Keisler's theorem and cardinal invariants at uncountable cardinals

Tatsuya Goto*

Graduate School of System Informatics, Kobe University, Rokko-dai 1-1, Nada, Kobe 657-8501, Japan

E-mail: 202x603x@stu.kobe-u.ac.jp

Contents

1	Introduction	1
2	Results	3
3	Discussion	g

1 Introduction

The following is an important theorem in model theory proved by Keisler and Shelah. Keisler [Kei64] proved it by assuming GCH, but Shelah [She71] removed that assumption.

Theorem 1 (Keisler–Shelah). For every (first-order) language \mathcal{L} and two \mathcal{L} -structures \mathcal{A}, \mathcal{B} , the following are equivalent:

- (1) $A \equiv \mathcal{B}$ (that is, A and B are elementarily equivalent).
- (2) There is a nonprincipal ultrafilter \mathcal{U} over an infinite set such that the ultrapowers $\mathcal{A}^{\mathcal{U}}$ and $\mathcal{B}^{\mathcal{U}}$ are isomorphic.

The following theorem is also known in connection with the above theorem.

Theorem 2 (Keisler, Golshani and Shelah). The following are equivalent:

(1) The continuum hypothesis.

^{*}This work was supported by JSPS KAKENHI Grant Number JP22J20021.

(2) For every countable language \mathcal{L} and two \mathcal{L} -structures \mathcal{A}, \mathcal{B} of size $\leq \mathfrak{c}$, if $\mathcal{A} \equiv \mathcal{B}$ then there is a nonprincipal ultrafilter \mathcal{U} over ω such that the ultrapowers $\mathcal{A}^{\mathcal{U}}$ and $\mathcal{B}^{\mathcal{U}}$ are isomorphic.

For this theorem, Keisler [Kei64] showed $(1) \Rightarrow (2)$ and Golshani and Shelah [GS23] $(2) \Rightarrow (1)$.

In order to analyze these theorems in detail, we introduce the following principle.

Definition 3. Let κ, μ and λ be infinite cardinals. We define a criterion $\mathrm{KT}^{\mu}_{\kappa}(\lambda)$ by

$$\mathrm{KT}^{\mu}_{\kappa}(\lambda) \iff$$
 for every language \mathcal{L} of size $\leq \mu$ and every elementarily equivalent \mathcal{L} -structures \mathcal{A}, \mathcal{B} of size $\leq \lambda$, there is a uniform ultrafilter \mathcal{U} on κ such that $\mathcal{A}^{\mathcal{U}} \simeq \mathcal{B}^{\mathcal{U}}$.

We also define a criterion $SAT^{\mu}_{\kappa}(\lambda)$ by

$$\operatorname{SAT}^{\mu}_{\kappa}(\lambda) \iff \text{there is a uniform ultrafilter } \mathcal{U} \text{ on } \kappa \text{ such that}$$
 for every language \mathcal{L} of size $\leq \mu$ and every sequence $\langle \mathcal{A}_i : i < \kappa \rangle$ of infinite \mathcal{L} -structures of size $\leq \lambda$, the ultraproduct $\left(\prod_{i \in \kappa} \mathcal{A}_i\right) / \mathcal{U}$ is saturated.

Keisler–Shelah's theorem means that $\mathrm{KT}_{2\lambda}^{2\lambda}(\lambda)$ holds for any infinite cardinal λ . Keisler's paper also gives an example showing the following.

Fact 4 (Keisler [Kei64]). Let κ be an infinite cardinals. Then $\neg KT_{\kappa}^{\kappa^+}(\kappa^+)$ holds.

The author's paper [Got22] showed the implications of the bold lines in the following figure.

2 Results

In this section, we discuss the principles introduced in Section 1. The case where the cardinality μ of the language and the cardinality κ of the underlying set of the ultrafilter are both \aleph_0 was analyzed in detail in the author's paper [Got22]. Here, the more general case is investigated. However, most of the results are naive generalisations of the arguments in [Got22].

Before proceeding to the results, we recall the basic definitions of ultrafilters.

Definition 5. Let \mathcal{U} be a ultrafilter on κ . We say \mathcal{U} is regular if there is $\mathcal{E} \subseteq \mathcal{U}$ of size κ such that for every $i < \kappa$, the set $\{E \in \mathcal{E} : i \in E\}$ is finite.

Definition 6. For ultrafilters \mathcal{U}, \mathcal{V} on I, J respectively, we define

$$\mathcal{U} * \mathcal{V} = \{ A \subseteq I \times J : \{ i \in I : \{ j \in J : (i, j) \in A \} \in \mathcal{V} \} \in \mathcal{U} \}.$$

 $\mathcal{U} * \mathcal{V}$ is called the Fubini product of \mathcal{U} and \mathcal{V} .

Lemma 7. Let $\kappa \leq \kappa'$ be two infinite cardinals. Then $\mathrm{KT}^{\mu}_{\kappa}(\lambda)$ implies $\mathrm{KT}^{\mu}_{\kappa'}(\lambda)$.

Proof. Fix a language \mathcal{L} of size $\leq \mu$ and two elementarily equivalent \mathcal{L} -structures \mathcal{A} and \mathcal{B} of size $\leq \lambda$. By $\mathrm{KT}^{\mu}_{\kappa}(\lambda)$, we can take a uniform ultrafilter \mathcal{U} on κ . Fix a uniform ultrafilter \mathcal{V} on κ' . Then the ultrapowers of \mathcal{A} and \mathcal{B} by the ultrafilter $\mathcal{U} * \mathcal{V}$ are isomorphic.

Lemma 8. (1) $KT^{\mu}_{\kappa}(\lambda)$ implies there exists a regular ultrafilter witnessing $KT^{\mu}_{\kappa}(\lambda)$.

(2) If $\lambda \geq \kappa$, then every witness for $SAT^{\mu}_{\kappa}(\lambda)$ is a regular ultrafilter.

Proof. First, we show (1). Take an ultrafilter \mathcal{U} on κ witnessing $\mathrm{KT}_{\kappa}^{\mu}(\lambda)$. Take a regular ultrafilter \mathcal{V} on κ . Then the product ultrafilter $\mathcal{U}*\mathcal{V}$ is regular and witnesses $\mathrm{KT}_{\kappa}^{\mu}(\lambda)$.

Next we show (2). Take a witness \mathcal{U} for $SAT_{\kappa}^{\mu}(\lambda)$. Let $M = ([\kappa]^{<\aleph_0}, \subseteq)$ and consider $M_* = M^{\kappa}/\mathcal{U}$. By an easy diagonal argument, we have $|M_*| \ge \kappa^+$. Define a set of formulas p with a free variable x by

$$p = \{ \lceil \{\alpha\}_* \subseteq x \rceil : \alpha < \kappa \},\$$

where $\{\alpha\}_*$ is the equivalence class of the constant sequence of $\{\alpha\}$. It can be easily checked that p is finitely satisfiable and the number of parameters of p is κ , which is smaller than $|M_*|$. Therefore, by $\mathrm{SAT}^{\mu}_{\kappa}(\lambda)$, we can take $f: \kappa \to M$ such that [f] satisfies p. This f clearly satisfies $\{i \in \kappa : \alpha \in f(i)\} \in \mathcal{U}$ for every $\alpha < \kappa$. Thus, \mathcal{U} is a regular ultrafilter.

Lemma 9. SAT_{\kappa}(\lambda) implies KT_{\kappa}(\lambda) for every $\lambda \leq 2^{\kappa}$.

Proof. By regularity (Lemma 8), the ultrapowers have same cardinality. Thus uniqueness of saturated models implies this lemma. \Box

Lemma 10. $\neg SAT_{\kappa}^{\aleph_0}(\kappa^{++})$.

Proof. Take a witness \mathcal{U} of $SAT_{\kappa}^{\aleph_0}(\kappa^{++})$. Let $\mathcal{A} = (\kappa^{++}, <)$ and $\mathcal{A}_* = \mathcal{A}^{\mathcal{U}}$. We have $|\mathcal{A}_*| \geq |\mathcal{A}| = \kappa^{++}$. Consider the following set p of formulas with one free variable x:

$$p = \{ \lceil \alpha_* < x < (\kappa^+)_* \rceil : \alpha < \kappa^+ \}.$$

This p is finitely satisfiable and the number of parameters occurring in p is κ^+ . Thus, by $SAT_{\kappa}^{\aleph_0}(\kappa^{++})$, we can take $f: \kappa \to \kappa^+$ such that [f] realizes p. Put $\beta = \sup_{\alpha < \kappa} f(\alpha)$. By $\beta_* < [f]$, we have $\{\alpha < \kappa : \beta < f(\alpha)\} \in \mathcal{U}$. This contradicts the choice of β .

Lemma 11. SAT $_{\kappa}^{\aleph_0}(\kappa^+)$ implies $2^{\kappa} = \kappa^+$.

Proof. Take a witness \mathcal{U} of $SAT_{\kappa}^{\aleph_0}(\kappa^+)$ and assume $\kappa^+ < 2^{\kappa}$. Let $\mathcal{A}_* = (\kappa^+, <)^{\mathcal{U}}$. We have $|\mathcal{A}_*| = 2^{\kappa}$ since \mathcal{U} is regular (Lemma 8). Consider the following set p of formulas with one free variable x:

$$p = \{ \lceil \alpha_* < x \rceil : \alpha < \kappa^+ \}.$$

This p is finitely satisfiable and the number of parameters occurring in p is equal to κ^+ , which is smaller than 2^{κ} . Thus, by $SAT_{\kappa}^{\aleph_0}(\kappa^+)$, we can take $f : \kappa \to \kappa^+$ such that [f] realizes p. Then, this f is unbounded, which contradicts that κ^+ is regular. \square

Lemma 12. $\neg KT_{\kappa}^{\aleph_0}(\kappa^{++})$.

Proof. This proof is based on [Tsu22]. Let $(\mathcal{M}, <)$ be a linearly ordered set with cofinality κ^{++} . We define an increasing continuous sequence $\langle A_i : i \leq \kappa^{++} \rangle$ of subsets of \mathcal{M} such that:

- (1) For every $i \leq \kappa^{++}$, A_i is an elementary substructure of \mathcal{M} .
- (2) For every $i < \kappa^{++}$, there is $a_i \in A_{i+1}$ such that for every $b \in A_i$, we have $b < a_i$.
- (3) For every $i \leq \kappa^{++}$, we have $|A_i| \leq |i| + \aleph_0$.

We show that the pair of A_{κ^+} and $A_{\kappa^{++}}$ is a counterexample of $KT_{\kappa}(\kappa^{++})$. Let \mathcal{U} be an ultrafilter on κ .

We claim that $(A_{\kappa^+})^{\mathcal{U}}$ has a cofinal increasing sequence of length κ^+ . In fact, $\langle (a_i)_* : i < \kappa^+ \rangle$ is a cofinal increasing sequence. In order to show it, take $[f] \in (A_{\kappa^+})^{\mathcal{U}}$. For each $\alpha < \kappa$, we can take $i_{\alpha} < \kappa^+$ such that $f(\alpha) \in A_{i_{\alpha}}$. Then $i = \sup_{\alpha < \kappa} i_{\alpha}$ satisfies $[f] < a_i$.

On the other hand, in $(A_{\kappa^{++}})^{\mathcal{U}}$, every κ^+ -sequence is bounded. In order to check it, take $\langle b_i : i < \kappa^+ \rangle$. We write b_i as $b_i = [f_i]$, where $f_i : \kappa \to A_{\kappa^{++}}$. Since the set $\{f_i(\alpha) : i < \kappa^+, \alpha < \kappa\}$ has size less than or equal to κ^+ , we can take $\beta < \kappa^{++}$ such that all the elements of this set belong to A_{β} . Then a_{β} is a bound of all b_i .

So we have
$$(A_{\kappa^+})^{\mathcal{U}} \not\simeq (A_{\kappa^{++}})^{\mathcal{U}}$$
.

Theorem 13. Let κ and μ be infinite cardinals satisfying $\mu \leq \kappa$. Then the following are equivalent.

- (1) $2^{\kappa} = \kappa^{+}$.
- (2) SAT $_{\kappa}^{\mu}(2^{\kappa})$.
- (3) $SAT^{\mu}_{\kappa}(\kappa^{+})$
- (4) $KT^{\mu}_{\kappa}(2^{\kappa})$.

Proof. Recall that there is a κ^+ -good ultrafilter U on κ . That is, for every language \mathcal{L} of size $\leq \kappa$, all U-ultraproducts of \mathcal{L} -structures are κ^+ -saturated. The implication $2^{\kappa} = \kappa^+ \implies \mathrm{SAT}^{\mu}_{\kappa}(2^{\kappa})$ follows from this fact.

The implication $SAT^{\mu}_{\kappa}(\kappa^{+}) \implies 2^{\kappa} = \kappa^{+}$ is just Lemma 11.

The implication $\mathrm{KT}^{\mu}_{\kappa}(2^{\kappa}) \implies 2^{\kappa} = \kappa^{+}$ follows from Lemma 12. \square

Theorem 14. Let κ be a regular cardinal. Then $\mathrm{KT}_{\kappa}^{\aleph_0}(\kappa^+)$ implies $\mathfrak{b}_{\kappa} = \kappa^+$.

Proof. Take the same structure \mathcal{M} as in Lemma 12. Consider two elementary substructures A_{κ} and A_{κ^+} .

Take a regular ultrafilter \mathcal{U} on κ that witnesses $\mathrm{KT}_{\kappa}^{\aleph_0}(\kappa^+)$. As we saw in Lemma 12, we have $\mathrm{cf}((A_{\kappa^+})^{\mathcal{U}}) = \kappa^+$.

On the other hand, we have $\operatorname{cf}(A_{\kappa}) = \kappa$. So it holds that $\operatorname{cf}((A_{\kappa})^{\mathcal{U}}) = \operatorname{cf}(\kappa^{\kappa}/\mathcal{U})$. Since the ultrafilter \mathcal{U} is uniform, we have $\mathfrak{b}_{\kappa} \leq \operatorname{cf}(\kappa^{\kappa}/\mathcal{U})$.

By $\mathrm{KT}_{\kappa}^{\aleph_0}(\kappa^+)$, the two models $(A_{\kappa})^{\mathcal{U}}$ and $(A_{\kappa^+})^{\mathcal{U}}$ are isomorphic. So we have $\mathfrak{b}_{\kappa} \leq \mathrm{cf}(\kappa^{\kappa}/\mathcal{U}) = \kappa^+$. The other inequality is obvious.

Theorem 15. $SAT_{\kappa}^{\aleph_0}(\kappa)$ implies $2^{<2^{\kappa}}=2^{\kappa}$.

Proof. Fix a witness \mathcal{U} for $SAT_{\kappa}^{\aleph_0}(\kappa)$. Let $\lambda < 2^{\kappa}$. Define a language \mathcal{L} and \mathcal{L} -structure \mathcal{A} by $\mathcal{L} = \{\subseteq\}$ and $\mathcal{A} = ([\kappa]^{<\omega}, \subseteq)$. We have $|\mathcal{A}| = \kappa$. Put $\mathcal{A}_* = \mathcal{A}^{\kappa}/\mathcal{U}$. Since \mathcal{U} is regular (Lemma 8), we have $|\mathcal{A}_*| = \kappa^{\kappa} = 2^{\kappa}$. Let $\iota : \kappa^{\kappa}/\mathcal{U} \to \mathcal{A}_*$ be the function defined by:

$$\iota([x]) = [\langle \{x(\alpha)\} : \alpha < \kappa \rangle].$$

Fix $F \subseteq \kappa^{\kappa}/\mathcal{U}$ of size λ . For $X \subseteq F$, we define a set $p_X(z)$ of formulas with a free variable z by:

$$p_X(z) = \{ \lceil \iota(y) \subseteq z \rceil : y \in X \} \cup \{ \lceil \iota(y) \not\subseteq z \rceil : y \in F \setminus X \}.$$

Each $p_X(z)$ is finitely satisfiable and the number of parameters occurring in $p_X(z)$ is λ . Therefore, by $\mathrm{SAT}_{\kappa}^{\aleph_0}(\kappa)$, for each $X \subseteq F$, we can take $[z_X] \in \mathcal{A}_*$ satisfying $p_X(z)$. For distinct $X, Y \subseteq F$, we have $[z_X] \neq [z_Y]$. Thus we have $2^{\lambda} = |\{[z_X] : X \subseteq F\}| \leq \mathcal{A}_* = 2^{\kappa}$. Since $\lambda < 2^{\kappa}$ was arbitrary chosen, we have $2^{<2^{\kappa}} = 2^{\kappa}$.

Theorem 16. Let κ be a regular cardinal. Let μ be a cardinal less than 2^{κ} . Then $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$ implies $KT_{\kappa}^{\mu}(\kappa)$.

Proof. Note that the assumption $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$ is equivalent to $MA_{<2^{\kappa}}(Fn_{\kappa}(\kappa, 2))$. Fix a enumeration of 2^{κ} .

Let \mathcal{L} be a language of size $\leq \mu$ and \mathcal{A}^0 and \mathcal{A}^1 are \mathcal{L} -structures of size $\leq \kappa$ which are elementarily equivalent.

Enumerate $(\mathcal{A}^i)^{\kappa}$ for i = 0, 1 as

$$(\mathcal{A}^i)^{\kappa} = \{ f_{\alpha}^i : \alpha < 2^{\kappa} \}.$$

By a back-and-forth method, we construct a sequence of triples $\langle (\mathcal{U}_{\alpha}, g_{\alpha}^{0}, g_{\alpha}^{1}) : \alpha < 2^{\kappa} \rangle$ satisfying:

- (1) $g_{\alpha}^0 \in (\mathcal{A}^0)^{\kappa}$,
- $(2) \ g_{\alpha}^1 \in (\mathcal{A}^1)^{\kappa},$
- (3) \mathcal{U}_{α} is a filter on κ generated by $\kappa + |\alpha|$ sets,
- (4) $\langle \mathcal{U}_{\alpha} : \alpha < 2^{\kappa} \rangle$ is an increasing continuous sequence,
- (5) If $\varphi(x_0,\ldots,x_{n-1})$ is an \mathcal{L} -formula and $\beta_0,\ldots,\beta_n\leq\alpha$, then the set

$$\{\xi \in \kappa : \mathcal{A}^0 \models \varphi(g^0_{\beta_0}(\xi), \dots, g^0_{\beta_{n-1}}(\xi)) \iff \mathcal{A}^1 \models \varphi(g^1_{\beta_0}(\xi), \dots, g^1_{\beta_{n-1}}(\xi))\}$$

belongs to $\mathcal{U}_{\alpha+1}$.

In the construction, when α is even, we put $g_{\alpha}^{0} = f_{\gamma}^{0}$ where γ is the least ordinal $f_{\gamma}^{0} \notin \{g_{\beta}^{0} : \beta < \alpha\}$. And \mathbb{P} is the poset of partial functions of size $<\kappa$ from κ to \mathcal{A}^{1} . This poset is forcing equivalent to $\operatorname{Fn}_{\kappa}(\kappa, 2)$.

Take a generating set \mathcal{F} of \mathcal{U}_{α} of size $\aleph_0 + |\alpha|$. Then by using $\mathrm{MA}_{<2^{\kappa}}(\mathrm{Fn}_{\kappa}(\kappa,2))$, take a \mathbb{P} -generic filter G with respect to the following family of dense sets of \mathbb{P} :

$$D_{\varepsilon} = \{ p \in \mathbb{P} : \xi \in \text{dom } p \} \text{ (for } \xi \in \kappa)$$

and

$$E_{X,\langle\varphi_{\iota}:\iota\in I\rangle,\langle\gamma_{1}^{\iota},\ldots,\gamma_{n_{\iota}}^{\iota}:\iota\in I\rangle} = \{p \in \mathbb{P}: (\exists \xi \in \text{dom}(p) \cap X)(\forall \iota \in I)$$

$$(\mathcal{A}^{0} \models \varphi_{\iota}(g_{\gamma_{1}^{\iota}}^{0}(\xi),\ldots g_{\gamma_{n_{\iota}}^{\iota}}^{0}(\xi),g_{\alpha}^{0}(\xi)) \Leftrightarrow$$

$$\mathcal{A}^{1} \models \varphi_{\iota}(g_{\gamma_{1}^{\iota}}^{1}(\xi),\ldots g_{\gamma_{n_{\iota}}^{\iota}}^{1}(\xi),p(\xi))\}),$$

where $X \in \mathcal{F}$, $\langle \varphi_{\iota} : \iota \in I \rangle$ is a finite sequence of \mathcal{L} -formulas and $\gamma_{1}^{\iota}, \ldots, \gamma_{n_{\iota}}^{\iota}$ for $\iota \in I$ are ordinals less than α .

We now prove that $E:=E_{X,\langle\varphi_{\iota}:\iota\in I\rangle,\langle\gamma_{1}^{\iota},...,\gamma_{n_{\iota}}^{\iota}:\iota\in I\rangle}$ is dense. Let $p\in\mathbb{P}$. For each $\xi\in\kappa$ and $\iota\in I$, put

$$v(\xi,\iota) = \begin{cases} 1 & \text{if } \mathcal{A}^0 \models \varphi_\iota(g^0_{\gamma_1^\iota}(\xi),\ldots,g^0_{\gamma_{n_\iota}^\iota}(\xi),g^0_\alpha(\xi)) \\ 0 & \text{otherwise.} \end{cases}$$

And for each $\xi \in \kappa$ put

$$v(\xi) = \langle v(k, \iota) : \iota \in I \rangle.$$

Then by finiteness of $^{I}2$, for some $v_0 \in {}^{I}2$, we have $\kappa \setminus v^{-1}(v_0) \notin \mathcal{U}_{\alpha}$. For each $\iota \in I$, put

$$\varphi_{\iota}^{+}(x_{1}^{\iota},\ldots,x_{n_{\iota}}^{\iota},y) \equiv \begin{cases} \varphi_{\iota}(x_{1}^{\iota},\ldots,x_{n_{\iota}}^{\iota},y) & \text{if } v_{0}(\iota) = 1\\ \neg \varphi_{\iota}(x_{1}^{\iota},\ldots,x_{n_{\iota}}^{\iota},y) & \text{otherwise.} \end{cases}$$

Put

$$\psi \equiv \exists y \bigwedge_{\iota \in I} \varphi_{\iota}^{+}(x_{1}^{\iota}, \dots, x_{n_{\iota}}^{\iota}, y).$$

Then by the induction hypothesis (5), $Y_{\psi,\langle \gamma_1^{\iota}, \dots \gamma_{n_{\iota}}^{\iota} : \iota \in I \rangle} \in \mathcal{U}_{\alpha}$. So take $\xi \in X \cap v^{-1}(v_0) \cap Y_{\psi,\langle \gamma_1^{\iota}, \dots \gamma_{n_{\iota}}^{\iota} : \iota \in I \rangle} \setminus \text{dom}(p)$.

Since $M^0 \models \psi(\langle g_{\gamma_1^t}^0(\xi), \dots g_{\gamma_{n_\iota}^t}^0(\xi) : \iota \in I \rangle)$, we have $M^1 \models \psi(\langle g_{\gamma_1^t}^1(\xi), \dots g_{\gamma_{n_\iota}^t}^1(\xi) : \iota \in I \rangle)$. By the definition of ψ , we can take $y \in M^1$ such that $M^1 \models \varphi_{\iota}^+(g_{\gamma_1^t}^1(\xi), \dots, g_{\gamma_{n_\iota}^t}^1(\xi), y)$ for every $\iota \in I$. We now put $q = p \cup \{(\xi, y)\}$. This witnesses denseness of E.

Then we put $g_{\alpha}^1 = \bigcup G$ and letting $\mathcal{U}_{\alpha+1}$ contain \mathcal{U}_{α} and the sets in (5) and have either the α -th element of the enumeration of 2^{κ} or its complement.

When α is odd, do the same construction above except for swapping 0 and 1.

Then the construction guarantees that $\mathcal{U} = \bigcup_{\alpha < 2^{\kappa}} \mathcal{U}_{\alpha}$ is an ultrafilter and that the function

$$\langle ([g^0_\alpha]_\mathcal{U}, [g^1_\alpha]_\mathcal{U}) : \alpha < 2^\kappa \rangle$$

is an isomorphic from $(\mathcal{A}^0)^{\mathcal{U}}$ to $(\mathcal{A}^1)^{\mathcal{U}}$.

Fact 17 ([Vlu23, Theorem 4.3]). Let κ be an inaccessible cardinal. Then $\operatorname{cov}(\mathcal{M}_{\kappa}) \geq \lambda$ holds iff for every $X \subseteq \kappa^{\kappa}$ of size $<\lambda$ there is $S \in \prod_{i < \kappa} [\kappa]^{\leq |i|+1}$ such that for all $x \in X$ we have $\{i < \kappa : x(i) \in S(i)\}$ is cofinal in κ .

Fact 17 does not seem to generalize to anything other than inacessible cardinals. In fact, it is known that when κ is a successor cardinal, the cardinal invariant determined by slaloms as claimed above is equal to \mathfrak{d}_{κ} .

Theorem 18. Let κ be an inaccessible cardinal. Then $SAT_{\kappa}^{\aleph_0}(\kappa)$ implies $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$

Proof. Let \mathcal{U} be a regular ultrafilter on κ witnessing $\operatorname{SAT}_{\kappa}^{\aleph_0}(\kappa)$. Let $X \subseteq \kappa^{\kappa}$ of size $\langle 2^{\kappa}$. Define a language \mathcal{L} by $\mathcal{L} = \{\subseteq\}$. For $i < \kappa$, define a \mathcal{L} -structure \mathcal{A}_i by $\mathcal{A}_i = ([\kappa]^{\langle |i|}, \subseteq)$. Since κ is inaccessible, we have $|\mathcal{A}_i| = \kappa$. For $x \in \kappa^{\kappa}$, we define $S_x = \langle \{x(i)\} : i < \kappa \rangle$. Put $\mathcal{A}_* = \prod_{i < \kappa} \mathcal{A}_i / \mathcal{U}$. Consider a set of formulas p(S) defined by

$$p(S) = \{ \lceil [S_x] \subseteq S \rceil : x \in X \}.$$

Then p(S) is finitely satisfiable and the number of parameters occurring in p(S) is $<2^{\kappa}$. Thus, by $SAT_{\kappa}^{\aleph_0}(\kappa)$, we can take $[S] \in \mathcal{A}_*$ realizing p(S). Then we have

$$(\forall x \in X)(\{i < \kappa : x(i) \in S(i)\} \in \mathcal{U}).$$

But since our ultrafilter \mathcal{U} is uniform, we have

$$(\forall x \in X)(\{i < \kappa : x(i) \in S(i)\})$$
 is cofinal).

So by Fact 17, we showed $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$.

Theorem 19. Let κ be a regular cardinal. Then $cov(\mathcal{M}_{\kappa}) = 2^{<2^{\kappa}} = 2^{\kappa}$ implies $SAT_{\kappa}^{\kappa}(\kappa)$.

Proof. Let $\langle b_{\alpha} : \alpha < 2^{\kappa} \rangle$ be an enumeration of κ^{κ} .

Let $\mathcal{L}^+ = \mathcal{L} \cup \{c_{\alpha} : \alpha < \mathfrak{c}\}$ where the c_{α} 's are new constant symbols and let $\operatorname{Fml}(\mathcal{L}^+)$ be the set of all \mathcal{L}^+ formulas with one free variable.

Let $\langle (\mathcal{L}_{\xi}, T_{\xi}, \mathcal{B}_{\xi}, \Delta_{\xi}) : \xi < 2^{\kappa} \rangle$ be an enumeration of tuples $(\mathcal{L}, T, \mathcal{B}, \Delta)$ such that \mathcal{L} is a language of size $\leq \kappa$, $T : \kappa \to \kappa + 1$, $\mathcal{B} = \langle \mathcal{A}_i : i < \kappa \rangle$ is a κ -sequence of \mathcal{L} -structures with i-th universe T(i) and Δ is a subset of $\text{Fml}(\mathcal{L}^+)$ with $|\Delta| < 2^{\kappa}$. Here we used $(2^{\kappa})^{<2^{\kappa}} = 2^{\kappa}$. Ensure each $(\mathcal{L}, T, \mathcal{B}, \Delta)$ occurs cofinally in this sequence.

For
$$\mathcal{B}_{\xi} = \langle \mathcal{A}_{i}^{\xi} : i < \kappa \rangle$$
, we put

$$\mathcal{B}_{\xi}(i) = \langle \mathcal{A}_{i}^{\xi}, b_{0}(i) \upharpoonright T_{\xi}(i), b_{1}(i) \upharpoonright T_{\xi}(i), \dots \rangle,$$

which is a \mathcal{L}^+ -structure. Here $\alpha \upharpoonright \beta = \begin{cases} \alpha & \text{if } \alpha < \beta \\ 0 & \text{otherwise} \end{cases}$ for α and β are ordinals.

Let $\langle X_{\xi} : \xi < 2^{\kappa} \rangle$ be an enumeration of $\mathcal{P}(\kappa)$. We construct a sequence of filters $\langle F_{\xi} : \xi < 2^{\kappa} \rangle$ satisfying following conditions:

- (1) F_0 is the filter generated by a regularizing set for κ .
- (2) $F_{\xi} \subseteq F_{\xi+1}$ and $F_{\xi} = \bigcup_{\alpha < \xi} F_{\alpha}$ for a limit ξ .
- (3) $X_{\xi} \in F_{\xi+1}$ or $\kappa \setminus X_{\xi} \in F_{\xi+1}$.
- (4) F_{ξ} is generated by $< 2^{\kappa}$ members.
- (5) If

$$(\forall \Gamma \in [\Delta_{\xi}]^{<\aleph_0})(\{i < \kappa : \Gamma \text{ is satisfiable in } \mathcal{B}_{\xi}(i)\} \in F_{\xi})$$
 (*)

Then there is $f \in \prod_{i < \kappa} T_{\xi}(i)$ such that for every $\varphi \in \Delta_{\xi}$ we have $\{i < \kappa : f(i) \text{ satisfies } \varphi \text{ in } \mathcal{B}_{\xi}(i)\} \in F_{\xi+1}$.

Suppose that F_{ξ} is constructed and (*) holds. Let

$$\mathbb{P} = \{p : p \text{ is a partial function of size} < \kappa \text{ from } \kappa \text{ to } \kappa\}$$

This forcing notion \mathbb{P} is forcing equivalent to the forcing adding a κ -Cohen function.

Fix a generating set F'_{ξ} of F_{ξ} of size $< 2^{\kappa}$. For each $A \in F'_{\xi}$ and $\varphi_1, \ldots, \varphi_n \in \Delta_{\xi}$, we put

$$E_{A,\varphi_1,\ldots,\varphi_n} = \{ p \in \mathbb{P} : (\exists i \in \text{dom}(p) \cap A)(p(i) \text{ is element of } T_{\xi}(i) \}$$

and satisfies $\varphi_1,\ldots,\varphi_n$ in $\mathcal{B}_{\xi}(i)$)

By assumption (*), these $E_{A,\varphi_1,...,\varphi_n}$'s are dense subsets in \mathbb{P} .

So using $\operatorname{MA}_{<2^{\kappa}}(\mathbb{P})$, we have a filter G of \mathbb{P} that intersects all $E_{A,\varphi_1,\dots,\varphi_n}$'s. Put $f(i) = (\bigcup G)(i) \upharpoonright T_{\xi}(i)$. Then we can extend our filter F_{ξ} to $F_{\xi+1}$ such that for every $\phi \in \Delta_{\xi} \ \{i < \kappa : f(i) \text{ satisfies } \varphi \text{ in } \mathcal{B}_{\xi}(i)\} \in F_{\xi+1}$. Moreover we can extend this filter satisfying $X_{\xi} \in F_{\xi+1}$ or $\kappa \setminus X_{\xi} \in F_{\xi+1}$. This finishes the construction.

In order to check that the resulting ultrafilter $F = \bigcup_{\xi < 2^{\kappa}} F_{\xi}$ witnesses $SAT_{\kappa}^{\kappa}(\kappa)$, let \mathcal{L} be a language of size $\leq \kappa$ and $\mathcal{B} = \langle \mathcal{A}_i : i \in \kappa \rangle$ be a sequence of \mathcal{L} -structures. We may assume that, for each $i < \kappa$, the universe of \mathcal{A}_i is an ordinal. Let T(i) = 0 the universe of \mathcal{A}_i . Let Δ be a subset of $Fml(\mathcal{L}^+)$ with $|\Delta| < 2^{\kappa}$. Assume that for all $\Gamma \subseteq \Delta$ finite, $X_{\Gamma} := \{i \in \kappa : \Gamma \text{ is satisfiable in } \mathcal{B}(i)\} \in F$. By the regularity of 2^{κ} which follows from the cardinal arithmetical assumption of the theorem, we have $\alpha < 2^{\kappa}$ such that for all $\Gamma \subseteq \Delta$ finite, $X_{\Gamma} \in F_{\alpha}$. Let $\xi \geq \alpha$ be satisfying $(\mathcal{L}_{\xi}, T_{\xi}, \mathcal{B}_{\xi}, \Delta_{\xi}) = (\mathcal{L}, T, \mathcal{B}, \Delta)$. Then by (5), there is a $f \in \prod_{i < \kappa} T(i)$ such that for all $\varphi \in \Delta$, $\{i \in \kappa : f(i) \text{ satisfies } \varphi \text{ in } \mathcal{B}(i)\} \in F$. Thus $\prod_{i \in \kappa} \mathcal{A}_i/F$ is saturated. \square

3 Discussion

From the results of Section 2, the following figure can be drawn for an inaccessible cardinal κ .

In light of this, the following two questions naturally arise.

Question 20. (1) Can we eliminate the inaccessibility assumption from the result which states $SAT_{\kappa}^{\aleph_0}(\kappa)$ implies $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$?

(2) Can we prove the consistency of $\neg KT_{\kappa}^{\kappa}(\kappa)$?

For the second question the answer Yes is obtained when $\kappa = \aleph_0$ ([She92]). [Got22] improves on that result, showing $KT_{\aleph_0}^{\aleph_0}(\aleph_0) \Rightarrow cov(\mathcal{N}) \leq \mathfrak{d}$. By generalizing the proof to an inaccessible cardinal, we obtain the following.

Theorem 21. Let κ be an inaccessible cardinal. Then $KT_{\kappa}^{\aleph_0}(\kappa)$ implies $\mathfrak{v}_{\kappa}^{\forall} \leq \mathfrak{d}_{\kappa}$. \square

Here, for a cardinal κ and $c, h \in \kappa^{\kappa}$, letting $\prod c = \prod_{\alpha < \kappa} c(\alpha)$ and $S(c, h) = \prod_{\alpha < \kappa} [c(\alpha)]^{< h(\alpha)}$, we define

$$\mathfrak{v}_{\kappa,c,h}^{\forall} = \min\{|X| : X \subseteq \prod c, (\forall \varphi \in S(c,h))(\exists x \in X) \\ (\forall \alpha < \kappa)(\exists \beta \in [\alpha,\kappa))(x(\alpha) \notin \varphi(\alpha))\}.$$

Also, we define $\mathfrak{v}_{\kappa}^{\forall} = \min\{\mathfrak{v}_{\kappa,c,h}^{\forall} : c, h \in \kappa^{\kappa}, \text{ and } h \text{ diverges to } \infty\}.$

However, for an inaccessible cardinal κ , the consistency of $\mathfrak{d}_{\kappa} < \mathfrak{v}_{\kappa}^{\forall}$ is not currently known. The situation differs from cardinal invariants at ω in that forcing notions such as random forcing are not known for higher cardinals, nor are good generalizations of properties such as ω^{ω} -bounding proper forcing.

Acknowledgments

The author would like to thank Joerg Brendle and Toshimichi Usuba, who gave the author helpful comments.

References

- [GS23] Mohammad Golshani and Saharon Shelah. "The Keisler-Shelah isomorphism theorem and the continuum hypothesis". *Fund. Math.* 260.1 (2023). arXiv: 2108.03977, pp. 59–66.
- [Got22] Tatsuya Goto. "Keisler's theorem and cardinal invariants". The Journal of Symbolic Logic (2022).
- [Kei64] H Jerome Keisler. "Ultraproducts and saturated models". *Indag. Math* 26 (1964), pp. 178–186.
- [She71] Saharon Shelah. "Every two elementarily equivalent models have isomorphic ultrapowers". *Israel Journal of Mathematics* 10.2 (1971), pp. 224–233.
- [She92] Saharon Shelah. "Vive la différence. I. Nonisomorphism of ultrapowers of countable models". Set theory of the continuum (Berkeley, CA, 1989).
 Vol. 26. Math. Sci. Res. Inst. Publ. arXiv: math/9201245. Springer, New York, 1992, pp. 357–405.
- [Tsu22] Akito Tsuboi. "Some results related to Keisler-Shelah isomorphism theorem (Model theoretic aspects of the notion of independence and dimension)". *RIMS Kôkyûroku* 2218 (May 2022).
- [Vlu23] Tristan van der Vlugt. Cardinal Characteristics on Bounded Generalised Baire Spaces. 2023. arXiv: 2307.14118 [math.L0].