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1 Introduction

For a knot K C 83, the Upsilon invariant Tk (t): [0,2] — R is a concordance invariant
introduced within the framework of knot Floer homology theory [18].

A knot is called an L—space knot if some positive Dehn surgery yields an L—space. For
example, any positive torus knot is an L-space knot. In [2], Borodzik and Hedden showed
that for an L—space knot, its Upsilon invariant is the Legendre transform of the function
2J(—x), where J(z) is a certain function determined by its Alexander polynomial. As a
corollary, we have the following.

Theorem 1.1 ([2]). The Upsilon invariant of any L—space knot is a convez function.
In view of this, Borodzik and Hedden gave the following question.

Question 1 (Question 1.4 of [2]). For which knots is T a convezr function?
It is known that the following knots have convex Upsilon invariants:
e [—space knots ([2]).

e Alternating knots with a negative signature, more generally, Floer thin knots with a
positive tau invariant ([1, 18]).

e Connected sum of knots whose Upsilon invariants are convex. (This follows imme-
diately from the additivity for the connected sum operation, see subsection 2.2.)

On the other hand, there are knots whose Upsilon invariant is neither convex nor
concave:

e Many cable operations for an L-space knot produce such Upsilon invariant. For
example, the Upsilon invariant of the (2, 1)—cable of the right handed trefoil is so.
(see [21].)

e The closure of the 3-braid (¢303)" 0109 for n > 6 (see [6]).
The following theorem is the main result.
Theorem 1.2. There exist infinitely many hyperbolic knots satisfying the following:

(1) The Upsilon invariant is a convez function.



(2) Fach knot is neither an L-space knot nor a Floer thin knot.
(3) The knots are mutually topologically non—concordant.

The knots in Theorem 1.2 provide new answers to Borodzik and Hedden’s question.
Note that since the Upsilon invariant is a concordance invariant, if K is concordant to
a knot whose Upsilon invariant is convex, T g is also convex. Hence, it makes sense to
construct mutually non-concordant knots.

The main theme of this paper is in accordance with [10].

2 Preliminaries

In this section, we review the full knot Floer complex CFK* and the Upsilon invariant.

2.1 CFK® and stably equivalence

For more details of CFK™| see, for example, [9, 14, 16].

For a knot K C S®, the full knot Floer complex CFK*™(K) is a Z & Z-filtered chain
complex with Fy coeflicient. CFK*(K') can be drawn on the plane as follow: First, we
assign each generator on the plane with filtration levels as the coordinates. Second, the
differentials are drawn by arrows. Also, the generator with homological grading 0 shall
be drawn with a white dot. see Figure 1.
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Figure 1: CFK™(T'(3,4)). We can see that 9b = a + ¢ and dd = ¢ + e.
White vertices have homological grading 0, and hence each is a generator of Ho(CFK™(T'(3,4))) = Fa.

Remark 2.1. More precisely, CFK*™(K) is a module over Fo[U, U], where Fo[U, U] is
the Laurent polynomial ring with a formal variable U and Fy coefficient. The action of U
commutes with the differential, lowers homological grading by 2 and lowers both filtration
levels by 1. However, since the generator of the homology with 0 grading is important in
our future discussion, we will not concern ourselves with this.

In general, it is difficult to compute CFK*(K'). However, the following methods are
available:

e For a (1,1)-knot, there is a combinatorial method [8]. (A (1,1)-knot is a knot
admitting 1-bridge decomposition by two solid tori.)

e For an L-space knot, CFK* is determined by its Alexander polynomial [17].



e For a Floer thin knot, CFK* is determined by its Alexander polynomial and its 7
invariant [19].

e Computer program “SnapPy” [5].

Definition 2.2. Two full knot Floer complexes C; and C5 are stably equivalent if there
are acyclic Z @ Zfiltered chain complexes A; and A, such that C & A; is filtered chain
homotopic to Cy & As.

The acyclic complex mainly used in this paper is a box complez. see Figure 2.

b a

d c

Figure 2: A box complex. The cycles are only d and b + ¢, but both are boundary cycles. Thus, it is an
acyclic chain complex.

Ezxample 2.3. Let C' be a full knot Floer complex. Since a box complex is acyclic, the direct
sum of C' and a box complex is stably equivalent to the original complex C. For example,
CFK*(3;), CFK*™(5;) and CFK*(75) are stably equivalent each other, see Figure 3.
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Figure 3: CFK*(3;), CFK™(52) and CFK®(75) are stably equivalent each other. The vertices of box
complexes are actually on the grid, but are drawn slightly displaced.

Remark 2.4. If K; and K, are smoothly concordant, then CFK*(K;) and CFK*(K,)
are stably equivalent [Hom|. Furthermore, to our knowledge, all concordance invariants
derived from knot Floer theory (for example, 7, e, T) are actually invariants on stably
equivalent classes.

2.2 The Upsilon invariant

As mentioned above, for a knot K C 53 the Upsilon invariant Tx(t): [0,2] — R is a
concordance invariant. It has the following features:

e T (t) is continuous and piecewise liner;

o Ti(t) = Tk(2— 1)
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Figure 4: The T invariant of the torus knot 7'(3,4).

o T x(t) = —Tk(t) where —K is the mirror image of K with reversed orientation;
e T () is additive under the connected sum, that is, Y g (t) = T () + Y (1);

e for small ¢, Yy (t) = —7(K) - t where 7(K) is the tau invariant of K. (see [15] for
the tau invariant.)

For example, Figure 4 shows the graph of the Upsilon invariant of the (3, 4)-torus knot
T(3,4).

It was originally defined using the t—modified knot Floer complex, but Livingston
gave an interpretation on the full knot Floer complex CFK*(K) [13]. In fact, the Upsilon
invariant Y g can be calculated from the filtration levels of generators of Ho(CFK*™(K)) =
Fy. Therefore, an acyclic chain complex does not affect the calculation of Tg. So, we

have the following.

Proposition 2.5. If CFK*(K;) and CFK*(K3) are stably equivalent, then YT, = Yk, .

3 Proof of the main result

In this section, we give the details of Theorem 1.2.

Let n be a non-negative integer, and let ¢ > 4 be an integer coprime to 3. Then
q=3k+1or q=3k—+ 2 for some k > 0. A knot K8 is defined as in Figures 5 and 6.
Note that Ké3’Q) is the (3, ¢)-torus knot 7'(3, q).

Two knots K> and K7 are not equivalent when n £ m or g # ¢’ (this can be seen
from their Alexander polynomials, see Lemma 3.2).

Theorem 1.2 follows from following lemmas.

Lemma 3.1. CFKOO(KT(f”q)) is stably equivalent to CFK*(T'(3,q)).

Proof. Since K& is a (1,1)-knot (in fact, we can give a specific (1, 1)-decomposition of
this knot), CFKOO(KT(?’Q)) can be combinatorially computed. (For the sake of space, we
omit here the details of the calculation method, which is described in [10].) The results
are shown in Figures 7 and 8. Recall that Kég’q) = T(3,q), hence CFK™(K$*?) is stably
equivalent to CFK*>(7(3,¢q)).
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Figure 5: The case ¢ =3k + 1 (k > 1). 01 and o2 are the standard generators of the 3—braid group. The
box with n contains n right handed vertical full-twists.
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Figure 6: The case ¢ = 3k + 2 (k > 1). The box with —n contains n left handed vertical full-twists.
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Figure 7: The complex CFKOO(KT(L373k+1)). This complex consists of the staircase complex, which is
consistent with the complex of CFK*(7T'(3,3k + 1)), and box complexes. The differential is represented
by a line segment instead of an arrow, since the differential always lowers filtration levels.



3k — 1 —
3k—3

n box complexes in each

2 : ——9
1 - Py
.

0 1 2 k—1kk+1 k+3 3k—3 3k—1 3k+1

Figure 8: The complex CFKOO(Kff’BkH)). The staircase complex is consistent with CFK*(T'(3, 3k +2)).

To prove the remain lemmas, the Alexander polynomial plays an important role.

Lemma 3.2. The Alexander polynomial ofK (3R g given as

A e ( Z{ nt* 4 (20 + DY — (n+ 151
—nt+2n+1) —nt™!
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Also, the Alexander polynomial of K s given as
_ 3i+1 3i 3i—1
AK7(13,31€+2) (t) = Z{(n + 1)t (2n + 1)t +nt }
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Proof. For a knot K, Ag(t) = Z(—l)dti-rank ITFT{d(K;i) [16]. AFK can be easily
dyi
computed by CFK*(K). So, we obtain the conclusion from the proof of Lemma 3.1. O

Lemma 3.3. Forn > 1, K39 satisfies the following:



(1) K& is a hyperbolic knot.

(2) K$*? is neither an L-space knot nor a Floer thin knot.

Proof. Let n > 1.

(1) By Lemma 3.2, K& is not a torus knot. Hence, assume that K% is a satellite

knot. First, since K\ is a (1,1)-knot, it is a prime knot. Also, K$? admits a
three-bridge decomposition. By [20], a prime satellite knot has a bridge number at
least 4. This is a contradiction. Therefore, K& is a hyperbolic knot.

(2) Since non-zero coefficients of the Alexander polynomial of an L-space knot are +1
[17], the knot K9 is not an L-space knot by Lemma 3.2. (In fact, the knot Floer
full complex of an L-space knot is a staircase type [12, 17], but that of K30 (n>1)
is not such type.)

By [19], the full knot Floer complex of a Floer thin knot consists of staircase com-
plexes and box complexes such that all arrows have length one. So, K3 is not a
Floer thin knot since CFKOO(K,(E”Q)) has an arrow of length two.

O

Lemma 3.4. For a fized integer q, the family {Ky(lg’Q)}ff:O contains infinitely many mu-
tually topologically non-concordant knots.

Proof. The Fox—Milnor condition [7] implies that if K and L are topologically concordant,
then the product of the determinant of K and one of L is a square number. By Lemma
3.2, we have

dn+3 k: odd

det(KPHH) = {4 N
n 1 even,

dn+1 k: odd

det(K3+2)) = {4 sk
n . even.

For the case ¢ = 3k + 1 with odd k, if 4n + 3 and 4m + 3 are distinct prime numbers,
then det(K,(f”ng))det(K,gf’ng)) = (4n + 3)(4m + 3) is not a square number, and hence
K& and K$*™ are not topologically concordant. The same is true in other cases.

There are infinitely many prime integers of form 4n+1 or 4n+3. So, there are infinitely
many n, m such that K89 and K$9 are not topologically concordant. O

Remark 3.5. We expect that K3 and K27 are not concordant for n # m, but we
could not prove it. For several n,m, we can verify that they are not concordant by
the irreducibility of the Alexander polynomial (see Example 3.6) or the Levine-Tristram
signature.

Ezample 3.6. Consider two knots K\**) and ng’@. Since det(K**) -det(KgA)) =212, we
cannot determine whether they are concordant by using the manner in the proof of Lemma
3.4. However, according to the program Mathematica, their Alexander polynomials are



irreducible. This shows that K£3’4) and K %4) are not topologically concordant from the
Fox—Milnor condition.

Proof of Theorem 1.2. By Proposition 2.5 and Lemma 3.1, TK(g o = Trsgq). Since any
positive torus knot is an L-space knot, T , ) is a convex function. The conclusion follows
from Lemmas 3.3 and 3.4. O

Comments. In general, it is quite difficult to construct a knot which has a given full knot
Floer complex. Hence, it is also difficult to construct a knot with a given concordance
invariant. The author computed the full knot Floer complexes for knots that are neither
L—space knots nor quasi—alternating knots in the knot table, starting from the lowest
crossing number. Then, it turns out that the knot 10,93 has the full knot Floer complex

that is stably equivalent to that of the (3, 4)-torus knot. The knots K3 are constructed
based on this knot. However, because of the discussion made in the proof of Lemma 3.4,
the family does not contain the knot 101g.

A Appendix: The integral of the Upsilon invariant

The Upsilon invariant is continuous, so it is integrable. For K C S?, let [T, denote
f02 Yk (t)dt. There are two previous studies using [ T.

e In [21], Tange gives the explicit formula of [Yj for the torus knot and a large
class of iterated cable L—space knots. His motivation of this value seems to be the
Sl-integral value of the Levine-Tristram signature.

e In a recent work [4], Borodzik and Teragaito associated 7, [ T with an invariant of
a singularity for a corresponding algebraic knot.

Remark that the purposes of the above two studies are elsewhere.

A simple question comes to mind: is there a pair of knots (K, L) that is [Tx = [T,
but Tx # 1,7 Of course, there are many such examples, as information is lost when
integrating. Then, based on [4], consider a pair of knots (K, L) satisfying

/TK—/TLaDdT ()bUtTKi’éTL

As a result, we obtain the following.

Theorem A.1. For each of the following tuples of knots, they have same T invariants
and [ Yk, but have distinct T invariants:

(1) (T'(5,25k + 2), T(3,9k + 1)264k+5, BKiog,—10k) (K > 1),
(2) (T(20,22 + 1), T(20 +1,21> — 21 +1)) (1 > 2),
(3) (T'(3,9n + 152, 5), BK,, _(s15n-2)) (n >1, s >2),

where



torus satellite hyperbolic
T(21,21% + 1), T(5,25k + 2), T(5,25k + 2),
torus 5
T2 +1,21° —1+1) | T(3,9% 4+ 1)2 6ax+5 | BKiok,—10k
i . The same cables T(3,9k 4+ 1))2,64k+5
satellite of another* BKio0k,—10%
. T(3,9n+ 1;2,5)
hyperbolic ’ e
Y BKn,—(s+5n—2)

Table 1: The table of the knots in Theorem A.1, distributed into torus knots, satellite knots and hyperbolic
knots entries. Each parameter satisfies [ > 2, k> 1, n > 1 and s > 2, respectively. About the mark *,
by [21], the (p, g)—cable operation with 2¢gp < ¢ for an L—space knot with genus g yields expected knots.

e T'(p,q)rs is the (r,s)—cable of the torus knot T'(p,q),

e T'(p,q;r,s) is the twisted torus knot, which are defined to be the (p,q) torus knot with
s full twists on r adjacent strands where 0 < r < p, and

e BK,,,, is the knot defined in Section 3 of [3].

Table 1 is the knots in Therem A.1, distributed into torus knots, satellite knots and
hyperbolic knots entries. Remark that 7°(3,9k + 1)a64k+5 (K > 1) is an algebraic knot,
since 64k +5 > 2-3 - (9k 4+ 1) holds. Also, all knots in Theorem 1.2 are L-space knots.
The proof of Theorem A.1 is in preparation [11].

References

[1] Antonio Alfieri, Upsilon—type concordance invariants, Algebr. Geom. Topol. 19
(2019), no.7, 3315-3334.

[2] Maciej Borodzik and Matthew Hedden, The Y function of L-space knots is a Legendre
transform, Math. Proc. Cambridge Philos. Soc. 164 (2018), no.3, 401-411.

[3] Kenneth Baker and Marc Kegel, Census L-space knots are braid positive, except for
one that is not, Algebr. Geom. Topol. 24 (2024), no.1, 569-586.

[4] Maciej Borodzik and Masakazu Teragaito, Hyperbolic L-space knots not concordant
to algebraic knots, Preprint, arXiv:2404.11286.

[5] Marc Culler, Nathan Dunfield, Matthias Goerner and Jeff Weeks, SnapPy, a com-
puter program for studying the geometry and topology of 3—manifolds, Available at
http://snappy.computop.org.

[6] Peter Feller and David Krcatovich, On cobordisms between knots, braid indez, and
the upsilon-invariant, Math. Ann. 369 (2017), no. 1-2, 301-329.

[7] Ralph Fox and John Milnor, Singularities of 2-spheres in 4-space and cobordism of
knots, Osaka Math. J. 3 (1966), 257-267.

[8] Hiroshi Goda, Hiroshi Matsuda and Takayuki Morifuji, Knot Floer homology of (1,1)-
knots, Geom. Dedicata 112 (2005), 197-214.



[9] Jennifer Hom, A survey on Heegaard Floer homology and concordance, J. Knot The-
ory Ramifications 26 (2017), no.2, 1740015, 24 pp.

[10] Keisuke Himeno, New family of hyperbolic knots whose Upsilon invariants are convez,
Preprint, arXiv:2403.13342.

[11] Keisuke Himeno, Knots which have same integrals of their Upsilon invariants, in
preparation.

[12] David Krcatovich, A restriction on the Alexander polynomials of L-space knots, Pa-
cific J. Math. 297 (2018), no.1, 117-129.

[13] Charles Livingston, Notes on the knot concordance invariant upsilon, Algebr. Geom.
Topol. 17 (2017), no.1, 111-130.

[14] Ciprian Manolescu, An introduction to knot Floer homology, Physics and mathe-
matics of link homology, Contemp. Math., 680 Centre Rech. Math. Proc. American
Mathematical Society, Providence, RI, 2016, 99-135.

[15] Peter Ozsvéath and Zoltan Szab6, Knot Floer homology and the four-ball genus, Geom.
Topol. 7 (2003), 615-639.

[16] Peter Ozsvath and Zoltan Szabd, Holomorphic disks and knot invariants, Adv. Math.
186 (2004), no.1, 58-116.

[17] Peter Ozsvath and Zoltan Szabd, On knot Floer homology and lens space surgeries,
Topology 44 (2005), no.6, 1281-1300.

[18] Peter Ozsvéth, Andras Stipsicz and Zoltan Szabd, Concordance homomorphisms from
knot Floer homology, Adv. Math. 315 (2017), 366—426.

[19] Ina Petkova, Cables of thin knots and bordered Heegaard Floer homology, Quantum
Topol. 4 (2013), no.4, 377-409.

[20] Horst Schubert, Uber eine numerische Knoteninvariante, Math. Z. 61 (1954), 245
288.

[21] Motoo Tange, Upsilon invariants of L-space cable knots, Topology Appl. 324 (2023),
Paper No. 108335, 25 pp.

Graduate School of Advanced Science and Engineering
Hiroshima University

Hiroshima 739-0046

JAPAN

E-mail address: himeno-keisuke@hiroshima-u.ac.jp

JRESRFREEBEIER TRBEFRE il 16

10



