Hypersationary Subsets of $\mathcal{P}_{\kappa}\lambda$

M. Catalina Torres (University of Barcelona)

Abstract

Let κ be an uncountable regular cardinal, $\kappa \subseteq A$. We study the notion of n-stationarity on $\mathcal{P}_{\kappa}(A)$ introduced by H. Brickhill, S. Fuchino and H. Sakai and a minor modification of the same. We set a posible foundational framework for an exploration into the adaptability of results presented in Bagaria's article "Derived Topologies on Ordinals and Stationary Reflection" to the more general context of $\mathcal{P}_{\kappa}(A)$.

1 Introduction

The exploration of combinatorial properties of $\mathcal{P}_{\kappa}\lambda = \{x \subseteq \lambda : |x| < \kappa\}$ where κ denotes an uncountable regular cardinal and $\kappa \le \lambda$, boasts a rich historical background [10, 11, 12, 6, 7, 8, 9, 14]. Appropriate formulations of the generalisation of properties from ordinals to the case of $\mathcal{P}_{\kappa}\lambda$ may mostly lead to compelling results with significantly higher levels of consistency strength.

In Bagaria's paper "Derived Topologies on Ordinals and Stationary Reflection" (See [1]), an iterated notion of stationary reflection for a given limit ordinal α was introduced. Specifically, $A \subseteq \alpha$ is 0-stationary in α if and only if it is unbounded in α . For $\xi > 0$, $A \subseteq \alpha$ is ξ -stationary in α if and only if for every $\zeta < \xi$ and every S ζ -stationary in α , there is $\beta < \alpha$ such that $S \cap \beta$ is ζ -stationary in β . Building upon this, Bagaria, Magidor, and Sakai demonstrated in [2] a profound connection between this stronger form of stationarity and the concept of indescribability. They proved that in L a regular cardinal is n+1-stationary if and only if it is Π_n^1 indescribable.

Subsequently, in [3], Bagaria demonstrated that sets simultaneously reflecting pairs of ξ stationarity subsets of ordinals (ξ -simultaneously-stationary sets) played a pivotal role in characterising the discreteness of derived topologies on ordinals. As a consequence, Bagaria established a correlation between this new notion of stationarity and the completeness of **GLP**logics [3, 4, 5], thus underscoring its significance beyond the realm of set theory. Bagaria also
showed that the set $\mathcal{I}_{\alpha}^{\xi}$ -comprising all non-simultaneously-stationary subsets of α - is a proper
ideal if and only if α is ξ -simultaneously-stationary in α . Lastly, he extended the findings from
[2] to encompass arbitrary ordinals ξ by introducing a natural new notion of $\Pi\xi^1$ indescribability.

Inspired by insights from the exploration of higher stationarity on ordinals [1, 2, 3], a pioneering effort was initiated to define higher stationarity within $\mathcal{P}_{\kappa}\lambda$. In [16], H. Brickhill, S. Fuchino, and H. Sakai proposed a definition of n-stationarity in $\mathcal{P}_{\kappa}(A)$, where κ is a regular cardinal and $\kappa \subseteq A$. While the consistency strength of hyperstationarity on ordinals is rather low in the large-cardinal hierarchy (below a measurable cardinal), its generalisation to $\mathcal{P}_{\kappa}(A)$ is possibly much stronger. Thus, the formulation of the appropriate generalisation of hyperstationarity for $\mathcal{P}_{\kappa}(A)$ and the development of its theory, in analogy with the notion of hyperstationarity for cardinals should allow more interesting applications at a much higher level, in terms of consistency strength. Our objective, therefore, is to explore the consequences of this definition and its alignment with results obtained by Bagaria in [3], all within the framework of $\mathcal{P}_{\kappa}(A)$.

2 Notation and framework

Throughout the subsequent discussion, κ will represent an uncountable regular cardinal, and A any set such that $\kappa \subseteq A$. Recall that $\mathcal{P}_{\kappa}(A)$ signifies the set $x \subseteq A : |x| < \kappa$. In [10, 11, 12], Jech introduced the following definitions:

Definition 2.1. (T. Jech) Let κ be an uncountable regular cardinal and let A be a set of ordinals such that $\kappa \subseteq A$.

- 1. $S \subseteq \mathcal{P}_{\kappa}(A)$ is unbounded in $\mathcal{P}_{\kappa}(A)$ iff for any $X \in \mathcal{P}_{\kappa}(A)$ there is some $Y \in S$ such that $X \subseteq Y$.
- 2. $S \subseteq \mathcal{P}_{\kappa}(A)$ is closed in $\mathcal{P}_{\kappa}(A)$ iff for any $\{X_{\xi} : \xi < \beta\} \subseteq S$ with $\beta < \kappa$ and $X_{\xi} \subseteq X_{\zeta}$ for $\xi \leq \zeta < \beta$, $\bigcup_{\xi < \beta} X_{\xi} \in S$.
- 3. $S \subseteq \mathcal{P}_{\kappa}(A)$ is club of $\mathcal{P}_{\kappa}(A)$ iff S is closed and unbounded in $\mathcal{P}_{\kappa}(A)$,.
- 4. $S \subseteq \mathcal{P}_{\kappa}(A)$ is stationary in $\mathcal{P}_{\kappa}(A)$ iff for any C club in $\mathcal{P}_{\kappa}(A)$, $S \cap C \neq \emptyset$.

The following are some well-known facts that can be found easily in the literature [12, 13, 15]. We provide some proofs of the them.

Lemma 2.2. If $S \subseteq \mathcal{P}_{\kappa}(A)$ is a club of $\mathcal{P}_{\kappa}(A)$, then it is stationary in $\mathcal{P}_{\kappa}(A)$. And if $S \subseteq \mathcal{P}_{\kappa}(A)$ is stationary in $\mathcal{P}_{\kappa}(A)$, then it is unbounded in $\mathcal{P}_{\kappa}(A)$.

Proof: Let S be be a club of $\mathcal{P}_{\kappa}(A)$, and pick any club C of $\mathcal{P}_{\kappa}(A)$. We well prove that in fact $S \cap C$ is a club of $\mathcal{P}_{\kappa}(A)$. It is clear that $S \cap C$ is closed, so we will prove that it is unbounded in $\mathcal{P}_{\kappa}(A)$. Let $X_0 \in \mathcal{P}_{\kappa}(A)$, as S, C are unbounded in $\mathcal{P}_{\kappa}(A)$, we may construct the following ω -sequence

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \cdots \subsetneq X_n \subsetneq X_{n+1} \subsetneq \cdots$$

Where $X_i \in S$ if i > 0 is even and $X_i \in C$ otherwise. Then, $\bigcup_{i < \omega} X_{2i} \in S$ and $\bigcup_{i < \omega} X_{2i+1} \in C$, but $\bigcup_{i < \omega} X_{2i} = \bigcup_{i < \omega} X_{2i+1}$, therefore $\bigcup_{i < \omega} X_i \in S \cap C$.

For the second statement take $X \in S$, consider the club subset $C = \{Y \in \mathcal{P}_{\kappa}(A) : X \subseteq Y\}$. Pick $Z \in S \cap C$, then $Z \in S$ and $X \subseteq Z$, this is S is stationary in $\mathcal{P}_{\kappa}(A)$. \square

Lemma 2.3. Let D be a directed system, then for each $X \subseteq D$, there is a directed system D' such that $X \subseteq D' \subseteq D$ and $|D'| \le |X| + \aleph_0$.

Proof : Consider the set $Y := \{\{x,y\} : x,y \in X\}$ of all pairs of elements of X. Notice that $|Y| \leq |X| + \aleph_0$, let us say $Y = \{z_\alpha : \alpha < |Y|\}$. Now, for each $\alpha < |Y|$ we have that $\cup z_\alpha \in X$. Then, the set $D' := Y \cup \{\cup z_\alpha : \alpha < |Y|\}$ is such that $X \subseteq D' \subseteq D$ and $|D'| \leq |X| + \aleph_0$. \square

Proposition 2.4. $C \subseteq \mathcal{P}_{\kappa}(A)$ is closed if and only if for every directed set $X \subseteq C$ of cardinality $\langle \kappa, \bigcup X \in C.$

Proof : (\Rightarrow) We prove this direction by induction on $|X| = \gamma$. Suppose that $X = \{A_{\alpha} : \alpha < \gamma\}$. By induction on $\alpha < \gamma$ we will define a continuous sequence of inductive systems contained in X. Suppose that for each $\beta < \alpha$, D_{β} is an inductive system such that $A_{\beta} \in D_{\beta}$, $|D_{\beta}| \leq |\beta| + \aleph_0$ and $D_{\delta} \subseteq D_{\beta}$ for all $\delta < \beta$. Define $X_{\alpha} := \bigcup_{\beta < \alpha} D_{\beta} \cup \{A_{\alpha}\}$, then, $|X_{\alpha}| = |\bigcup_{\beta < \alpha} D_{\beta}| \leq |\alpha| < \gamma$. And by Lemma 2.3. choose D_{α} to be a direct system of X such that $X_{\alpha} \subseteq D_{\alpha} \subseteq X$ and $|D_{\alpha}| \leq |X_{\alpha}| + \aleph_0$. Then $A_{\alpha} \in D_{\alpha}$, $|D_{\alpha}| < \gamma$ and $D_{\beta} \subseteq D_{\alpha}$ for all $\beta < \alpha$. Since each D_{α} has cardinality less than γ , by induction hypothesis $\bigcup D_{\alpha} \in C$ for each $\alpha < \gamma$. Then as C is closed

$$\bigcup X = \bigcup_{\alpha < \gamma} D_{\alpha} \in C.$$

 (\Leftarrow) Let C be a set of $\mathcal{P}_{\kappa}(A)$, and suppose $\{X_{\xi}: \xi < \beta\} \subseteq C$ whit $\beta < \kappa$ and $X_{\xi} \subseteq X_{\zeta}$ for $\xi \leq \zeta < \beta$. Let $X_{\xi_1}, X_{\xi_2} \in \{X_{\xi}: \xi < \beta\}$, we may assume $X_{\xi_1} \subseteq X_{\xi_2}$, then $X_{\xi_1} \cup X_{\xi_2} \subseteq X_{\xi_2}$. This is, $\{X_{\xi}: \xi < \beta\}$ is a directed subset of C of cardinality $\beta < \kappa$, then by hypothesis we have that $\bigcup_{\xi < \beta} X_{\xi} \in S$.

Our research builds upon the following definition proposed by H. Brickhill, S. Fuchino, and H. Sakai, as presented in [16], establishing a crucial starting point for our exploration.

Definition 2.5. (H. Brickhill, S. Fuchino and H. Sakai [16]) Let $n < \omega$ and κ be a regular limit cardinal such that $\kappa \subseteq A$.

- 1. $S \subseteq \mathcal{P}_{\kappa}(A)$ is 0-stationary in $\mathcal{P}_{\kappa}(A)$ iff S is unbounded in $\mathcal{P}_{\kappa}(A)$.
- 2. $S \subseteq \mathcal{P}_{\kappa}(A)$ is n-stationary in $\mathcal{P}_{\kappa}(A)$ iff for all m < n and all $T \subseteq \mathcal{P}_{\kappa}(A)$ m-stationary in $\mathcal{P}_{\kappa}(A)$, there is $B \in S$ such that
 - $\mu := B \cap \kappa$ is regular cardinal.
 - $T \cap \mathcal{P}_{\mu}(B)$ is m-stationary in $\mathcal{P}_{\mu}(B)$.

We however introduced a subtle modification of the same, relaxing the condition over μ , this is, requiring only the existence of a μ regular contained in $B \cap \kappa$. And this is the definition of n-stationarity we are going to use from now, noticing when pertinent which results holds from the stronger Definition 2.5

Definition 2.6. Let $n < \omega$ and κ be a regular limit cardinal such that $\kappa \subseteq A$.

- 1. $S \subseteq \mathcal{P}_{\kappa}(A)$ is 0-w-stationary in $\mathcal{P}_{\kappa}(A)$ iff S is unbounded in $\mathcal{P}_{\kappa}(A)$.
- 2. $S \subseteq \mathcal{P}_{\kappa}(A)$ is n-w-stationary in $\mathcal{P}_{\kappa}(A)$ iff for all m < n and all $T \subseteq \mathcal{P}_{\kappa}(A)$ m-w-stationary in $\mathcal{P}_{\kappa}(A)$, there is $B \in S$ and μ regular cardinal such that
 - $\mu \subseteq B \cap \kappa$.
 - $T \cap \mathcal{P}_{\mu}(B)$ is m-w-stationary in $\mathcal{P}_{\mu}(B)$.

Corollary 1. For any $n < \omega$, if $S \subseteq \mathcal{P}_{\kappa}(A)$ is n-stationary in $\mathcal{P}_{\kappa}(A)$, then, $S \subseteq \mathcal{P}_{\kappa}(A)$ is n-w-stationary in $\mathcal{P}_{\kappa}(A)$. \square

To enhance readability, we adopt the shorthand "S is n-w-stationary" instead of "S is n-w-stationary in $\mathcal{P}_{\kappa}(A)$ " when the context is clear.

3 Results

Proposition 3.1. If $S \subseteq \mathcal{P}_{\kappa}(A)$ is 1-w-stationary, then S is unbounded.

Proof: Suppose that $S \subseteq \mathcal{P}_{\kappa}(A)$ 1-w-stationary and let $X \in \mathcal{P}_{\kappa}(A)$. The set $U_X := \{Y \in \mathcal{P}_{\kappa}(A) : X \subseteq Y\}$ is clearly unbounded in $\mathcal{P}_{\kappa}(A)$. Then there is $B \in S$ such that $\mu \subseteq B \cap \kappa$ is regular and $U_X \cap \mathcal{P}_{\mu}(B)$ is unbounded in $\mathcal{P}_{\mu}(B)$. Note that $\bigcup (U_X \cap \mathcal{P}_{\mu}(B)) = B$, because if $b \in B$, then $\{b\} \in \mathcal{P}_{\mu}(B)$ and so there is $Y \in U_X \cap \mathcal{P}_{\mu}(B)$ such that $\{b\} \subseteq Y$. Thus, $b \in Y \in U_X \cap \mathcal{P}_{\mu}(B)$ and $b \in \bigcup (U_X \cap \mathcal{P}_{\mu}(B)) = B$. Now we will see that $X \subseteq B$. Let $x \in X$. Then $x \in Y$ for all $Y \in U_X$, in particular $x \in Y$ for all $Y \in U_X \cap \mathcal{P}_{\mu}(B)$. Hence $x \in \bigcup (U_X \cap \mathcal{P}_{\mu}(B)) = B$. \square

Proposition 3.2. $S \subseteq \mathcal{P}_{\kappa}(A)$ being n-w-stationary implies S is m-w-stationary for all m < n.

Proof : We proceed by induction. The case n=0 is precisely Proposition 3.1. Suppose we have the result for all k < n, and that $S \subseteq \mathcal{P}_{\kappa}(A)$ n-w-stationary. Let m < n and take $T \subseteq \mathcal{P}_{\kappa}(A)$ to be l-w-stationary for some l < m. As S is n-w-stationary, there is some $B \in S$ and μ regular cardinal such that $\mu \subseteq B \cap \kappa$ and $T \cap \mathcal{P}_{\mu}(B)$ is l-w-stationary in $\mathcal{P}_{\mu}(B)$. Therefore, S is m-w-stationary. \square

It is straightforward that if $S' \subseteq S \subseteq \mathcal{P}_{\kappa}(A)$ and S' is *n*-w-stationary, then S is *n*-w-stationary as well. The following proposition was stated by H. Brickhill, S. Fuchino and H. Sakai in [16] for Definition 2.5, we prove that this same result follows for Definition 2.6.

Proposition 3.3. If $\mathcal{P}_{\kappa}(A)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$, then κ is weakly Mahlo.

Proof: Suppose that $\mathcal{P}_{\kappa}(A)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$. We will prove that $R := \{ \mu < \kappa : \mu \text{ is a regular limit cardinal} \}$ is stationary in κ . Let C be a club subset of κ and consider the following set $T_C = \{ Y \in \mathcal{P}_{\kappa}(A) : \exists \alpha \in C \text{ such that } Y \cap \kappa \subsetneq \alpha \leq |Y| \}$.

- T_C is unbounded in $\mathcal{P}_{\kappa}(A)$: Suppose $Y \in \mathcal{P}_{\kappa}(A)$ and let $\alpha \in C$ be such that $Y \cap \kappa \subsetneq \alpha$. Consider $\tilde{\alpha} := \{\delta \setminus \{0\} : \delta \in \alpha\}$, clearly $\tilde{\alpha} \cap \kappa = \{\emptyset\}$. Now $Z := Y \cup \{\tilde{\alpha}\}$ is such that $Z \cap \kappa = (Y \cup \{\tilde{\alpha}\}) \cap \kappa = (Y \cap \kappa) \cup (\{\tilde{\alpha}\} \cap \kappa) = Y \cap \kappa \subsetneq \alpha$. Moreover $\alpha \leq |\alpha| = |\tilde{\alpha}| \leq |Y \cup \tilde{\alpha}| = |Z|$, whence $Z \in T$. Hence, for every $Y \in \mathcal{P}_{\kappa}(A)$ there is $Z \in T$ such that $Y \subseteq Z$.

Hence, by 1-w-stationary of $\mathcal{P}_{\kappa}(A)$, there is $B \in \mathcal{P}_{\kappa}(A)$ such that

- $\mu \subseteq B \cap \kappa$ is a regular cardinal $(\mu \in R)$.
- $T_C \cap \mathcal{P}_{\mu}(B)$ is 0-w-stationary in $\mathcal{P}_{\mu}(B)$.

Note that $C \cap \mu$ is unbounded in μ : Let $\gamma < \mu$, then $\gamma \in \mu = B \cup \kappa \subseteq B$, also since μ is regular cardinal $|\gamma| < \mu$, thus $\gamma \in \mathcal{P}_{\mu}(B)$. Then, there is $Y \in T_C \cap \mathcal{P}_{\mu}(B)$ such that $\gamma \subseteq Y$ (and so $\gamma \subseteq Y \cap \kappa$). As $Y \in T$, there is some $\alpha \in C$ such that $Y \cap \kappa \subsetneq \alpha \leq |Y|$. But then $\gamma \subsetneq Y \cap \kappa \subsetneq \alpha \leq |Y| < \mu$. This is $\alpha \in C \cap \mu$ and $\gamma < \alpha$.

As C is closed, $C \cap \mu$ is unbounded in μ implies $\mu \in C$. Therefore $\mu \in C \cap R$, and so $R = \{\mu < \kappa : \mu \text{ is a regular cardinal}\}$ is stationary in κ . \square

Corollary 2. (H. Brickhill, S. Fuchino and H. Sakai) If $\mathcal{P}_{\kappa}(A)$ is 1-stationary in $\mathcal{P}_{\kappa}(A)$, then κ is weakly Mahlo. \square

Previous Corollary follows straightforward from Corollary 1. The advantage of w-stationarity (Definition 2.6) is that, in fact, the converse of Poposition 3.3 is also true. Obtaining thereof κ weakly Mahlo as a necessary and sufficient condition for $\mathcal{P}_{\kappa}(A)$ to be 1-w-stationary.

Proposition 3.4. If κ is weakly Mahlo, then $\mathcal{P}_{\kappa}(A)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$.

Proof: Suppose that κ is weakly Mahlo. Then, the set $R = \{\mu < \kappa : \mu \text{ is a regular limit cardinal}\}$ is stationary in κ . Let $T \subseteq \mathcal{P}_{\kappa}(A)$ be 0-stationary in $\mathcal{P}_{\kappa}(A)$, and construct the following transfinite sequence

```
X_0 \in T.

X_{\alpha+1} \in T is such that X_{\alpha+1} \supseteq X_{\alpha} \cup \alpha.
```

 $X_{\gamma} \in T$ is such that $X_{\gamma} \supseteq \bigcup_{\alpha < \gamma} [X_{\alpha} \cup \alpha]$, for $\gamma < \kappa$ limit.

This sequence is well defined. Successor and limit step may be performed since T is unbounded and κ is regular; $|X_{\alpha}|, |\alpha| < \kappa$ and so $X_{\alpha} \cup \alpha \in \mathcal{P}_{\kappa}(A)$. Also from $\gamma < \kappa$ we get $\bigcup_{\alpha < \gamma} [X_{\alpha} \cup \alpha] \in \mathcal{P}_{\kappa}(A)$. So defined $\{X_{\alpha} : \alpha < \kappa\} \subseteq T$ is an strict ascending chain.

 $\cdot U := \{ \alpha < \kappa : \exists \beta < \kappa \text{ s.t. } |X_{\beta}| = \alpha \} \text{ is unbounded in } \kappa : \text{Let } \delta < \kappa. \text{ As } \kappa \text{ is a regular limit cardinal } |\delta|^+ < \kappa. \text{ Then } X_{|\delta|^++1} \supseteq X_{|\delta|^+} \cup |\delta|^+. \text{ Note that } \delta < |\delta|^+ \le |X_{|\delta|^++1}| < \kappa. \text{ Then, for } \alpha := |X_{|\delta|^++1}| < \kappa, \text{ there exists } \beta := |\delta|^+ + 1 < \kappa \text{ such that } |X_{\beta}| = \alpha > \delta. \text{ This is } \alpha \in U \text{ and } \delta < \alpha < \kappa.$

Since R is stationary in κ , there is $\mu \in R$ such that $U \cap \mu$ is unbounded in μ . We may now construct the following subsequence:

Pick $\delta < \mu$. Then, there is $\delta_0 \in U \cap \mu$ such that $\delta < \delta_0$, and so there is $\beta_0 < \kappa$ such that $|X_{\beta_0}| = \delta_0 < \mu$. Given X_{β_α} let $X_{\beta_{\alpha+1}}$ be such that $|X_{\beta_\alpha}| < |X_{\beta_{\alpha+1}}| < \mu$; and for $\alpha < \mu$ limit, let X_{β_α} be such that $|\bigcup_{\xi < \alpha} X_{\beta_\xi}| < |X_{\beta\alpha}| < \mu$. Notice that $\beta_\alpha \neq \beta_{\alpha'}$ for $\alpha \neq \alpha'$ and since $\{X_{\beta_\alpha} : \alpha < \mu\} \subseteq \{X_\alpha : \alpha < \kappa\}$, we have that $\{X_{\beta_\alpha} : \alpha < \mu\}$ is also a chain. Since $|X_{\beta_\alpha}| < \kappa$, for all $\alpha < \mu < \kappa$ and κ is regular, $\bigcup_{\alpha < \mu} X_{\beta_\alpha} \in \mathcal{P}_{\kappa}(A)$.

Let $B := \bigcup_{\alpha < \mu} X_{\beta_{\alpha}}$, and notice that since $\{X_{\beta_{\alpha}} : \alpha < \mu\}$ forms a strictly ascending chain, B is the union of at most μ many sets of cardinality less than μ , so that $|B| = \mu$. To conclude the proof we will show that B and μ are as we wanted, this is

- (i) $\mu \subseteq B \cap \kappa$: First notice that, if $\alpha < \alpha'$ then $X_{\beta_{\alpha}} \subsetneq X_{\beta_{\alpha'}}$, and since $\{X_{\alpha} : \alpha < \kappa\}$ is strict ascending, this implies $\beta_{\alpha} < \beta_{\alpha'}$. Notice that, for all $\alpha < \mu$, we have $\beta_{\alpha} \subseteq X_{\beta_{\alpha+1}} \subseteq B$. Also, it is easily proved by induction that $\alpha \leq \beta_{\alpha}$ for all $\alpha < \mu$. Hence, $\sup_{\alpha < \mu} \beta_{\alpha} = \bigcup_{\delta < \alpha} \beta_{\delta} \subseteq B$ and $\mu = \sup_{\alpha < \mu} \alpha \leq \sup_{\alpha < \mu} \beta_{\alpha}$. Therefore $\mu \subseteq B$ and so $\mu \subseteq B \cap \kappa$.
- (ii) $T \cap \mathcal{P}_{\mu}(B)$ is unbounded in $\mathcal{P}_{\mu}(B)$: Let $X \in \mathcal{P}_{\mu}(B)$. Then $X \subseteq \bigcup_{\alpha < \mu} X_{\beta_{\alpha}}$ and $|X| < \mu$. As $|B| = \mu$ is regular, we get that X is not unbounded in B. Then $X \subseteq X_{\beta_{\alpha}}$ for some $\alpha < \mu$. But $X_{\beta_{\alpha}} \subseteq \bigcup_{\alpha < \mu} X_{\beta_{\alpha}} = B$ and $|X_{\beta_{\alpha}}| < \mu$. Thus, there is $X_{\beta_{\alpha}} \in T \cap \mathcal{P}_{\mu}(B)$ such that $X \subseteq X_{\beta_{\alpha}}$. \square

Corollary 3. $\mathcal{P}_{\kappa}(A)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$ if and only if κ is weakly Mahlo. \square

Notice that, in the proof of Proposition 3.4 we can in fact start the sequence $\{X_{\alpha} : \alpha < \kappa\}$ with $X_0 \supseteq y$ for any given $y \in \mathcal{P}_{\kappa}(A)$. Thus at the end of the proof we will get $y \subseteq B$ and $B \cap \kappa$ contains a regular cardinal. Therefore, if κ is weakly Mahlo and $T \subseteq \mathcal{P}_{\kappa}(A)$ is unbounded in $\mathcal{P}_{\kappa}(A)$, the set $W := \{x \in \mathcal{P}_{\kappa}(A) : \text{exists } \mu \text{ is regular limit cardinal such that } \mu \subseteq x \cap \kappa \text{ and } T \cap \mathcal{P}_{\mu}(x) \text{ is unbounded in } \mathcal{P}_{\mu}(x)\}$ is unbounded in $\mathcal{P}_{\kappa}(A)$.

Proposition 3.5. Let κ be the least weakly Mahlo cardinal, then $\mathcal{P}_{\kappa}(A)$ is not 2-w-stationary.

Proof: Towards a contradiction, suppose that $\mathcal{P}_{\kappa}(A)$ is 2-stationary. As κ is weakly Mahlo, by Theorem 3.4 we have that $\mathcal{P}_{\kappa}(A)$ is 1-w-stationary. Then, there is $B \in \mathcal{P}_{\kappa}(A)$ and μ regular cardinal such that $\mu \subseteq B \cap \kappa$ such that $\mathcal{P}_{\kappa}(A) \cap \mathcal{P}_{\mu}(B)$ is 1-w-stationary in $\mathcal{P}_{\mu}(B)$. From $B \in \mathcal{P}_{\kappa}(A)$ and $\mu \subseteq B \cap \kappa$ we get that $\mu < \kappa$. But $\mathcal{P}_{\kappa}(A) \cap \mathcal{P}_{\mu}(B) = \mathcal{P}_{\mu}(B)$, and then $\mathcal{P}_{\mu}(B)$ is 1-w-stationary in $\mathcal{P}_{\mu}(B)$, but again by Proposition 3.3 this implies μ weakly Mahlo. \square

Proposition 3.6. If κ is weakly Mahlo, then $C \subseteq \mathcal{P}_{\kappa}(A)$ club implies C is 1-w-stationary.

Proof: Suppose that κ is weakly Mahlo, we may then perform a similar proof to the one we did for Proposition 3.4. For each unbounded T of $\mathcal{P}_{\kappa}(A)$, we will however, construct the main sequence as follows

```
X_0 \in T. And Y_0 \in C such that X_0 \subseteq Y_0

X_{\alpha+1} \in T is such that X_{\alpha+1} \supsetneq X_\alpha \cup \alpha \cup Y_\alpha. And Y_{\alpha+1} \in C such that X_{\alpha+1} \subseteq Y_{\alpha+1}

X_\gamma \in T is such that X_\gamma \supsetneq \bigcup_{\alpha < \gamma} [X_\alpha \cup \alpha \cup Y_\alpha] for \gamma < \kappa limit.
```

And completely analogous to Proposition 3.4 we get $B := \bigcup_{\alpha < \mu} X_{\beta_{\alpha}} \in \mathcal{P}_{\kappa}(A)$ and μ regular cardinal, such that $\mu \subseteq B \cap \kappa$ and $T \cap \mathcal{P}_{\mu}(B)$ is unbounded in $\mathcal{P}_{\mu}(B)$.

So we are left to prove that $B \in C$. First, we will prove that $\bigcup_{\alpha < \mu} X_{\beta_{\alpha}} = \bigcup_{\alpha < \mu} Y_{\beta_{\alpha}}$. Let $z \in \bigcup_{\alpha < \mu} X_{\beta_{\alpha}}$, this is $z \in X_{\beta_{\alpha}}$ for some $\alpha < \mu$. By construction $X_{\beta_{\alpha}} \subseteq Y_{\beta_{\alpha}}$, then $z \in Y_{\beta_{\alpha}} \subseteq \bigcup_{\alpha < \mu} Y_{\beta_{\alpha}}$. Conversely, if $z \in \bigcup_{\alpha < \mu} Y_{\beta_{\alpha}}$ then $z \in Y_{\beta_{\alpha}}$ for some $\alpha < \mu$. Since for all $\alpha < \mu$, $X_{\beta_{\alpha}} \subseteq X_{\beta_{\alpha+1}}$, we have $X_{\beta_{\alpha+1}} \subseteq X_{\beta_{\alpha+1}}$. Moreover, by construction (successor step) we have that $Y_{\beta_{\alpha}} \subseteq X_{\beta_{\alpha+1}} \subseteq X_{\beta_{\alpha+1}}$. Therefore $z \in X_{\beta_{\alpha+1}}$ and so $z \in \bigcup_{\alpha < \mu} X_{\beta_{\alpha}}$.

Now, $\{Y_{\beta_{\alpha}} : \alpha < \mu\}$ is clearly an ascending sequence of elements of C. Then, as C is closed, we get that $\bigcup_{\alpha < \mu} Y_{\beta_{\alpha}} \in C$. But $B = \bigcup_{\alpha < \mu} X_{\beta_{\alpha}} = \bigcup_{\alpha < \mu} Y_{\beta_{\alpha}}$, then $B \in C$. \square

Recall that in the ordinal case in [3]

```
S \subseteq \kappa club \rightarrow S 1-w-stationary \leftrightarrow S stationary \rightarrow S unbounded
```

By the previous propositions, in the case $\mathcal{P}_{\kappa}(A)$ when κ is weakly Mahlo, we have:

```
S \subseteq \mathcal{P}_{\kappa}(A) club \to S 1-w-stationary \to S stationary \to S unbounded.
```

Unfortunately, the correspondence between 1-stationarity and stationarity does not extend to $\mathcal{P}_{\kappa}(A)$.

Proposition 3.7. The condition $S \subseteq \mathcal{P}_{\kappa}(A)$ is stationary in $\mathcal{P}_{\kappa}(A)$ does not imply that S is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$.

Proof: First let us prove the following facts:

- $C_0 = \{X \in \mathcal{P}_{\kappa}(A) : X \cap \kappa \text{ is a cardinal}\}\$ is a club subset of $\mathcal{P}_{\kappa}(A) : \text{Let } Y \in \mathcal{P}_{\kappa}(A),$ and let α be the least cardinal less than κ such that $\alpha \geq \sup(Y \cap \kappa)$. (Such an ordinal exists because $|Y| < \kappa$ and κ weakly Mahlo). Define $X = Y \cup \alpha$, clearly $X \in \mathcal{P}_{\kappa}(A)$ and $X \cap \kappa = \alpha$. This is $Y \subseteq X \in C_0$. Consider now an increasing sequence $\langle X_{\beta} : \beta < \gamma \rangle$ of $\gamma < \kappa$ elements of C. Then $\langle X_{\beta} \cap \kappa : \beta < \gamma \rangle$ is an increasing sequence of cardinals less than κ , soits limit is also a cardinal less than κ . Hence $(\bigcup_{\beta < \gamma} X_{\beta}) \cap \kappa = \bigcup_{\beta < \gamma} (X_{\beta} \cap \kappa)$ is a cardinal, and so $\bigcup_{\beta < \gamma} X_{\beta} \in C_0$.
- $S = \{X \in \mathcal{P}_{\kappa}(A) : X \cap \kappa \text{ is a cardinal } \wedge cof(X \cap \kappa) < X \cap \kappa\}$ is a stationary subset of $\mathcal{P}_{\kappa}(A)$: Let C_1 be a club of $\mathcal{P}_{\kappa}(A)$ then $C := C_0 \cap C_1$ is also a club. Let $X_0 \in C$ be such that $X_0 \cap \kappa > \omega$ and $\langle X_n : n < \omega \rangle$ is an increasing sequence of elements of C, then $\langle X_n \cap \kappa : n < \omega \rangle$ is an increasing sequence of cardinals greater than ω , and so $cof(\bigcup_{n<\omega}(X_n\cap\kappa)) < \bigcup_{n<\omega}(X_n\cap\kappa)$. Hence $\bigcup_{n<\omega}X_n \in C\cap S$.

Now, towards a contradiction suppose S is 1-w-stationary. Then for C_0 it must exists $B \in S$ and $\mu < \kappa$ regular cardinal such that $\mu \subseteq B \cap \kappa$ and $T \cap \mathcal{P}_{\mu}(B)$ is unbounded in $\mathcal{P}_{\mu}(B)$. From $B \in S$ we get that $B \cap \kappa$ is a singular cardinal, then $\mu < B \cap \kappa$. Moreover, there is some cardinal α such that $\mu < \alpha < B \cap \kappa$ (take $\alpha = \mu^+$), whence $\alpha \in B$ and so $\{\alpha\} \in \mathcal{P}_{\mu}B$. Since $T \cap \mathcal{P}_{\mu}(B)$ is unbounded in $\mathcal{P}_{\mu}(B)$, there must be some $x \in T \cap \mathcal{P}_{\mu}(B)$ such that $\alpha \in x$. But then $\alpha \in x \cap \kappa$, and so $\mu < \alpha \leq x \cap \kappa \leq |x|$. Contradicting the fact that $x \in \mathcal{P}_{\mu}B$. \square

From previous proposition, and Corollary 1, we conclude that Proposition 3.7 also hols for Definition 2.5, this is:

Corollary 4. The condition $S \subseteq \mathcal{P}_{\kappa}(A)$ is stationary in $\mathcal{P}_{\kappa}(A)$ does not imply that S is 1-stationary in $\mathcal{P}_{\kappa}(A)$. \square

Theorem 3.8. If $\mathcal{P}_{\kappa}(A)$ is 2-w-stationary in $\mathcal{P}_{\kappa}(A)$, then κ is 2-weakly Mahlo i.e. the set $\{\alpha < \kappa : \alpha \text{ is weakly mahlo }\}$ is stationary in κ .

Proof: Suppose that $\mathcal{P}_{\kappa}(A)$ is 2-w-stationary in $\mathcal{P}_{\kappa}(A)$, we shall prove that the set $E := \{ \mu < \kappa : \mu \text{ is weakly mahlo} \}$ is stationary in κ . By Proposition 3.2 the fact that $\mathcal{P}_{\kappa}(A)$ is 2-stationary implies $\mathcal{P}_{\kappa}(A)$ is 1-w-stationary and so κ is weakly Mahlo. Let C be a club subset of κ and consider the set $T := \{ X \in \mathcal{P}_{\kappa}(A) : \exists \alpha \in C \text{ s.t. } X \cap \kappa \subseteq \alpha \leq |X| \}.$

- T is unbounded in $\mathcal{P}_{\kappa}(A)$: Suppose $Y \in \mathcal{P}_{\kappa}(A)$. Let $\alpha \in C$ be such that $Y \cap \kappa \subseteq \alpha$. Consider $\tilde{\alpha} := \{\delta \setminus \{0\} : \delta \in \alpha\}$, clearly $\tilde{\alpha} \cap \kappa = \{\emptyset\}$. Now $Z := Y \cup \{\tilde{\alpha}\}$ is such that $Z \cap \kappa = (Y \cup \{\tilde{\alpha}\}) \cap \kappa = (Y \cap \kappa) \cup (\{\tilde{\alpha}\} \cap \kappa) = Y \cap \kappa \subseteq \alpha$. Moreover $\alpha \leq |\alpha| = |\tilde{\alpha}| \leq |Y \cup \tilde{\alpha}| = |Z|$, whence $Z \in T$. Hence, for $Y \in \mathcal{P}_{\kappa}(A)$ there is $Z \in T$ such that $Y \subseteq Z$.

- T is closed in $\mathcal{P}_{\kappa}(A)$: Let $\{X_{\beta}: \beta < \mu\}$ be an ascending sequence of elements of T. Notice that, for each X_{β} there is some α_{β} such that $X_{\beta} \cap \kappa \subseteq \alpha_{\beta} \leq |X|$. Consider $\alpha := \sup\{\alpha_{\beta}: \beta < \mu\}$. As C is closed, $\alpha \in C$. Moreover, from $X_{\beta} \cap \kappa \subseteq \alpha$ for each $\beta < \mu$, we get that $(\bigcup_{\beta < \mu} X_{\beta}) \cap \kappa \subseteq \sup\{\alpha_{\beta}: \beta < \mu\} = \alpha$. Also from $\alpha_{\beta} \leq |X_{\beta}|$ for each $\beta < \mu$, we get that $\alpha \leq \sup\{|X_{\beta}|: \beta < \mu\} = |\sup\{X_{\beta}: \beta < \mu\}| = |\bigcup_{\beta < \mu} X_{\beta}|$. This is, $(\bigcup_{\beta < \mu} X_{\beta}) \cap \kappa \subseteq \alpha \leq |\bigcup_{\beta < \mu} X_{\beta}|$, so that $\bigcup_{\beta < \mu} X_{\beta} \in T$.

Hence T is a club subset of $\mathcal{P}_{\kappa}(A)$, and so it is 1-w-stationary (Proposition 3.6). Now, since $\mathcal{P}_{\kappa}(A)$ is 2-stationary, there are $B \in \mathcal{P}_{\kappa}(A)$ and μ regular cardinal such that

- $\mu \subseteq B \cap \kappa$.
- $T \cap \mathcal{P}_{\mu}(B)$ is 1-w-stationary in $\mathcal{P}_{\mu}(B)$.

Since $T \cap \mathcal{P}_{\mu}(B)$ is 1-w-stationary in $\mathcal{P}_{\mu}(B)$, then $\mathcal{P}_{\mu}(B)$ is 1-w-stationary in $\mathcal{P}_{\mu}(B)$. Then, by Proposition 3.3, μ is weakly Mahlo. Moreover, we claim that $\mu \in C$. To see that, we will prove that $C \cap \mu$ is unbounded in $\mu < \kappa$. As C is closed, that will imply $\mu \in C$.

- $C \cap \mu$ is unbounded in μ : Let $\gamma < \mu$, then $\gamma \in \mathcal{P}_{\mu}(B)$. So, there is $X \in T \cap \mathcal{P}_{\mu}(B)$ such that $\gamma \subseteq X$ (and so $\gamma \subseteq X \cap \kappa$). As $X \in T$, there is some $\alpha \in C$ such that $X \cap \kappa \subseteq \alpha \leq |X|$. But then $\gamma \subseteq X \cap \kappa \subseteq \alpha \leq |X| < \mu$. This is, $\alpha \in C \cap \mu$ and $\gamma \leq \alpha$.

Therefore $\mu \in C \cap E$, whence E is stationary in κ . This shows κ is 2-weakly Mahlo. \square

So we have that κ being 2-weakly Mahlo is a necessary condition for the 2-w-stationarity of $\mathcal{P}_{\kappa}(A)$.

Is this also a sufficient condition? In other words, do we have an analogous of Proposition 3.4? Recall that in the ordinal case the existence of 1-w-stationary and 2-w-stationary sets respectively, jumped from the condition $cof(\kappa) \geq \omega_1$ to the condition of being weakly inaccessible or the successor of a singular cardinal. This suggests that the condition of κ being 2-weakly-Mahlo is too weak as a sufficient condition for 2-w-stationarity in $\mathcal{P}_{\kappa}(A)$.

Definition 3.9. We say that a subset $X \subseteq \mathcal{P}_{\kappa}(A)$ n-reflects at $B \in \mathcal{P}_{\kappa}(A)$ iff there is μ regular cardinal such that $\mu \subseteq B \cap \kappa$ and $X \cap \mathcal{P}_{\mu}(B)$ is n-w-stationary in $\mathcal{P}_{\mu}(B)$.

Notice that if κ is weakly Mahlo, then every unbounded subset T of $\mathcal{P}_{\kappa}(A)$ 0-reflects to some element of $\mathcal{P}_{\kappa}(A)$. More in general, if $\mathcal{P}_{\kappa}(A)$ is n-w-stationary, then every m-w-stationary subset S of $\mathcal{P}_{\kappa}(A)$ for m < n, m-reflects to some $B \in \mathcal{P}_{\kappa}(A)$.

Definition 3.10. Let $S \subseteq \mathcal{P}_{\kappa}(A)$ and $n < \omega$, we define $d_n(S) := \{X \in \mathcal{P}_{\kappa}(A) : S \text{ n-reflects at } X\}.$

Proposition 3.11. Let κ be weakly Mahlo, and let T, T_1, \ldots, T_l be unbounded in $\mathcal{P}_{\kappa}(A)$ for some $l < \omega$. Then $d_0(T_1) \cap \cdots \cap d_0(T_l)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$.

Proof : To prove that $d_0(T_1) \cap \cdots \cap d_0(T_l)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(A)$ we will prove that for any T_0 unbounded in $\mathcal{P}_{\kappa}(A)$ we have $d_0(T_0) \cap d_0(T_1) \cap \cdots \cap d_0(T_l) \neq \emptyset$. As κ is weakly Mahlo, we can perform an analogous proof of the one we did for Proposition 3.4, with $T = T_0$ and splitting the successor step in such a way that for $\alpha + m$ with $m \leq l$, $X_{\alpha} \in T_m$. Therefore $B = \bigcup_{\alpha < \mu} X_{\beta_{\alpha}} = \bigcup_{\alpha < \mu} X_{\beta_{\alpha} + m}$ for all $m \leq l$ and so $B \in d_0(T_1) \cap \cdots \cap d_0(T_l)$. \square

Definition 3.12. Let $NS_{\kappa,A}^n$ be the set of non n-w-stationary subsets of $\mathcal{P}_{\kappa}(A)$, this is $NS_{\kappa,A}^n := \{S \subseteq \mathcal{P}_{\kappa}(A) : S \text{ is not n-stationary in } \mathcal{P}_{\kappa}(A)\}$. Moreover let $F_{\kappa,A}^n := \{\mathcal{P}_{\kappa}(A) \setminus X : X \in NS_{\kappa,A}^n\}$, this is, $F_{\kappa,A}^n := (NS_{\kappa,A}^n)^*$.

Proposition 3.13. Let $\mathcal{P}_{\kappa}(A)$ be n-w-stationary and let $X \in \mathcal{P}_{\kappa}(A)$. Then $X \in \mathcal{F}_{\kappa,A}^n$ if and only if there is $T_X \subseteq \mathcal{P}_{\kappa}(\lambda)$ m-w-stationary for some m < n such that $d_m(T_X) \subseteq X$.

Proof: (\Rightarrow) Let $X \in F_{\kappa,A}^n$. Then $X = \mathcal{P}_{\kappa}(A) \setminus Y$ for some $Y \in NS_{\kappa,A}^n$. Since Y is not n-w-stationary, there is $T_X \subseteq \mathcal{P}_{\kappa}(\kappa)$ m-w-stationary with m < n such that, for all $B \in Y$ and all $\mu \subseteq B \cap \kappa$ regular, $T_X \cap \mathcal{P}_{\mu}(B)$ is not m-w-stationary in $\mathcal{P}_{\mu}(B)$ (*).

We claim that $d_m(T_X) \subseteq X$. To see this it is enough to prove that $d_m(T_X) \cap Y = \emptyset$. Towards a contradiction, suppose that $W \in d_m(T_X) \cap Y$. Then, $W \in Y$ and T_X m-reflects at W. This is, $W \in Y$ and there is $\mu < \kappa$ regular such that $\mu \subseteq W \cap \kappa$ and $T_X \cap \mathcal{P}_{\mu}(W)$ is m-w-stationary in $\mathcal{P}_{\mu}(W)$, but this is a contradiction to (*).

(\Leftarrow) Suppose that $X \in \mathcal{P}_{\kappa}(A)$ is such that there is $T_X \subseteq \mathcal{P}_{\kappa}(\lambda)$ m-w-stationary for some m < n such that $d_m(T_X) \subseteq X$. Let us consider $Y := \mathcal{P}_{\kappa}(A) \setminus X$. We shall prove that $Y \in NS_{\kappa,\lambda}^n$. By contradiction, suppose Y is n-w-stationary. Then, for the m-w-stationary set $T_X \subseteq \mathcal{P}_{\kappa}(A)$, there is $B \in Y$ and $\mu \subseteq B \cap \kappa$ such that $T_X \cap \mathcal{P}_{\mu}(B)$ is m-w-stationary in $\mathcal{P}_{\mu}(B)$. From the latter, we conclude that $B \in d_m(T_X) \subseteq X$. But B is also an element of Y, this is $B \in \mathcal{P}_{\kappa}\lambda \setminus X$, contradicting the fact that $B \in X$. \square

Then, in analogy with the ordinal case, whenever $\mathcal{P}_{\kappa}(A)$ is n-w-stationary;

 $F_{\kappa,A}^n = \{X \subseteq \mathcal{P}_{\kappa}(A) : \exists T_X \subseteq \mathcal{P}_{\kappa}(A) \mid m\text{-w-stationary for some } m < n, \text{ such that } d_m(T_X) \subseteq X\}.$

Lemma 3.14. If T_1, T_2 are both not unbounded subsets of $\mathcal{P}_{\kappa}(A)$, then $T_1 \cup T_2$ is not unbounded either.

Proof: Suppose $T_i \subseteq \mathcal{P}_{\kappa}(A)$ is not unbounded for $i \in \{1,2\}$, then, there is $X_i \in \mathcal{P}_{\kappa}(A)$ such that for all $Y \in T_i$, $X_i \not\subseteq Y$. Towards a contradiction, suppose that $T_1 \cup T_2$ is unbounded in $\mathcal{P}_{\kappa}(A)$. Then, there is $Y_1 \in T_1 \cup T_2$ such that $X_1 \subseteq Y_1$. Notice that $Y_1 \notin T_1$. Also, there is $Y_2 \in T_1 \cup T_2$ such that $Y_1 \cup X_2 \subseteq Y_2$. Then $X_1 \subseteq Y_1 \cup X_2 \subseteq Y_2$. So, if $Y_2 \in T_1$ then $X_1 \subseteq Y_2$ contradicts that for all $Y \in T_1$, $X_1 \not\subseteq Y$. Similarly if $Y_2 \in T_2$ then $X_2 \subseteq Y_2$ contradicts that for all $Y \in T_2$, $X_2 \not\subseteq Y$. Hence $Y_2 \notin T_1 \cup T_2$, which is a contradiction. \square

Proposition 3.15. If $\mathcal{P}_{\kappa}(A)$ has the property that for all T_1, T_2 m^* -stationary, there is some T m-w-stationary such that $d_m(T) \subseteq d_{m^*}(T_1) \cap d_{m^*}(T_2)$, where $m \leq m^*$. Then, the set $NS_{\kappa,A}^n$ is an ideal over $\mathcal{P}_{\kappa}(A)$. Moreover $\mathcal{P}_{\kappa}(A)$ is n-w-stationary if and only if $NS_{\kappa,A}^n$ is a proper ideal.

Proof : Clearly $\varnothing \in NS_{\kappa,A}^n$. Moreover, if $X \in NS_{\kappa,A}^n$ and $Y \in \mathcal{P}_{\kappa}(A)$ is such that $Y \subseteq X$, then $Y \in NS_{\kappa,A}^n$. Now, suppose that we have the result for all m < n, and let $X_1, X_2 \in NS_{\kappa,A}^n$. Then $\mathcal{P}_{\kappa}(A) \setminus X_1, \mathcal{P}_{\kappa}(A) \setminus X_2 \in F_{\kappa,A}^n$, by Proposition 3.13, there are T_{X_1} m_1 -w-stationary and T_{X_2} m_2 -w-stationary with $m_1, m_2 < n$, such that $d_{m_1}(T_{X_1}) \subseteq \mathcal{P}_{\kappa}(A) \setminus X_1$ and $d_{m_2}(T_{X_2}) \subseteq \mathcal{P}_{\kappa}(A) \setminus X_2$. But $d_{m_1}(T_{X_1}) \cap d_{m_2}(T_{X_2}) \subseteq (\mathcal{P}_{\kappa}(A) \setminus X_1) \cap (\mathcal{P}_{\kappa}(A) \setminus X_2) = \mathcal{P}_{\kappa}(A) \setminus (X_1 \cup X_2)$. Then, $d_{m^*}(T_{X_1}) \cap d_{m^*}(T_{X_2}) \subseteq \mathcal{P}_{\kappa}(A) \setminus (X_1 \cup X_2)$. Now, applying our hypothesis we get that there is $m \leq m^* < n$ and T m-w-stationary such that $d_m(T) \subseteq d_{m^*}(T_{X_1}) \cap d_{m^*}(T_{X_2})$. But this implies that $d_m(T) \subseteq \mathcal{P}_{\kappa}(A) \setminus (X_1 \cup X_2)$. By 3.13, we conclude that $\mathcal{P}_{\kappa}(A) \setminus (X_1 \cup X_2) \in F_{\kappa,A}^n$ and so $X_1 \cup X_2 \in NS_{\kappa,A}^n$.

Finally, suppose that $\mathcal{P}_{\kappa}(A)$ is *n*-w-stationary, then $\mathcal{P}_{\kappa}(A) \notin NS^n_{\kappa,A}$ and so $NS^n_{\kappa,A}$ is non-trivial. \square

Corollary 5. The set of non-1-w-stationary subsets of $\mathcal{P}_{\kappa}(A)$ when is an ideal, is contained in the ideal of non-stationary subsets of $\mathcal{P}_{\kappa}(A)$. This is, $NS_{\kappa,A} \subseteq NS^1_{\kappa,A}$.

Our interest extends to the conditions needed on κ to ensure that $\mathcal{P}_{\kappa}(A)$ is n-w-stationary or $\mathcal{P}_{\kappa}(A)$ is n-stationary. Specifically, we aim to determine the minimal set of conditions required, as we did in the case n=1 in by means of Proposition 3.4. To systematically address this inquiry, we will focus now on Definition 2.5 and we shall obtain the same results for Definition 2.6 as a consequence of Corollary 1. We begin by examining the dynamics within $\mathcal{P}_{\kappa}(\kappa)$. For the more general case of $\mathcal{P}_{\kappa}\lambda$ we proceed by addressing a proposition stated by Sakai in [16] and thereof providing a proof of the same. Notice that when |A| = |B|, then $\langle \mathcal{P}_{\kappa}(A), \subseteq \rangle$ is isomorphic to $\langle \mathcal{P}_{\kappa}(B), \subseteq \rangle$. Then, the study of $\mathcal{P}_{\kappa}(A)$ is analogous to that of $\mathcal{P}_{\kappa}\lambda$, where $|A| = \lambda \geq \kappa$. In this section we will expose two sufficient conditions for n-stationarity, in $\mathcal{P}_{\kappa}\lambda$.

Lemma 3.16. Let κ be a regular cardinal. Then, the formula $\varphi_n(S)$: " $S \subseteq \mathcal{P}_{\kappa}(\kappa)$ is n-stationary in $\mathcal{P}_{\kappa}(\kappa)$ " is Π_n^1 over $\langle V_{\kappa}, \in, S \rangle$. Moreover, if $x \in \mathcal{P}_{\kappa}(\kappa)$, then $\varphi'_n(T)$: " $T \subseteq \mathcal{P}_{B \cap \kappa}(B)$ is n-stationary in $\mathcal{P}_{B \cap \kappa}(B)$ " is a Π_0^1 sentence over $\langle V_{\kappa}, \in \rangle$, in the parameters T, B.

Proof: First we will show that $\mathcal{P}_{\kappa}(\kappa) \in V_{\kappa+1} \setminus V_{\kappa}$ and $\mathcal{P}_{B\cap\kappa}(B) \in V_{\kappa}$. If $y \in \mathcal{P}_{\kappa}(\kappa)$, then $y \subseteq \alpha$ for some $\alpha < \kappa$. So we have $\operatorname{rank}(y) \leq \operatorname{rank}(\alpha) < \operatorname{rank}(\kappa) = \kappa$, this is $y \in \{z : \operatorname{rank}(z) < \kappa\} = V_{\kappa}$, whence $\mathcal{P}_{\kappa}(\kappa) \subseteq V_{\kappa}$ and so $\mathcal{P}_{\kappa}(\kappa) \in V_{\kappa+1}$. Since $\kappa \subseteq \mathcal{P}_{\kappa}(\kappa)$, $\kappa = \operatorname{rank}(\kappa) \leq \operatorname{rank}(\mathcal{P}_{\kappa}(\kappa))$, and this implies $\mathcal{P}_{\kappa}(\kappa) \notin V_{\kappa}$. Moreover, if $B \in S \subseteq \mathcal{P}_{\kappa}(\kappa) \subseteq V_{\kappa}$, $B \in V_{\alpha}$ for some $\alpha < \kappa$. So that $\mathcal{P}(B) \in V_{\alpha+1} \subseteq V_{\kappa}$, and so $\mathcal{P}_{B\cap\kappa}(B) \in V_{\kappa}$.

Notice that $Y \in \mathcal{P}_{\kappa}(\kappa)$ if and only if $\langle V_{\kappa}, \in \rangle \models \psi(Y)$ where $\psi(Y) : \exists \alpha(OR(\alpha) \land Y \subseteq \alpha)$. So defined $\psi(Y)$ is a Π_0^1 formula. In fact, $\psi(Y)$ is a Σ_1 formula with Y as a free variable.

We will now prove the lemma by simultaneous induction. Let n = 0. $S \subseteq \mathcal{P}_{\kappa}(\kappa)$ is 0-stationary in $\mathcal{P}_{\kappa}(\kappa)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi_0(S)$ where

$$\varphi_0(S): \forall Y \ (\psi(Y) \to \exists Y \in S \ (Y \subseteq Y))$$

Y is a first-order variable, because it ranges over elements of $\mathcal{P}_{\kappa}(\kappa) \subseteq V_{\kappa}$. Thus $\varphi_0(S)$ is first order, i.e., Π_0^1 .

Given $B \in \mathcal{P}_{\kappa}(\kappa)$, such that $B \cap \kappa$ is a regular cardinal, we have that $T \subseteq \mathcal{P}_{B \cap \kappa}(B)$ is 0-startionary in $\mathcal{P}_{B \cap \kappa}(B)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi'_0(T, B)$ where

$$\varphi'_0(T,B): \forall Y \ (Y \in \mathcal{P}_{B \cap \kappa}(B) \to \exists W \in T \ (Y \subseteq W) \)$$

Since $T \subseteq \mathcal{P}_{B \cap \kappa}(B) \in V_{\kappa}$ and $Y \in \mathcal{P}_{B \cap \kappa}(B) \in V_{\kappa}$, $\varphi'_0(T; B)$ is a Π_1 formula, and so it is Π_0^1 in the parameters T and B.

Let Reg(z) be the formula "z is a regular cardinal". For n = 1, $S \subseteq \mathcal{P}_{\kappa}(\kappa)$ is 1-w-stationary in $\mathcal{P}_{\kappa}(\kappa)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi_1(S)$ where

$$\varphi_1(S): \ \forall Y \ \phi_1(S,Y)$$
$$\phi_1(S,Y): (\forall Z(Z \in Y \to \psi(Z)) \land \varphi_0(S)) \ \to \ \sigma_1(S,Y)$$
$$\sigma_1(S,Y): \exists B(B \in S \land Reg(B \cap \kappa) \land \varphi_0'(Y \cap \mathcal{P}_{B \cap \kappa}(B)))$$

Y is a second order variable because its possible values are subsets of $\mathcal{P}_{\kappa}(\kappa)$. Note that Z ranges over elements of V_{κ} ($Y \in V_{\kappa+1}$ and $Z \in Y$ implies $Z \in V_{\kappa}$). Then, as $\varphi'_0(Y \cap \mathcal{P}_{B \cap \kappa}(B))$ is Π^1_0 , so is $\sigma_1(S,Y)$. Together with the fact that $\psi(Z)$ and $\varphi_0(S)$ are also Π^1_0 , we get that $\varphi_1(S)$ is Π^1_1 .

Given $B \in \mathcal{P}_{\kappa}(\kappa)$ such that $B \cap \kappa$ is a regular cardinal, we have that $T \subseteq \mathcal{P}_{B \cap \kappa}(B)$ is 1-w-stationary in $\mathcal{P}_{B \cap \kappa}(B)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi'_1(T; B)$ where

$$\varphi_1'(T;B): \ \forall Y \ \phi_1'(Y,T;B)$$

$$\phi_1'(T;B): (Y \subseteq \mathcal{P}_{B \cap \kappa}(B) \land \varphi_0'(Y;B)) \ \to \ \sigma_1'(T,Y)$$

$$\sigma_1'(T,Y): \exists B'(B' \in T \land Reg(B' \cap \kappa) \land \varphi_0'(Y \cap \mathcal{P}_{B' \cap \kappa}(B');B'))$$

Here Y is a first-order variable because its possible values are subsets of $\mathcal{P}_{B\cap\kappa}(B) \in V_{\kappa}$, and $\varphi'_0(Y;B), \varphi'_0(Y\cap\mathcal{P}_{B\cap\kappa'}(B');B')$ are Π_1 formulas. Then, $\sigma'_1(T,Y)$ is a Σ_2 formula, whence $\varphi'_1(T;B)$ is a Π_3 formula and so a Π^1_0 formula.

Suppose now, that $S \subseteq \mathcal{P}_{\kappa}(\kappa)$ is m-stationary in $\mathcal{P}_{\kappa}(\kappa)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi_m(S)$, where $\varphi_m(S)$ is a Π^1_m formula for all m < n. And let us prove the result for n.

Then, $\varphi_m(S)$ is of the form $\forall \mathbf{Y}_1^m \exists \mathbf{Y}_2^m \dots Q \mathbf{Y}_m^m \phi_m(S, \mathbf{Y}_1^m, \dots, \mathbf{Y}_m^m)$ where $Q = \forall$ if m is odd, $Q = \exists$ if m is even, $\mathbf{Y}_j^m = Y_1, \dots, Y_{k_j}$ for $j \in \{1, \dots, n\}$ and $\phi_m(S, \mathbf{Y}_1^m, \dots, \mathbf{Y}_m^m)$ is a Π_0^1 formula. We have, $S \subseteq \mathcal{P}_{\kappa}(\kappa)$ is n-stationary in $\mathcal{P}_{\kappa}(\kappa)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi_n(S)$, where

$$\varphi_n(S): \varphi_{n-1}(S) \land \forall Y((\forall Z(Z \in Y \to \psi(Z)) \land \varphi_{n-1}(S)) \to \sigma_n(S,Y))$$

From the inductive hypothesis, we know that $\varphi_{n-1}(S)$ is of the form $\forall \mathbf{Y}_1^{n-1} \exists \mathbf{Y}_2^{n-1} \ldots Q \mathbf{Y}_{n-1}^{n-1}$ $\phi_{n-1}(S, \mathbf{Y}_1^{n-1}, \ldots, \mathbf{Y}_{n-1}^{n-1})$, and so, we have that

$$\forall Y((\forall Z(Z \in Y \to \psi(Z)) \land \varphi_{n-1}(S)) \to \sigma_n(S,Y)) \equiv \forall Y \exists \mathbf{Y}_1^{n-1} \forall \mathbf{Y}_2^{n-1} \cdots$$
$$\bar{Q} \mathbf{Y}_{n-1}^{n-1}((\forall Z(Z \in Y \to \psi(Z)) \land \phi_{n-1}(S,\mathbf{Y}_1^{n-1},\dots,\mathbf{Y}_{n-1}^{n-1})) \to \sigma_n(S,Y))$$

where $\bar{Q} = \forall$ if $Q = \exists$ and $\bar{Q} = \exists$ if $Q = \forall$, and σ_n is the first order formula

$$\sigma_n(S,Y): \exists B(B \in S \land Reg(B \cap \kappa) \land B \cap \kappa \subseteq B \land \varphi'_{n-1}(Y \cap \mathcal{P}_{B \cap \kappa}(B)))$$

Therefore, if $(\mathbf{Y}_1 := Y, \mathbf{Y}_1^1, \dots, \mathbf{Y}_1^{n-1}), \dots, (\mathbf{Y}_i := \mathbf{Y}_i^i, \dots, \mathbf{Y}_i^{n-1}, \mathbf{Y}_{i-1}^{n-1}), \dots, (\mathbf{Y}_n := \mathbf{Y}_{n-1}^{n-1}),$ we may write $\varphi_n(S)$ in the following form

$$\varphi_n(S) \equiv \forall \mathbf{Y}_1 \ \exists \ \mathbf{Y}_2 \ \forall \ \mathbf{Y}_3 \ \dots \ \bar{Q} \ \mathbf{Y}_n(\phi_1(S, \mathbf{Y}_1) \land \phi_2(S, \mathbf{Y}_1, \mathbf{Y}_2)$$
$$\land \dots \land \phi_{n-1}(S, \mathbf{Y}_1, \dots, \mathbf{Y}_{n-1}) \land$$

$$\wedge ((\forall Z(Z \in Y \to \psi(Z)) \land \phi_{n-1}(S, \mathbf{Y}_1, \dots, \mathbf{Y}_{n-1})) \to \sigma_n(S, Y)))$$

Since $\phi_j(S, \mathbf{Y}_1, \dots, \mathbf{Y}_i)$ and $\sigma_n(S, Y)$ are Π_0^1 formulas for $j \in \{1, \dots, n-1\}$, we get that $\varphi_n(S)$ is a Π_n^1 formula.

Suppose now, that for $B \in \mathcal{P}_{\kappa}(\kappa)$, $T \subseteq \mathcal{P}_{B \cap \kappa}(B)$ is m-stationary in $\mathcal{P}_{B \cap \kappa}(B)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi'_m(T, B)$, where $\varphi'_m(T, B)$ is a Π_0^1 formula for all m < n.

 $T \subseteq \mathcal{P}_{B \cap \kappa}(B)$ is n-stationary in $\mathcal{P}_{B \cap \kappa}(B)$ if and only if $\langle V_{\kappa}, \in \rangle \models \varphi'_n(T, B)$, where

$$\varphi'_n(T,B): \varphi'_{n-1}(T,B) \wedge \forall Y((Y \subseteq \mathcal{P}_{B \cap \kappa}(B) \wedge \varphi'_{n-1}(Y,B)) \rightarrow \sigma'_n(T,Y))$$

and where

$$\sigma'_n(T,Y): \exists B'(B' \in T \land Reg(B' \cap \kappa) \land \varphi'_{n-1}(Y \cap \mathcal{P}_{B \cap \kappa'}(B'); B')).$$

Here, Y is a first-order variable because its possible values are subsets of $\mathcal{P}_{B\cap\kappa}(B) \in V_{\kappa}$, and $\varphi'_{n-1}(Y \cap \mathcal{P}_{B\cap\kappa}(B), B')$ and $\sigma'_n(T, Y)$ are first-order formulas. Then $\varphi'_n(T, B)$ is a first-order formula and so it is Π_0^1 . \square

Theorem 3.17. Let $n < \omega$. If κ is Π_n^1 indescribable, then $\mathcal{P}_{\kappa}(\kappa)$ is n+1 stationary.

Proof: Suppose κ is Π_n^1 indescribable. Let $S \subseteq \mathcal{P}_{\kappa}(\kappa)$ be m-stationary, some m < n + 1. Consider the Π_m^1 sentence $\varphi_m(S)$ in $\langle V_{\kappa}, \in, S \rangle$. Then, we have

$$\langle V_{\kappa}, \in, S \rangle \models \varphi_m(S).$$

As κ is Π_n^1 indescribable and $m \leq n$, there is some $\mu < \kappa$ regular such that

$$\langle V_{\mu}, \in, S \cap V_{\mu} \rangle \models \varphi_m(S \cap V_{\mu}).$$

Now, note that $\mathcal{P}_{\kappa}(\kappa) \cap V_{\mu} = \mathcal{P}_{\mu}(\mu)$. For if $X \in \mathcal{P}_{\kappa}(\kappa) \cap V_{\mu}$ then $X \subseteq \kappa \cap V_{\mu} = \mu$. Also $|X| < \mu$, otherwise rank $(X) = \mu$ and so $X \notin V_{\mu}$. Hence $X \in \mathcal{P}_{\mu}(\mu)$.

Thus, since $S = S \cap \mathcal{P}_{\kappa}(\kappa)$, we have that $S \cap V_{\mu} = S \cap \mathcal{P}_{\kappa}(\kappa) \cap V_{\mu} = S \cap \mathcal{P}_{\mu}(\mu)$. Therefore, we have $\langle V_{\mu}, \in, S \cap \mathcal{P}_{\mu}(\mu) \rangle \models \varphi_{m}(S \cap \mathcal{P}_{\mu}(\mu))$, and so $S \cap \mathcal{P}_{\mu}(\mu)$ is *m*-stationary in $\mathcal{P}_{\mu}(\mu)$. \square

Corollary 6. If κ is totally indescribable, then $\mathcal{P}_{\kappa}(\kappa)$ is n-stationary for any $n < \omega$ (and so $\mathcal{P}_{\kappa}(\kappa)$ is n-w-stationary for any $n < \omega$).

Now, we will provide a proof for the the assertion made by Sakai in [16], showing threof a sufficient condition to have n-stationarity in $\mathcal{P}_{\kappa}\lambda$. We will use the fact that, if f is an isomorphism between $\mathcal{P}_{\kappa}\lambda$ and $\mathcal{P}_{\kappa}(\delta)$, then, $S \subseteq \mathcal{P}_{\kappa}\lambda$ is m-stationary in $\mathcal{P}_{\kappa}\lambda$ if and only if f[S] is m-stationary in $\mathcal{P}_{\kappa}(\delta)$. The proof of this fact is follows immediately form definition of n-stationarity in $\mathcal{P}_{\kappa}\lambda$.

Proposition 3.18. ([16]) If κ is λ -supercompact and $\lambda^{<\kappa} = \lambda$ then $\mathcal{P}_{\kappa}(\lambda)$ is n-stationary for any $n \in \mathbb{N}$.

Proof: Let $n < \omega$ and take $S \subseteq \mathcal{P}_{\kappa}(\lambda)$ be m-stationary for a given m < n. Suppose that κ is λ -supercompact, this is, there is an elementary embedding $j : V \preceq M$ such that $\operatorname{crit}(j) = \kappa$, $\lambda < j(\kappa)$ and $\lambda M \subseteq M$, where M is transitive.

Recall that j " $x = \{j(y) : y \in x\}$, we claim that j " $\alpha \in M$, for all $\alpha \leq \lambda$. We prove this by induction on OR, j " $0 = 0 \in M$ because $j|_{\kappa} = Id|_{\kappa}$. If j " $\alpha \in M$ for $\alpha < \lambda$, then j " $(\alpha + 1) = j$ " $\alpha \cup \{j(\alpha)\} \in M$. And if $\alpha \leq \lambda$ limit and j " $\beta \in M$ for all $\beta < \alpha$ then j " $\alpha = \{j$ " $\beta : \beta < \alpha\}$ which is a sequence of $\alpha \leq \lambda$ elements of M, whence j " $\alpha \in M$ " M.

Since $j \upharpoonright_{\kappa} = Id \upharpoonright_{\kappa}$, we have that, $j"\kappa = \{j(\alpha) : \alpha < \kappa\} = \{\alpha : \alpha < \kappa\} = \kappa \in M$. Then, it follows that $\mathcal{P}_{j"\kappa}(j"\lambda) = \mathcal{P}_{\kappa}(j"\lambda) \subseteq M$. Moreover, as $|j"\lambda| = |\lambda|$, then $|\mathcal{P}_{\kappa}(j"\lambda)| = |j"\lambda|^{<\kappa} = \lambda^{<\kappa} = \lambda$, and so $\mathcal{P}_{\kappa}(j"\lambda) \in M$. Now, notice that there is an isomorphism f between $\mathcal{P}_{\kappa}\lambda$ and $\mathcal{P}_{\kappa}(j"\lambda)$ given by $X \mapsto j"X$.

By hypothesis, we have that $S \subseteq \mathcal{P}_{\kappa}(\lambda)$ is *m*-stationary in $\mathcal{P}_{\kappa}\lambda$, and so f[S] = j " $S \subseteq \mathcal{P}_{\kappa}(j$ " λ) is *m*-stationary in $\mathcal{P}_{\kappa}(j$ " λ). Therefore, as j" $S \subseteq j(S)$ we have that

$$V \models$$
 " $j(S) \cap \mathcal{P}_{\kappa}(j"\lambda)$ is m-stationary in $\mathcal{P}_{\kappa}(j"\lambda)$ "

Since $\mathcal{P}_{\kappa}(j^{*}\lambda) \in M$, we have that $\mathcal{P}(\mathcal{P}_{\kappa}(j^{*}\lambda)) \subseteq M$. So, since being *m*-stationary depends only on the subsets of $\mathcal{P}_{\kappa}(j^{*}\lambda)$.

$$M \models "j(S) \cap \mathcal{P}_{\kappa}(j"\lambda)$$
 is m-stationary in $\mathcal{P}_{\kappa}(j"\lambda)$ ".

In M we have that κ is regular and such that $\kappa < j(\kappa)$. If we define B := j " λ , then $\kappa = j$ " $\kappa \subseteq j$ " $\lambda = B$, and so $\kappa \subseteq B \cap j(\kappa)$. In fact $\kappa = B \cap j(\kappa)$; if $\alpha \in (B \cap j(\kappa)) \setminus \kappa$, then $\alpha = j(\beta)$ for some $\kappa < \beta < \lambda$ and $\alpha < j(\kappa)$, but $\kappa < \beta$ implies $j(\kappa) < j(\beta) = \alpha$, and this is a contradiction. Besides, as |j " $\lambda| = \lambda < j(\kappa)$, we have that $B \in \mathcal{P}_{j(\kappa)}(j(\lambda))$. Hence the following holds, witnessed by $\mu = \kappa$ and B = j " λ

$$M \models \exists B (Reg(B \cap j(\kappa)) \land B \in \mathcal{P}_{j(\kappa)}(j(\lambda)) \land$$

" $j(S) \cap \mathcal{P}_{B \cap j(\kappa)}(B)$ is m -stationary in $\mathcal{P}_{B \cap j(\kappa)}(B)$ ").

As j is an elementary embedding we get that

$$V \models \exists B (Reg(B \cap j^{-1}(j(\kappa))) \land B \in \mathcal{P}_{j^{-1}(j(\kappa))}(j^{-1}(j(\lambda))) \land$$

" $j^{-1}(j(S)) \cap \mathcal{P}_{B \cap j^{-1}(j(\kappa))}(B)$ is m-stationary in $\mathcal{P}_{B \cap j^{-1}(j(\kappa))}(B)$ ").

and since
$$j^{-1}(j(\kappa)) = \kappa$$
, $j^{-1}(j(\lambda)) = \lambda$ and $j^{-1}(j(S)) = S$,
 $V \models \exists B (Reg(B \cap \kappa) \land B \in \mathcal{P}_{\kappa} \lambda \land "S \cap \mathcal{P}_{B \cap \kappa}(B) \text{ is } m\text{-stationary in } \mathcal{P}_{B \cap \kappa}(B)").$

This is, for each m < n if $S \subseteq \mathcal{P}_{\kappa}(\lambda)$ is m-stationary, there is $B \in \mathcal{P}_{\kappa}\lambda$ such that $\mu \subseteq B \cap \kappa$ is regular and $S \cap \mathcal{P}_{\mu}(B)$ is m-stationary in $\mathcal{P}_{\mu}(B)$. And this is precisely to say that $\mathcal{P}_{\kappa}\lambda$ is n-stationary. \square

References

- [1] Joan Bagaria. Topologies on Ordinals and the Completeness of Polymodal Provability Logics, Circulated manuscript (2011).
- [2] Joan Bagaria. Derived Topologies On Ordinals and Stationary Reflection. Trans. Amer. Math. Soc., (2019), 371(3):1981–2002.
- [3] Joan Bagaria, Menachem Magidor, and Hiroshi Sakai. Reflection and indescribability in the constructible universe, Israel J. Math. 208 (2015), no. 1, 1–11.
- [4] Lev Beklemishev and David Gabelaia. Topological completeness of the provability logic GLP, Ann. Pure Appl. Logic 164 (2013), no. 12, 1201–1223.
- [5] Lev Beklemishev and David Gabelaia. *Topological interpretations of provability logic*, Leo Esakia on duality in modal and intuitionistic logics, Outst. Contrib. Log., vol. 4, Springer, Dordrecht, 2014, pp. 257–290.
- [6] Donna M. Carr. The minimal normal filter on $\mathcal{P}_{\kappa}\lambda$, Proc. Amer. Math. Soc., 86 (1982), 316-320.
- [7] Donna M. Carr, Jean-Pierre Levinski, and Donald H. Pelletier On the existence of strongly normal ideals over $\mathcal{P}_{\kappa}\lambda$. Arch. Math. Log. 30 (1) (1990) 59–72
- [8] H.-D. Donder, P. Koepke and J.-P. Levinski *Some stationary subsets of* $\mathcal{P}_{\kappa}\lambda$, Proc. Amer. Math. Soc. 102 (1988), 1000–1004.
- [9] M. Foreman, M. Magidor and S. Shelah. *Martin's Maximum, saturated ideals and non-regular ultrafilters*, Annals Math. 127 (1988), 1–47
- [10] Thomas Jech. The closed unbounded filter over $P_{\kappa}(\lambda)$. Notices Am. Math. Soc. 18 (1971) 663.
- [11] Thomas Jech. Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1972/1973), no.3, 165-198.
- [12] Thomas Jech. Stationary sets, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 93–128.
- [13] Thomas Jech. Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
- [14] Thomas Jech and Saharon Shelah On reflection of stationary sets in $\mathcal{P}_{\kappa}\lambda$, Transactions of the American Mathematical Society, Volume 352, Issue 6, 2000, Pages 2507–2515
- [15] Péter Komjáth, Vilmos Totik. Problems and Theorems in Classical Set Theory, Springer New York, NY, 2006. Problem Books in Mathematics 978-0-387-36219-9
- [16] Hiroshi Sakai. On generalized notion of higher stationarity, Reflections on Set Theoretic Reflection 2018, November 16–19. [Slides] http://www.ub.edu/RSTR2018/slides/Sakai.pdf

Departament de Matematiques i Informatica, Universitat de Barcelona. $Gran\ Via\ de\ les\ Corts\ Catalanes,\ 585\ 08007\ Barcelona,\ Catalonia.$

E-mail address, mactorrespa@gmail.com