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Abstract

Let x be an uncountable regular cardinal, K C A. We study the notion of n-stationarity
on P (A) introduced by H. Brickhill, S. Fuchino and H. Sakai and a minor modification of
the same. We set a posible foundational framework for an exploration into the adaptability
of results presented in Bagaria’s article “Derived Topologies on Ordinals and Stationary
Reflection” to the more general context of P, (A).

1 Introduction

The exploration of combinatorial properties of P.A = {z C A : |z| < k} where x denotes an un-
countable regular cardinal and x < A, boasts a rich historical background [10, 11, 12, 6, 7, 8, 9, 14].
Appropriate formulations of the generalisation of properties from ordinals to the case of P, A may
mostly lead to compelling results with significantly higher levels of consistency strength.

In Bagaria’s paper “Derived Topologies on Ordinals and Stationary Reflection” (See [1]), an
iterated notion of stationary reflection for a given limit ordinal o was introduced. Specifically,
A C « is 0-stationary in « if and only if it is unbounded in a. For £ > 0, A C « is &-stationary
in « if and only if for every ¢ < ¢ and every S (-stationary in «, there is § < « such that SN g
is (-stationary in . Building upon this, Bagaria, Magidor, and Sakai demonstrated in [2] a
profound connection between this stronger form of stationarity and the concept of indescribabil-
ity. They proved that in L a regular cardinal is n-+1-stationary if and only if it is IT! indescribable.

Subsequently, in [3]|, Bagaria demonstrated that sets simultancously reflecting pairs of &-
stationarity subsets of ordinals (¢-simultaneously-stationary sets) played a pivotal role in char-
acterising the discreteness of derived topologies on ordinals. As a consequence, Bagaria es-
tablished a correlation between this new notion of stationarity and the completeness of GLP
logics [3, 4, 5], thus underscoring its significance beyond the realm of set theory. Bagaria also
showed that the set Ig -comprising all non-simultaneously-stationary subsets of a- is a proper
ideal if and only if « is £-simultaneously-stationary in «. Lastly, he extended the findings from
[2] to encompass arbitrary ordinals ¢ by introducing a natural new notion of IT¢! indescribability.

Inspired by insights from the exploration of higher stationarity on ordinals [1, 2, 3|, a pioneer-
ing effort was initiated to define higher stationarity within Py\. In [16], H. Brickhill, S. Fuchino,
and H. Sakai proposed a definition of n-stationarity in P,(A), where & is a regular cardinal and
k € A. While the consistency strength of hyperstationarity on ordinals is rather low in the
large-cardinal hierarchy (below a measurable cardinal), its generalisation to P, (A) is possibly
much stronger. Thus, the formulation of the appropriate generalisation of hyperstationarity for
P.(A) and the development of its theory, in analogy with the notion of hyperstationarity for
cardinals should allow more interesting applications at a much higher level, in terms of consis-
tency strength. Our objective, therefore, is to explore the consequences of this definition and its
alignment with results obtained by Bagaria in [3|, all within the framework of Py (A).



2 Notation and framework

Throughout the subsequent discussion, x will represent an uncountable regular cardinal, and A
any set such that k C A. Recall that P, (A) signifies the set x C A : |z| < k. In [10, 11, 12], Jech
introduced the following definitions:

Definition 2.1. (T. Jech) Let k be an uncountable reqular cardinal and let A be a set of ordinals
such that k C A.

1. S C Py(A) is unbounded in Px(A) iff for any X € Pr(A) there is some Y € S such that
XCY.

2. S C Px(A) is closed in Pr(A) iff for any {X¢ : £ < } C S with f < k and X¢ C X¢ for
3. S CPu(A) is club of P.(A) iff S is closed and unbounded in Py (A),.

4. S CPu(A) is stationary in Py(A) iff for any C club in Py(A), SNC # .

The following are some well-known facts that can be found easily in the literature [12, 13, 15].
We provide some proofs of the them.

Lemma 2.2. If S C P.(A) is a club of P.(A), then it is stationary in Px(A). And if S C P.(A)
is stationary in P.(A), then it is unbounded in Py(A).

Proof : Let S be be a club of P.(A), and pick any club C of P, (A). We well prove that
in fact SN C is a club of P,(A4). It is clear that S N C is closed, so we will prove that it is
unbounded in P, (A). Let Xo € Py(A), as S, C are unbounded in P, (A), we may construct the
following w-sequence

XoGX1 G Xo G- C X & X1 &0

Where X; € S'if i > 0 is even and X; € C otherwise. Then, J,_ X2 € S and |J
but (J, ., Xoi = U;<,, X2i41, therefore | J,_, X; € SNC.

i<w i<w X2it1 € C,

<w

For the second statement take X € S, consider the club subset C' = {Y € P.(4) : X CY'}. Pick
Ze€SNC, then Z € S and X C Z, this is S is stationary in Py(A). O

Lemma 2.3. Let D be a directed system, then for each X C D, there is a directed system D’
such that X C D' C D and |D'| < |X|+ No.

Proof : Counsider the set Y := {{z,y} : x,y € X} of all pairs of elements of X. Notice that
Y| < |X|+ Ro, let ussay Y = {z, : @ < |Y|}. Now, for each a < |Y| we have that Uz, € X.
Then, the set D' :=Y U{Uz, : @ < |[Y|} is such that X C D' C D and |D'| < |X|+ Ny. O

Proposition 2.4. C C P, (A) is closed if and only if for every directed set X C C of cardinality
<k X eC.

Proof : (=) We prove this direction by induction on |X| = . Suppose that X = {4, : a <
~}. By induction on av < «y we will define a continuous sequence of inductive systems contained in
X. Suppose that for each § < «, Dg is an inductive system such that Ag € Dg, |Dg| < |8+ N
and D5 C Dpg for all § < B. Define Xo := g, Dg U{Aa}, then, [Xo| = [Us, Dsl < laf <.
And by Lemma 2.3. choose D, to be a direct system of X such that X, € D, € X and
|Do| < |Xa| +RNg. Then Ay € Dq, |Do| < v and Dg C D, for all § < a. Since each D, has
cardinality less than ~, by induction hypothesis | J D, € C for each a@ < 7. Then as C is closed



UX =U,<, Da € C.

(<) Let C be a set of P, (A), and suppose {X¢ : £ < g} C C whit < x and X¢ € X for
£ < (< B Let X¢, Xe, € {X¢: £ < B}, we may assume X¢, C Xg,, then Xg U Xg, € X, .
This is, {X¢ : £ < B} is a directed subset of C' of cardinality 8 < &, then by hypothesis we have
that U£<[3X§ es.

Our research builds upon the following definition proposed by H. Brickhill, S. Fuchino, and
H. Sakai, as presented in [16], establishing a crucial starting point for our exploration.

Definition 2.5. (H. Brickhill, S. Fuchino and H. Sakai [16]) Let n < w and k be a reqular limit
cardinal such that kK C A.

1. S CPg(A) is 0-stationary in P.(A) iff S is unbounded in Pi(A).

2. S C Pu(A) is n-stationary in P (A) iff for all m < n and all T C P,(A) m-stationary in
P(A), there is B € S such that

- p:= BNk is reqular cardinal.
- T N'Pu(B) is m-stationary in P,(B).
We however introduced a subtle modification of the same, relaxing the condition over p, this
is, requiring only the existence of a u regular contained in B N k. And this is the definition of

n-stationarity we are going to use from now, noticing when pertinent which results holds from
the stronger Definition 2.5

Definition 2.6. Let n < w and k be a reqular limit cardinal such that k C A.

1. S CPg(A) is 0-w-stationary in P.(A) iff S is unbounded in Py(A).

2. S CP.(A) is n-w-stationary in Pr(A) iff for allm < n and all T C Pr(A) m-w-stationary
in Py(A), there is B € S and p regular cardinal such that

-pC BNk,
- T'NPu(B) is m-w-stationary in P,(B).

Corollary 1. For any n < w, if S C Py(A) is n-stationary in P.(A), then, S C Pr(A) is
n-w-stationary in Py(A). O

To enhance readability, we adopt the shorthand “S is n-w-stationary” instead of “S is n-w-
stationary in P,(A)” when the context is clear.

3 Results

Proposition 3.1. If S C P,(A) is 1-w-stationary, then S is unbounded.

Proof : Suppose that S C P.(A) 1-w-stationary and let X € P.(A). The set Ux := {Y €
P.(A) : X C Y} is clearly unbounded in P.(A). Then there is B € S such that y C BNk is
regular and Ux NP, (B) is unbounded in P,(B). Note that | J(UxNP,(B)) = B, because if b € B,
then {b} € P,(B) and so thereis Y € UxNP,(B) such that {b} C Y. Thus,be Y € UxNP,(B)
and b € J(Ux NP,(B)) = B. Now we will see that X C B. Let z € X. Then z € Y for all
Y € Uy, in particular x € Y for all Y € Ux NP,(B). Hence z € | J(Ux N P,(B)) = B. O



Proposition 3.2. S C P(A) being n-w-stationary implies S is m-w-stationary for all m < n.

Proof : We proceed by induction. The case n = 0 is precisely Proposition 3.1. Suppose
we have the result for all & < n, and that S C P.(A) n-w-stationary. Let m < n and take
T C P.(A) to be [-w-stationary for some [ < m. As S is n-w-stationary, there is some B € §
and p regular cardinal such that 4 C BNk and T'NP,(B) is I-w-stationary in P, (B). Therefore,
S is m-w-stationary. [

It is straightforward that if S’ C .S C P, (A) and S’ is n-w-stationary, then S is n-w-stationary
as well. The following proposition was stated by H. Brickhill, S. Fuchino and H. Sakai in [16] for
Definition 2.5, we prove that this same result follows for Definition 2.6.

Proposition 3.3. If P.(A) is 1-w-stationary in P (A), then k is weakly Mahlo.

Proof : Suppose that P.(A) is 1-w-stationary in P.(A). We will prove that R := {u < & :
w is a regular limit cardinal} is stationary in k. Let C' be a club subset of x and consider the
following set T = {Y € Px(A) : Ja € C such that Y Nk C a < |V}

- Tc is unbounded in P, (A) : Suppose Y € Pr(A) and let o« € C be such that Y Nk C «.
Consider & := {6\ {0} : § € a}, clearly a Nk = {@}. Now Z := Y U{a} is such that
Znk=(Yu{a}h)nk =Y nr)U{a}Nnk) =YNk C a. Moreover a < |a| = |a| < |YUa&| = |Z|,
whence Z € T. Hence, for everyY € P,(A) there is Z € T such thatY C Z.

Hence, by 1-w-stationary of P (A), there is B € P,(A) such that

- 1 € BNk is a regular cardinal (¢ € R).
- Te NPyu(B) is 0-w-stationary in P, (B).

Note that C N p is unbounded in p : Let v < u, then vy € uy = BUx C B, also since p is
regular cardinal |y| < p, thus v € P,(B). Then, there is Y € T N P,(B) such that v C Y
(and so vy C Y Nk). AsY € T, there is some o € C such that Y Nk C a < |Y]|. But then
YCYNKCa<|V|<p Thisisae CnNpuand v < a.

As C is closed, C N p is unbounded in p implies p € C. Therefore p € C N R, and so
R = {p < k: pis aregular cardinal} is stationary in x. J

Corollary 2. (H. Brickhill, S. Fuchino and H. Sakai ) If Pi(A) is 1-stationary in P.(A), then
K s weakly Mahlo. O]

Previous Corollary follows straightforward from Corollary 1. The advantage of w-stationarity
(Definition 2.6) is that, in fact, the converse of Poposition 3.3 is also true. Obtaining thereof x
weakly Mahlo as a necessary and sufficient condition for P, (A) to be 1-w-stationary.

Proposition 3.4. If k is weakly Mahlo, then P.(A) is 1-w-stationary in Py(A).

Proof : Suppose that x is weakly Mahlo. Then, the set R = {i < k : u is a regular limit
cardinal} is stationary in k. Let 1" C P, (A) be O-stationary in Px(A), and construct the follow-
ing transfinite sequence

XoeT.
Xa+1 €T is such that Xo41 2 Xo Ua.



X, €T is such that X, D Xo Ual, for v < £ limit.

a<‘/[
This sequence is well defined. Successor and limit step may be performed since T is un-
bounded and & is regular; |X,|,|a] < k and so X, U a € Pr(A). Also from v < k we get
Ua<r[Xa Ua] € Pi(A4). So defined {Xq : a < k} C T is an strict ascending chain.

U :={a<k:30 < kst |Xg =a}is unbounded in £ : Let 6 < k. As k is a regular limit
cardinal |8 < x. Then X5+41 2 X5+ U[0]T. Note that 0 < [0]* < [X5+41] < #. Then, for
o = | X5+ 41| <k, there exists § := [§|" +1 < & such that [Xg| = a > §. This is a € U and
0 < a<k.

Since R is stationary in , there is 1 € R such that U Ny is unbounded in py. We may now
construct the following subsequence:

Pick § < p. Then, there is o € U N u such that § < g, and so there is By < k such that
| Xg,| = 6o < p. Given Xpg, let Xg, ., be such that Xz, | < [Xg,,,| < p; and for o < g limit,
let X3, be such that [Ug, Xp,| < [Xgal < p. Notice that Bo # B for a # o' and since
{Xp, ra < p} € {Xq:a <k}, we have that { X3, : @« < p} is also a chain. Since [X3,| < &,
for all @ < p < & and & is regular, U,., X3, € Px(4).

Let B := J,<, Xs., and notice that since {Xg, : @ < p} forms a strictly ascending chain, B is
the union of at most p many sets of cardinality less than p, so that |B| = pu. To conclude the
proof we will show that B and p are as we wanted, this is

(i) # € BNk : First notice that, if o < o’ then X, C Xp ,, and since { X, : @ < Kk} is strict
ascending, this implies 3, < B, . Notice that, for all < p, we have 8, C X5, , C B. Also,
it is easily proved by induction that oo < S, for all « < p. Hence, SUPq <y Pa = Usca Bs € B

and p = sup,., & <sup,, Ba. Therefore p C B and so p C BN k.

(ii) T'NPy(B) is unbounded in P, (B) : Let X € P,(B). Then X C {J,., X5, and | X| < p.
As |B| = p is regular, we get that X is not unbounded in B. Then X C Xg, for some
a< p. But Xg, €U, Xp, = B and |Xg,| < p. Thus, there is Xz, € T'NP,(B) such
that X C Xz . [0

a<p

Corollary 3. P, (A) is 1-w-stationary in Px(A) if and only if  is weakly Mahlo. O

Notice that, in the proof of Proposition 3.4 we can in fact start the sequence {X, : a < k}
with Xy D y for any given y € P, (A). Thus at the end of the proof we will get y C B and BNk
contains a regular cardinal. Therefore, if x is weakly Mahlo and 7 C P, (A) is unbounded in
P(A), the set W := {x € P.(A) : exists u is regular limit cardinal such that © C x N x and
T NP,(z) is unbounded in P, (z)} is unbounded in P, (A).

Proposition 3.5. Let k be the least weakly Mahlo cardinal, then Px(A) is not 2-w-stationary.

Proof :Towards a contradiction, suppose that P, (A) is 2-stationary. As k is weakly Mahlo,
by Theorem 3.4 we have that P.(A) is 1-w-stationary. Then, there is B € P,(A) and p regular
cardinal such that ¢ C B N & such that Pg(A) N P,(B) is 1-w-stationary in P,(B). From
B € P.(A) and p C BNk we get that p < k. But P.(A) N Pu(B) = P,(B), and then P, (B) is
1-w-stationary in P, (B), but again by Proposition 3.3 this implies p weakly Mahlo. [J



Proposition 3.6. If k is weakly Mahlo, then C' C Py (A) club implies C is 1-w-stationary.

Proof : Suppose that x is weakly Mahlo, we may then perform a similar proof to the one we
did for Proposition 3.4. For each unbounded T of P,(A), we will however, construct the main
sequence as follows

XoeT. And Yy € C such that Xy C Y
Xat1 € T is such that Xo41 2 XqUaUY,. And Y41 € C such that Xoy1 C Yoqg
Xy €T is such that Xy 2 Uy, [Xa UaUY,] for v < £ limit.

And completely analogous to Proposition 3.4 we get B := J,,. 4 XBa € P.(A) and p regular
cardinal, such that 4 € BN« and T'NP,(B) is unbounded in P, (B).

So we are left to prove that B € C. First, we will prove that U, , Xs, = Us<, Y5, Let
z € Uy X, this is z € Xg, for some v < p. By construction X, C Yp,, then z € Yp, C
Ua<p Y8, Conversely, if z € U, Y3, then 2z € Yp, for some o < p. Since for all o < p,
X, € X3,.,, we have X 1 C Xg,.,. Moreover, by construction (successor step) we have that
Y5, € Xpg,+1 € Xg,,,- Therefore z € Xg,,, and so z € ., X3,

Now, {Ys, : a@ < pu} is clearly an ascending sequence of elements of C. Then, as C'is closed, we
get that U,., Y, € C. But B=U,, X5, =Ua<, Y3, then B€ C. O

Recall that in the ordinal case in [3]
SCk club — S l-w-stationary <> S stationary — S unbounded
By the previous propositions, in the case P,(A) when « is weakly Mahlo, we have:
S CP.(A) club — S l-w-stationary — S stationary — S unbounded .

Unfortunately, the correspondence between 1-stationarity and stationarity does not extend
to P.(A).

Proposition 3.7. The condition S C P, (A) is stationary in Py(A) does not imply that S is
L-w-stationary in Py(A).

Proof : First let us prove the following facts:

- Cy ={X € Py(A4) : X Nk isacardinal} is a club subset of P,(A) : Let Y € P.(A),
and let « be the least cardinal less than x such that o > sup(Y N k). (Such an ordinal
exists because |Y| < k and k weakly Mahlo). Define X =Y U a, clearly X € P,(A) and
XNk =ca Thsis Y C X € Cy. Consider now an increasing sequence (X3 : f < ) of
v < K elements of C. Then (XgNk : f < ) is an increasing sequence of cardinals less
than x, soits limit is also a cardinal less than . Hence (Us., Xp) Nk = Uz, (XgNk) is
a cardinal, and so Uﬁ<7 Xz € Co.

-85S ={X € Pe(A) : X Nkisacardinal A cof (X Nk) < X Nk} is a stationary subset
of Py(A) : Let C1 be a club of P, (A) then C := Cy N Cy is also a club. Let Xy € C
be such that Xo Nk > w and (X,, : n < w) is an increasing sequence of elements of
C, then (X, Nk : n < w) is an increasing sequence of cardinals greater than w, and so

cof (UpewXn Nk)) < Upew(Xn Nk). Hence J,,., Xn € CNS.



Now, towards a contradiction suppose S is 1-w-stationary. Then for Cj it must exists B € §
and p < k regular cardinal such that ¢ C BNk and T'NP,(B) is unbounded in P,(B). From
B € S we get that BNk is a singular cardinal, then 4 < BN . Moreover, there is some cardinal
a such that p < o < BN k (take a = p), whence o € B and so {a} € P,B. Since T'NP,(B)
is unbounded in P, (B), there must be some x € T'NP,(B) such that o € . But then o € Nk,
and so 1t < o <z Nk < |z|. Contradicting the fact that z € P,B. O

From previous proposition, and Corollary 1, we conclude that Proposition 3.7 also hols for
Definition 2.5, this is:

Corollary 4. The condition S C Px(A) is stationary in Pr(A) does not imply that S is 1-
stationary in Py(A). O

Theorem 3.8. If P.(A) is 2-w-stationary in Py(A), then k is 2-weakly Mahlo i.e. the set
{a < K : a is weakly mahlo } is stationary in k.

Proof : Suppose that P, (A) is 2-w-stationary in P, (A), we shall prove that the set E :=
{pn < Kk : pis weakly mahlo} is stationary in k. By Proposition 3.2 the fact that P.(A) is 2-

stationary implies Py (A) is 1-w-stationary and so « is weakly Mahlo. Let C be a club subset of
 and consider the set T :={X € P,(4): Ja e Cst. XNk C a<|X|}.

- T is unbounded in P, (A): Suppose Y € P.(A). Let o € C be such that Y Nk C a. Consider
a:={0\{0} : 6 € a}, clearly anNk = {@}. Now Z := YU{a} is such that ZNk = (YU{a})Nk =
YNnrk)U({a}nk) =Y Nk C a. Moreover a < |a| = |a| < |YUa| = |Z|, whence Z € T'. Hence,
for Y € P, (A) there is Z € T such that Y C Z.

- T is closed in P, (A): Let {X3 : f < p} be an ascending sequence of elements of 7. Notice
that, for each Xg there is some ag such that Xg Nk C ag < |X|. Consider a := sup{ag :
B < pu}. As Cis closed, « € C. Moreover, from Xg Nk C « for each 8 < p, we get that
(Upep Xp) Nk C sup{ag : B < p} = a. Also from ag < [Xpg| for each 8 < p, we get that
a < sup{|Xg| : B < p} = |[sup{Xp : B < p}| = [Usc, Xpl. Thisis, (Us, Xp) Nk C a <
|Us<, Xsl, so that s, Xp €T

Hence T is a club subset of P.(A), and so it is 1-w-stationary (Proposition 3.6). Now, since
P..(A) is 2-stationary, there are B € P,(A) and p regular cardinal such that

- 1 C BNk.
- T'NPu(B) is 1-w-stationary in P, (B).
Since T'N P, (B) is 1-w-stationary in P, (B), then P,(B) is 1-w-stationary in P, (B) . Then,

by Proposition 3.3, p is weakly Mahlo. Moreover, we claim that p € C. To see that, we will
prove that C'N u is unbounded in p < k. As C' is closed, that will imply u € C.

- C'Np is unbounded in p : Let v < 1, then v € Py(B). So, there is X € T'N'P,(B) such that
v C X (and so vy € X Nk). As X € T, there is some a € C such that X Nk C o < |X|. But
then vy C XNk C a<|X| < p. Thisis, € CNpand v < a.

Therefore 4 € C N E, whence F is stationary in k. This shows k is 2-weakly Mahlo. [

So we have that x being 2-weakly Mahlo is a necessary condition for the 2-w-stationarity of Py (A).



Is this also a sufficient condition? In other words, do we have an analogous of Proposition 3.47
Recall that in the ordinal case the existence of 1-w-stationary and 2-w-stationary sets respectively,
jumped from the condition cof(k) > wy to the condition of being weakly inaccessible or the
successor of a singular cardinal. This suggests that the condition of x being 2-weakly-Mahlo is
too weak as a sufficient condition for 2-w-stationarity in Py (A).

Definition 3.9. We say that a subset X C P..(A) n-reflects at B € Py (A) iff there is p regular
cardinal such that p € BNk and X N'Py,(B) is n-w-stationary in Py(B).

Notice that if x is weakly Mahlo, then every unbounded subset T of P,,(A) O-reflects to some
element of P, (A). More in general, if P, (A) is n-w-stationary, then every m-w-stationary subset
S of P, (A) for m < n, m-reflects to some B € Py (A).

Definition 3.10. Let S C P.(A) andn < w, we define d,(S) := {X € P.(A) : S n-reflects at X}.

Proposition 3.11. Let k be weakly Mahlo, and let T, Ty, ..., T; be unbounded in P, (A) for some
Il <w. Then do(Ty) N---Ndo(T7) is 1-w-stationary in Py(A).

Proof : To prove that do(71) N --- N do(1}) is 1-w-stationary in P.(A) we will prove that
for any Ty unbounded in P, (A) we have do(Tp) Ndo(Th) N ---Ndo(T}) # @. As k is weakly
Mahlo, we can perform an analogous proof of the one we did for Proposition 3.4, with T' = Tj
and splitting the successor step in such a way that for a +m with m <[, X, € T,,. Therefore
B =Upep X = Uncy Xatm for all m < land so B € do(T1) N---Ndo(T7). U

Definition 3.12. Let NS 4 be the set of non n-w-stationary subsets of Pw(A) , this is NS 4=
{8 CPu(A) : § is not n-stationary in Py(A)}. Moreover let F! 4 := {Py(A)\ X : X € NS 4},
this is, F}! 5 := (NST 4)*.

Proposition 3.13. Let P (A) be n-w-stationary and let X € Py(A). Then X € F[ 4 if and
only if there is Tx C Pr(N\) m-w-stationary for some m < n such that d,(Tx) C X.

Proof : (=) Let X € F,. Then X = P4(A4)\Y for some Y € NS} ;. Since Y is not
n-w-stationary, there is Tx C Py(k) m-w-stationary with m < n such that, for all B € Y and
all 4 C B Nk regular, Tx NP, (B) is not m-w-stationary in P, (B) (*).

We claim that d,,(Tx) € X. To see this it is enough to prove that d,,(Tx)NY = @. Towards a
contradiction, suppose that W € d,,,(Tx) NY. Then, W € Y and Tx m-reflects at W. This is,
W €Y and there is p < & regular such that 4 C W N« and Tx NP, (W) is m-w-stationary in
P,.(W), but this is a contradiction to (*).

(<) Suppose that X € P,(A) is such that there is T’x C P, () m-w-stationary for some m < n
such that dp,(Tx) € X. Let us consider Y := P.(A) \ X. We shall prove that Y € NS .
By contradiction, suppose Y is n-w-stationary. Then, for the m-w-stationary set Tx C PH(A),
there is B € Y and p € B N & such that Tx N P,(B)is m-w-stationary in P,(B). From the
latter, we conclude that B € d,,(Tx) C X. But B is also an element of Y, this is B € P\ \ X,
contradicting the fact that B € X. [

Then, in analogy with the ordinal case, whenever P, (A) is n-w-stationary;
Fly={X CPu(A): ITx C Pu(A) m-w-stationary for some m < n, such that d,,(Tx) C X}.

Lemma 3.14. If 11,1, are both not unbounded subsets of Py(A), then Th UTs is not unbounded
either.



Proof : Suppose 17; C P.(A) is not unbounded for i € {1,2}, then, there is X; € P.(A4)
such that for all Y € T;, X; € Y. Towards a contradiction, suppose that 77 U T5 is unbounded
in Pg(A). Then, there is Y1 € T} U Ts such that X7 C Y;. Notice that Y7 ¢ Ty. Also, there is
Y5 € T3 UT5 such that Y1 U Xy C Yy, Then X7 C Y7 U Xy C Y5, So, if Yo € Ty then X7 C Y5
contradicts that for all Y € Ty, X1 € Y. Similarly if Y5 € T, then Xo C Y5 contradicts that for
all Y € Ty, Xo Y. Hence Ys ¢ T1 U T5, which is a contradiction. [

Proposition 3.15. If P.(A) has the property that for all T1,T> m*- statz’onary, there is some T
m-w-stationary such that dm(T) C dp(T1) N dim+(T2), where m < m*. Then, the set NS 4 is
an ideal over Py(A). Moreover Py(A) is n-w-stationary if and only if Nb”A is a proper ideal.

Proof : Clearly @ € NS} ;. Moreover, if X € NS? 4 and YV € P,(4) is such that ¥ C X,
then Y € NS”A Now, suppose that we have the result for all m < n, and let X, Xy € NSE A
Then P,(A) \Xl, «(A) \ X2 € F',, by Proposition 3.13, there are Tx, m;-w-stationary and
Tx, mo-w-stationary with mq, mo < n, such that dm, (Tx,) € Pr(A)\ X1 and d,,(Tx,) C
Po(A)\ Xo. But dpw, (T,) N iy (Ty) © (Po(A4)\ X1) 1 (Py(A) \ Xa) = Po(4) \ (X1 U Xs).
Then, dp+(Tx,) N dm+(Tx,) C Pu(A) \ (X1 U X2). Now, applying our hypothesis we get that
there is m < m* < n and T" m-w-stationary such that d, (1) C dp+(Tx,) Ndm=(Tx,). But this
implies that dy, (1) C Px(A4) \ (X1 U Xz). By 3.13, we conclude that P.(4) \ (X5 U Xo) € I,
and so X1 U Xy € NS 4.

Finally, suppose that P.(A) is n-w-stationary , then P.(A) ¢ NSi 4 and so NS; 4 is non-
trivial. [J

Corollary 5. The set of non-1-w-stationary subsets of P,(A) when is an ideal, is contained in
the ideal of non-stationary subsets of Py(A). This is, NS, 4 C NS ,

Our interest extends to the conditions needed on & to ensure that Py (A) is n-w-stationary or
Pr(A) is n-stationary. Specifically, we aim to determine the minimal set of conditions required,
as we did in the case n = 1 in by means of Proposition 3.4. To systematically address this
inquiry, we will focus now on Definition 2.5 and we shall obtain the same results for Definition
2.6 as a consequence of Corollary 1. We begin by examining the dynamics within P,(x). For
the more general case of Py we proceed by addressing a proposition stated by Sakai in [16] and
thereof providing a proof of the same. Notice that when |A| = |B|, then (P, (A), C) is isomorphic
to (P(B),C). Then, the study of P.(A) is analogous to that of P, A, where |[A] = A > k. In
this section we will expose two sufficient conditions for n-stationarity, in PgA.

Lemma 3.16. Let k be a regular cardinal. Then, the formula ¢, (S) : “S C Px(k) is n-stationary
in Px(k)” is L over (Vi,€,5). Moreover, if x € Py(k), then ¢l (T) : “T C Pprx(B) is
n-stationary in Pprx(B)” is a I} sentence over (Vi, €), in the parameters T, B.

Proof : First we will show that P, (k) € Viy1 \ Vi and Pprk(B) € Vi If y € Pi(k), then
y C «a for some a < k. So we have rank(y) < rank(a) < rank(x) = k, this is y € {z : rank(z) <
k} = Vi, whence Py (k) C Vi and so Py (k) € Viey1. Since k € Py(k), k = rank(k) < rank(P.(k)),
and this implies Py (k) ¢ Vi.. Moreover, if B € S C Pi(k) C Vi, B € V, for some a < k. So that
P(B) € Vyi1 C Vi, and so Ppnk(B) € Vi.

Notice that Y € P(k) if and only if (V,, €) = ¢(Y) where (V) : 3a(OR(a) ANY C «). So
defined ¢(Y) is a [T} formula. In fact, 1(Y) is a ¥; formula with Y as a free variable.

We will now prove the lemma by simultaneous induction. Let n = 0. S C P, (k) is O-stationary
in Py (k) if and only if (Vi, €) = ¢o(S) where

wo(S): YWY ((Y)—=3IFY eS(YCY))



Y is a first-order variable, because it ranges over elements of Py (k) C V,;. Thus ¢g(5) is first
order, i.e., II{.

Given B € Pg(k), such that B Nk is a regular cardinal, we have that T C Ppn.(B) is
O-startionary in Ppn,(B) if and only if (V,, €) = ¢ (T, B) where
ON(T,B): YY (Y € Pyrn(B) = 3W T (Y CW) )
Since T' C Pprw(B) € Vi and Y € Ppny(B) € Vi, ¢y(T; B) is a II; formula, and so it is I}

in the parameters 17" and B.

Let Reg(z) be the formula “z is a regular cardinal 7. For n =1, S C P,(k) is 1-w-stationary in
Py (k) if and only if (Vi €) = p1(S) where

p1(5) = VY ¢1(S,Y)

01(S,Y):(VZ(Z €Y = (Z)) Npo(S)) — 01(S,Y)
01(S,Y) : 3B(B € S A Reg(B N k) A (Y N Pprk(B)))

Y is a second order variable because its possible values are subsets of P (k). Note that Z
ranges over elements of V. (Y € V11 and Z € Y implies Z € V). Then, as (Y NPpnk(B)) is
I}, so is 01(S,Y). Together with the fact that 1(Z) and ¢y(S) are also I}, we get that ¢y (S)
is IT3.

Given B € P.(k) such that B N« is a regular cardinal, we have that T C Ppn,(B) is
1-w-stationary in Ppny(B) if and only if (Vi €) = ¢} (T; B) where
P(T;B) = VY ¢1(Y,T; B)
¢1(T:B) : (Y € Pprn(B) A (Y B)) = o1(T.Y)
oy (T,Y) : 3B (B" € T A Reg(B' N k) A oy (Y N Pping(B'); B'))

Here Y is a first-order variable because its possible values are subsets of Ppny(B) € Vi,
and ¢,(Y; B), ¢4(Y N Ppag (B'); B') are 11 formulas. Then, o (7,Y) is a ¥ formula, whence
¢} (T; B) is a I3 formula and so a 11} formula .

Suppose now, that S C P, (k) is m-stationary in Py (k) if and only if (Vi, €) = pm(S), where
©m(S) is a 11} formula for all m < n. And let us prove the result for n.

Then, ¢, (5) is of the form VYT 3 YD ... Q Y ¢ (S, YT, ....Y]") where Q =V if m
isodd, @ =3 if miseven, Y =V1,..., Y}, for j € {1,...,n} and ¢, (S, YT, ..., Y") is a IT}
formula. We have, S C Py (k) is n-stationary in P (x) if and only if (Vi, €) = ¢n(S), where

en(S) s on1(S) A VY((VZ(Z €Y = ¢(2)) A pn-1(5)) = on(5,Y) )

From the inductive hypothesis, we know that ¢,,_1(S) is of the form VY1 3YS ™1 ... QY]
Gn1(S, Y1 ... Y"1, and so, we have that

VY ((VZ(Z €Y = (Z)) Apn1(S)) = on(S,Y) ) =VY Y tyyrt ...

QY 1((VZ(Z €Y = d(Z)) N dn-a(S, YT 1, YT) = ou(SY))

10



where Q =V if Q =3 and Q = 3 if Q =V, and o, is the first order formula

on(9,Y):dB(BE€ SAReg(BNk)ANBNkC BAg, (Y NPpr(B)))

Therefore, if (Y1 :=Y,Y],... ,Y’f_l)7 (Y =Y ,Y?_I,Y?:ll), o (Y, = YZ:%), we
may write ¢, (5) in the following form

en(S)=VY1 IY2V Y5 ... Q Yo(d1(S, Y1) Ad2(S, Y1,Ys)
/\"'A¢n_1(S,Y1,...,Yn_1)A

ANVZ(ZEY = P(Z) Adn1(S,Y1,...,Yn 1)) = ou(S,Y)) )

Since ¢;(S,Y1,...,Y;) and 0,(S,Y) are 11} formulas for j € {1,...,n — 1}, we get that
©n(S) is a 11} formula.

Suppose now, that for B € Py(k), T C Ppnx(B) is m-stationary in Ppn.(B) if and only if
(Vi, €) = ¢l (T, B), where ¢, (T, B) is a II} formula for all m < n.

T C Ppnx(B) is n-stationary in Ppn(B) if and only if (Vi, €) = ¢, (T, B), where
¢n(T,B) : ¢y (T, B) A VY ((Y C Ppan(B) App1(Y,B)) — op(T,Y))
and where
ol (T,Y) :3B'(B" € T A Reg(B' N k) A ¢, _1(Y N Pprw (B'); B')).

Here, Y is a first-order variable because its possible values are subsets of Ppny(B) € Vi, and
o 1Y N Pprk(B),B’) and o, (T,Y) are first-order formulas. Then ¢ (T, B) is a first-order
formula and so it is H(l). O

Theorem 3.17. Let n < w. If x is I1! indescribable, then Py (k) is n + 1 stationary.

Proof : Suppose  is I1} indescribable. Let S C Py(k) be m-stationary, some m < n + 1.
Consider the II} sentence ©,,(S) in (Vy, €, ). Then, we have

(Vii, €,9) E om(9).
As & is I} indescribable and m < n, there is some p <  regular such that

Vi, €,5 N Vo) b om(S N V).

Now, note that Py (k) NV, = P,(1). Forif X € P.(k)NV,, then X C xNV, = p. Also | X| < p,
otherwise rank(X) = p and so X ¢ V,,. Hence X € P,(p).

Thus, since S = S N Py(k), we have that SNV, = SN Pe(k) NV, =5NPu(n). Therefore, we
have (V,,, €, SNPu(1)) E em(S NPu(1r)), and so S NP, (1) is m-stationary in P, (p). O

Corollary 6. If k is totally indescribable, then Py(k) is n-stationary for any n < w (and so
P.(k) is n-w-stationary for any n < w).00

11



Now, we will provide a proof for the the assertion made by Sakai in [16], showing threof a
sufficient condition to have n-stationarity in Py A. We will use the fact that, if f is an isomorphism
between P, A and Py (d), then, S C P, is m-stationary in P\ if and only if f[S] is m-stationary
in P (d). The proof of this fact is follows immediately form definition of n-stationarity in P.A\.

Proposition 3.18. ([16]) If k is A-supercompact and \<% = X then Py(\) is n-stationary for
any n € N.

Proof : Let n < w and take S C P,()\) be m-stationary for a given m < n. Suppose that x
is A\-supercompact, this is, there is an elementary embedding j : V' < M such that crit(j) = &,
A < j(k) and *M C M, where M is transitive.

Recall that j“c = {j(y) : y € =z}, we claim that j“a € M, for all « < X\. We prove
this by induction on OR, j“0 = 0 € M because j|, = Id|,. If j“a € M for a < A, then
jMa+1) = j“aU{j(a)} € M. And if & < X limit and j“B € M for all 8 < « then
j4a={j“B: B < a} which is a sequence of a < \ elements of M, whence j“a €* M C M.

Since j [x= Id |., we have that, j“k = {j(a):a <k} ={a:a <k} =k € M. Then, it
follows that Pj«.(j“\) = Pe(j“N) € M. Moreover, as |j“A| = |A|, then [Pg(7“N\)| = [74A<" =
A< =\, and so Pi(j“\) € M. Now, notice that there is an isomorphism f between P\ and
Pi(5"X) given by X — j"X.

By hypothesis, we have that S C P, (\) is m-stationary in P\, and so f[S] = j“S C Pe(j“N)
is m-stationary in P (j“\). Therefore, as .S C j(S) we have that

V E “4(S)NPe(j“\) is m-stationary in P, (5“\) 7

Since P, (j“N) € M, we have that P(P.(j7“\)) C M. So, since being m-stationary depends
only on the subsets of Py (j“N).

M E “j§(S) NP.(j“N) is m-stationary in Pk (j“\) 7.

In M we have that & is regular and such that x < j(k). If we define B := j“\, then k = j“k C
j“N= B, and so Kk C BNj(k). In fact Kk = BN j(k); if « € (BN j(k)) \ K, then o = j(p) for
some k < 8 < X and a < j(k), but £ < 8 implies j(k) < j(B8) = «, and this is a contradiction.
Besides, as [j“A| = A < j(k), we have that B € Pj,)(j(\)). Hence the following holds, witnessed
by =k and B = 5%\
M = 3B( Reg(B N j(k)) A B € Pje (5 (M)A
“3(S) N Ppnj(x)(B) is m-stationary in Pgnj() (B)” ).
As j is an elementary embedding we get that
V E3B( Reg(BNj~(j(K) A B € Pi1(jpen (5 (M)A
“~1(4(S) N PBrj-1(j(x))(B) is m-stationary in Ppn;-1¢j¢))(B)” )
and since j ' (j(x)) = &, 7' (j(A) = A and 571 (§(S5)) = S,
V =3B( Reg(BN k) A B € PoA A “S N Pprk(B) is m-stationary in Ppn.(B)” ).

This is, for each m < n if S C P,(\) is m-stationary, there is B € P, such that 4 C BNk
is regular and S N P,(B) is m-stationary in P,(B). And this is precisely to say that P\ is
n-stationary. [J
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Corollary 7. If k is A-supercompact and \<" = X, Px(\) is n-w-stationary for any n € N. O
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