR En,j,

which are detected by 1-loop graphs. The additional parameter on S7~! of d(©(p, q,1))
arises from the node (see Notation 4.2), which only our ribbon presentations have.

Though we focus on 2-loop hairy graphs, this construction of cycles is very likely to be
generalized to hairy graphs with an arbitrary number of loops.

4.1 The diagram D(O(p,q,r))
The diagram D(O(p, q,7)) is obtained from the hairy graph ©(p, ¢,r) as follows.



e First, arbitrarily orient three edges of ©.

A '
e Replace each hair with the oriented line with two open chords —e—$—. Excep-
tionally replace the leftmost (resp. rightmost) hair of the upper (resp. lower) edge
A A : A . .
of O(p, q,r) with —e—e—8—  (resp. ———— ).
e Finally connect ends of chords as expected from the graph O(p, q, 7).

A ' .
[ ' [ P . o ~y + .
[ v % § N "/ s
. . 4 o'
\ s G .
0 k. . B
5 ’

by

N e e
e K4 “ - by o '0‘
Yo y .
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Figure 5: The diagram D(©(4,3,2)))

4.2 Review of ribbon presentations
Habiro, Kanenobu and Shima [HS] [HKS] introduced the notion of ribbon presentations
to define finite type invariants of ribbon n-knots.

Definition 4.1. A ribbon presentation P = D U B is an oriented immersed 2-disk in R?,
where D = Dy U Dy ---U Dy is the (disjoint) union of 2-dimensional disks, D; ~ D?, and
B = By U---U By is the (disjoint) union of bands, B; = I x I. There is a base point on
the boundary of Dy. Each band connects two disks and can intersect with the interiors of

disks except for Dy. These intersections are called crossings of this ribbon presentation.
See Figure 6.

Notation 4.2. A disk without intersecting bands is called a node. A disk with an inter-
secting band is called a leaf if exactly one band is attached to the boundary of the disk.

Figure 6: Example of a ribbon presentation

From a ribbon presentation P, we obtain a j-dimensional long embedding ¢ (P) C R"
as follows. Let Vp be the thickened ribbon presentation

Vp =B x [-1/4,1/4 7| D x [-1/2,1/2] .
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Then, after smoothing of corners of Vp, define a long embedding ¢ (P) by the connected
sum

Y(P) = OVp#1(R7) C R™
Corresponding to the i-th crossing of P, the long embedding ) (P) has a link of a punctured
sphere D; ~ S7\ pt and a tube B; ~ I x S7=!. See Figure 7. We call these links crossings

of ¥(P).

o

Figure 7: The i-th crossing

Habiro, Kanenobu and Shima [HS| [HKS] introduced several moves of ribbon presenta-
tion, which do not change isotopy classes of corresponding embeddings. Moves in Figure
8 are examples of the moves.

=0 — i \\/K\ 51’ (
LI

Figure 8: Example of moves of ribbon presentations

4.3 The ribbon presentation P(O(p,q,r))
A ribbon presentation P(©(p, q,r)) is obtained from the diagram D(O(p, ¢, 7)) as follows.

A ' A ' .
e Replace —e—¥—> and ——¥—F—> with (O——, where a vertex with an outgoing
(resp. ingoing) open ChOl"d 1s replaced by a disk (resp. a segment of a band).

Exceptionally, replace —o—o—x—> which has two open chords, with »:

The disk with three bands (drawn in gray) is the node of our ribbon presentation.



e Intersect a disk with a band if they are connected by chords. Assign the label x to
this crossing. This label is a sign of perturbation of a crossing which we later define.

The orientation of the crossing is arbitrary, except that two end-disks of %
must intersect with bands in opposite orientation.

e Connect the free ends of bands to the based disk.

Figure 9: The ribbon presentation P(©(4, 3,2)))

4.4 The cycle d(©(p,q,7))

Here, we construct cycles d(0(p, ¢,7)) : (S*772)F x §9=1 — K, ;. The parameter space
(S™7-2)k arises from perturbation of crossings, which Sakai and Watanabe introduced.
We see R™ as R? x R* 772 x R/~!. The original ribbon presentations are constructed
in R3, and they are thickened using parameters of R7~!. Represent the parameter space
Sn=i=2 as

{(z3,. . Ty jp1) ERI(mg— 1) +ai +--- +al_j ., =1}
Assume the x3 coordinate is perpendicular to bands, near crossings.

Definition 4.3. [Wat 1, SW] The perturbation of a crossing (with x) is the operation to
replace the band B with the band B(v) (v € S"772), which is perturbed to the direction v
near the crossing. See Figure 10.

Recall that our ribbon presentation P = P(©(p,q,7)) has k crossings so that each
band B; has one or two crossings. For each parameter v = (vy,...,v5) € (S"772)F, set
the new ribbon presentation P, by

PV:DUB(V) :UDZ'UUBj(Ul,UQ,...,’Uk),

where B;(v1,vs, ..., v;) is the band obtained by perturbating all crossings ¢, of B; to the
direction vy.



9«"2

p e

I3 =
(Insert) (Remove)

I3=1

Figure 10: Perturbation of a crossing (n — j = 3)

Definition 4.4. [Wat 1, SW] The cycle ¢(0(p,q,7)) : (S"72)F = K,,; is defined by
Vs §(Py) = OV, 41 B).

Recall that our ribbon presentation has a node which has two bands, say B; and Bj,

J
connected to leaves %: The additional S7~! family is given by moving one tube

(B;) around the other tube (B;). See Figure 11. Then we obtain a (S™~772)F x §79~1 cycle
of submanifolds in R™. Note that as (images of ) immersions, there is a path to the trivial
immersion. Using this path, we obtain the desired cycle

d(O(p,q,1)) : (S”’j’Q)k x §91 En,j.

Figure 11: The additional S7~! family

4.5 Properties of the ribbon presentation P(O(p,q,r))

In Cororally 2.4, one must take the cycles from the unknot component. We introduce an
important property to take them.

10



Notation 4.5. Lete; = 1. Write P(O(p,q,7))(€1,22, ..., €x) for the ribbon presentation

obtained by changing the jth crossing * to when £; = 1, and to O|:| when
&5 = —1.

Proposition 4.6. After several cross-change moves in Figure 12 are performed to P(O(p, q,1)),
the presentation P(O(p,q,7))(1,1,...,1) is equivalent to the trivial presentation.

Proof. We perform cross-change moves as in the Figure 13. Then the resulting presenta-
tion becomes trivial, after moves including S4. O

(without * )

N «
> cross change

Figure 12: Cross-change move

Note that the cross-change move might change the cycles we later define. However,
the move does not affect the pairing argument we later discuss.

Figure 13: The ribbon presentation after cross-change moves

5 Construction of cocycles: configuration space integrals

From now on, the coefficients of graph complexes are considered to be R. In this section,
we give a geometric correspondence

I: PGOn,j — AdR(ICn,j).

The map [ is given by configuration space integrals in the same way as Bott [Bot], Cat-
taneo, Rossi [CR], Sakai and Watanabe [Sak, SW, Wat 1] give. It is unknown whether
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configuration space integrals give cochain maps, due to potential obstructions called hid-
den faces. However, we can show [ is a cochain map “up to homotopy”. See Theorem
5.4

Definition 5.1 (Configuration spaces). Define the k points configuration space of R™ by
Cr(R") = (R")*"\ A
where A is the fat diagonal U, <, .;<,{yi = v;}-

Though Cj,(R") is an open manifold, there exists a canonical compactification C},(R"),
called Fulton—Macpherson compactification. [Les| and [Sin] is a good reference for this
type of compactification.

Recall K, ; consists of a family of immersions {, }uep.1), ¥, € Imm(R7, R™) such that
1y is the trivial immersion and 1, € K,, ;.

We use the following bundle E;; to define the configuration space integral associated
to a plain graph with s black vertices and ¢ white vertices.

Definition 5.2 (Configuration space bundles). Es; is the bundle over K, ; defined by the
pullback

Es,t > Cs+t(Rn)
l l restriction
Kons x C(RY) evaluation at u =1 CL(R")

The (typical) fiber of the projection Es; — Kw- is written by Csy. Csy is the space of
configurations of (s +t) points in R™ such that the first s vertices are images of s points
on R7.

(=7) (=n)
Let I" be a labeled plain graph with s black vertices @ and ¢ white vertices ©
Then each oriented dashed (resp. solid) edge e gives a map
P.:E,;,—S"" (resp. P.: By — S771).
by assigning the direction from the initial point to the end point. See Figure 14.

Definition 5.3 (Configuration space integrals). Consider A;R(KM) as Sset(Sing:® (K, ), Ajp(A)).
Define a form 1(T) € Aqr(K, ) as follows. For a simplex f : A,, — K,j, I(T)(f) is
given by the fiber integral

I = m05(T) = [ 0(T) € Aun(a™).

where Q¢(T") is the pullback of the volume forms by the direction map;

Qp(0) = (PT) o /)" (N wsi-1 A [\ wsa-s).

12



Figure 14: Example of the direction map

f PI) =1L~

fEy, y B, S [1S7! x [[S™!
f:a “smooth” simplex >
A™ > Ko j

Unfortunately, the map of graded vector spaces

l: PGC — AdR(ICnJ)

is not necessarily a cochain map. In fact, by Stokes’ theorem, we have

SRR IR S A}

9Cs,1 SCV(I)Uso
15]>2

where 63 is the configuration such that the vertices of .S are infinitely close. The obstruc-

tions
dI(0) —I1(dD) = (D)"Y + )[ Q(T)
Scv(r)  S=v(e-) “C
[S1=3

are called hidden face contributions. Some hidden faces vanish by symmetries and rescaling
of the faces. Other faces are canceled by introducing correction terms. We interpret adding
correction terms as replacing graph complexes. The following non-obvious fact says all
hidden faces are canceled by introducing correction terms.

Theorem 5.4 (Y. advised by Turchin). When n — j > 2, there exists a graph complex
DGC and a zigzag
PGCnJ’ & DGCnJ’ 7) A;R(En,j>7
p
of cohain maps.
Proof. We only give a very rough sketch. Let pPGC be the graph complex generated by
possibly non-admissible plain graphs. Then DGC is a kind of tensor product of pPGC
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and the bar construction B(A, A.x) = A® BA ~ R. Here, A is a dg algebra describing
all hidden faces and there is a map of dgas

A = Inj(R?, R™)

to the space of linear injective maps. The differential dpgc is decomposed into two
commutative differentials:

The differential dy is induced by the differential of dagpa. The differential dy is defined
as the sum of contractions, including hidden faces. By using a spectral sequence filtered
by the number of vertices, we can show that DGC and PGC' are quasi-isomorphic.

Let P(Imm(R’/, R")) = P(Imm(R’, R"), e, 1) be the path space of Imm(R’, R") whose
one end is fixed at the trivial immersion. The integral from decorated graphs whose plain
part is one black vertex:

I:0% A® BA — Ajr(P(Imm(R/,R™))) — Ayr(K,.;)
is defined as follows. First, we have a map
Eio— P(Inj(R’,R™))

defined by the differential. (Recall E;  is isomorphic to C}(R7) x P(Imm(R?, R™))). The
form on the path space P(Inj(R’, R™)) is given by Chen’s iterated integrals

A BA — Agp(P(Inj(R7,R"™))).

Then, the desired form on P(Imm(R’, R™)) is obtained by the fiber integral along C (R).
O

6 The cocycle-cycle pairing

Finally, we perform the pairing between the cycles in Section 4 and the cocycles in Section
5. The pairing is reduced to pairing between graphs and diagrams. Recall we have a zigzag
of cochain maps

HGC,; < PGC; & DGCj — Ayp(Kony).

In Theorem 3.9, we showed p* : H"P(PGC) — H"P(HGC) is surjective. As mentioned
in Section 3, the 2-loop part H*?(HGC (g = 2)) is infinite-dimensional. In the rest of this
article, we show the following injection property of the configuration space integrals.

Theorem 6.1 (Y. ). If H € H’(DGC(g =2)) and I*(H) =0, we have p*(H) =0

Suppose k£ > 1is an integer and suppose p, g, r are integers which satisfy p+q+r+1 = k,
p,7>1,q>0. Let H be a 2-loop, top graph cocycle of order < k, expressed as

_ w(l)
=2
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Figure 15: Graphs Dy, Do, D3 and Dy

Here, w(I';) is the coefficient of a graph T, divided by the number of automorphisms
|Aut(I';)]. We always assume I'; has no orientation reversing automorphisms. Let pf :
DGC™ (g = 2) — HGC™P(g = 2,k) be the projection to the hairy graphs of order k.
The following is the key proposition to show Theorem 6.1.

Proposition 6.2 (Counting formula).
< I(H), d(O(p.q,7)) >= =0 (O(p, 7).
where £+ depends only on the oriented graph ©(p,q,r).
Proof of Thm. Assume Proposition 6.2. Then if I(H) is exact, p;(H) = 0. O

We proceed to show Proposition 6.2. Consider the four graphs Dy, Dy, D3, Dy in
Figure 15, which are obtained by performing STU relations to the hairy graph ©(p, q,r).
We can take orientations of these graphs so that the relation

w(O(p, ¢, 7)) = w(Dy) + w(Ds) + w(Ds) + w(Ds).

is satisfied in the graph cocycle H = ). | AutFF)HI‘ We show the integrals which do not

vanish on the cycle d(©(p, q,r)), are only the integrals associated with the graphs Dy, Ds,
Ds, Dy
Notation 6.3. Suppose I'; has no orientation reversing automorphism. Define the paring
of I'; and Dj by
<10 D, >— 0 (zf I z:s 7'20t z’somqrphic to D;)
+1  (if I'; is isomorphic to D;)

The sign is positive (resp. mnegative) if the isomorphism preserves (resp. reserves) the
orientation.

Lemma 6.4. If the order of a graph I'; is less than or equal to k, we have
< I(y),d(O(p,q,r) >=+ Y [Aut(D;)| <T;,D; >,

j=1234
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Proof of Key prop. Assuming Lemma 6.4, we have

< I(H),d(©(p,q,7)) > = :I:Z |Aut |Aut(Dj)] <Ty,D; >

= +(w(D;) + w( ) (D3) +w(Dy))
= +w(O(p,q,r)).

O

Proof of Lemma 6.4. After some observations, we can show that the pairing < I(I';), d(©(p, q,7)) >
is equal to counting graphs on the diagram D = D(O(p,q.7)). On the segment —e—e—>
only o—o is counted. On the segment —e—e—e—> only e~e—e or @<~ is allowed, and

o> is not counted. On the other hand, we can show that decorated graphs are not
counted. Then, there are four plain graphs counted, which are D;,..., D,. Figure 16
shows how the graph D, is counted.

O

Figure 16: Graph Ds is counted on the diagram D(O(p,q,))
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