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1 Introduction

The following is an important theorem in model theory proved by Keisler and She-
lah. Keisler [Kei64] proved it by assuming GCH, but Shelah [She71] removed that

assumption.

Theorem 1 (Keisler-Shelah). For every (first-order) language £ and two L-structures
A, B, the following are equivalent:

(1) A = B (that is, A and B are elementarily equivalent).

(2) There is a nonprincipal ultrafilter & over an infinite set such that the ultra-
powers AY and BY are isomorphic.

The following theorem is also known in connection with the above theorem.
Theorem 2 (Keisler, Golshani and Shelah). The following are equivalent:

(1) The continuum hypothesis.
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(2) For every countable language £ and two L-structures A, B of size < ¢, if A = B
then there is a nonprincipal ultrafilter ¢ over w such that the ultrapowers AY
and BY are isomorphic.

For this theorem, Keisler [Kei64] showed (1) = (2) and Golshani and Shelah
[GS23] (2) = (1).

In order to analyze these theorems in detail, we introduce the following principle.

Definition 3. Let , u and A be infinite cardinals. We define a criterion KT%()) by

KT#(X\) <= for every language L of size < u and
every elementarily equivalent L-structures A, B of size < A,

there is a uniform ultrafilter I/ on s such that AY ~ B“.
We also define a criterion SATY(X) by

SATY(N) <= there is a uniform ultrafilter U on x such that
for every language £ of size < p and

every sequence (A; : i < k) of infinite L-structures of size < A,

the ultraproduct <H .A7-,> /U is saturated.

1€ER

Keisler-Shelah’s theorem means that KTgi (M) holds for any infinite cardinal A.
Keisler’s paper also gives an example showing the following.

Fact 4 (Keisler [Kei64]). Let  be an infinite cardinals. Then = KT"" (%) holds.

The author’s paper [Got22] showed the implications of the bold lines in the
following figure.
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2 Results

In this section, we discuss the principles introduced in Section 1. The case where
the cardinality p of the language and the cardinality x of the underlying set of
the ultrafilter are both R, was analyzed in detail in the author’s paper [Got22].
Here, the more general case is investigated. However, most of the results are naive
generalisations of the arguments in [Got22].

Before proceeding to the results, we recall the basic definitions of ultrafilters.

Definition 5. Let U be a ultrafilter on k. We say U is regular if there is € C U of
size r such that for every i < s, the set {E£ € £ : i € E} is finite.

Definition 6. For ultrafilters ¢,V on I, J respectively, we define
UxV={ACIxJ:{iel:{jeJ:(ij)eA}eV}elU}.
U xV is called the Fubini product of U and V.

Lemma 7. Let x <+’ be two infinite cardinals. Then KT#()) implies KT, (X).

Proof. Fix a language L of size < p and two elementarily equivalent L-structures
A and B of size < A\. By KT%()), we can take a uniform ultrafilter & on k. Fix
a uniform ultrafilter V on x’. Then the ultrapowers of A and B by the ultrafilter
U xV are isomorphic. O

Lemma 8. (1) KT#()\) implies there exists a regular ultrafilter witnessing KT#(\).
(2) If A > K, then every witness for SAT#(\) is a regular ultrafilter.

Proof. First, we show (1). Take an ultrafilter U on k witnessing KT#()). Take a
regular ultrafilter V on k. Then the product ultrafilter I/« is regular and witnesses
KT#(N).

Next we show (2). Take a witness U for SAT#()\). Let M = ([x]<¥,C) and
consider M, = M"/U. By an easy diagonal argument, we have |M,| > k. Define
a set of formulas p with a free variable x by

p={"{a}. Cz7:a <k}

where {a}, is the equivalence class of the constant sequence of {a}. It can be easily
checked that p is finitely satisfiable and the number of parameters of p is x, which
is smaller than |M,|. Therefore, by SAT()\), we can take f: x — M such that [f]
satisfies p. This f clearly satisfies {i € k: « € f(i)} € U for every a < k. Thus, U
is a regular ultrafilter. O

Lemma 9. SAT%()) implies KT#(\) for every A\ < 2%.

Proof. By regularity (Lemma 8), the ultrapowers have same cardinality. Thus
uniqueness of saturated models implies this lemma. O
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Lemma 10. -SAT}(k++).

Proof. Take a witness U of SAT Y (x+). Let A = (k**, <) and A, = AY. We have
|A,| > |A| = k™. Consider the following set p of formulas with one free variable x:

p={Ta.<zr< (k") :a<k}

This p is finitely satisfiable and the number of parameters occurring in p is x*.
Thus, by SATX(k*+), we can take f: x — k' such that [f] realizes p. Put 3 =
SUPy<y f(@). By B. < [f], we have {o < k : f < f(a)} € U. This contradicts the
choice of . O

Lemma 11. SATY (k") implies 2° = x*.

Proof. Take a witness U of SATY (k) and assume k* < 2. Let A, = (kt, <)Y,
We have | A,| = 27 since U is regular (Lemma 8). Consider the following set p of
formulas with one free variable x:

p={Ta.<xV:a<k'}h

This p is finitely satisfiable and the number of parameters occurring in p is equal to
#x*, which is smaller than 2%. Thus, by SAT°(x%), we can take f: x — x* such that
[f] realizes p. Then, this f is unbounded, which contradicts that % is regular. [

Lemma 12. - KT} (k++).

Proof. This proof is based on [Tsu22]. Let (M, <) be a linearly ordered set with
cofinality k™. We define an increasing continuous sequence (A4; : ¢ < k™1) of subsets
of M such that:

(1) For every i < k™", A; is an elementary substructure of M.

(2) For every i < s*1, there is a; € A;y1 such that for every b € A;, we have
b < a;.

or every ¢ < k7T, we have |A;| < |7] + Nop.
3) Fi < kT h Al <7l + R

We show that the pair of A+ and A,++ is a counterexample of KT (k*T). Let U
be an ultrafilter on .

We claim that (A.+)¥ has a cofinal increasing sequence of length x*. In fact,
((a;)« 1 < KT) is a cofinal increasing sequence. In order to show it, take [f] €
(A+)4. For each a < k, we can take i, < kT such that f(a) € A;,. Then
i = Sup, ., i satisfies [f] < a;.

On the other hand, in (A,++)Y, every x-sequence is bounded. In order to check
it, take (b; : i < k™). We write b; as b; = [f;], where f;: kK — A, ++. Since the set
{fila) i < k™, < K} has size less than or equal to k*, we can take 5 < kT such
that all the elements of this set belong to Az. Then ag is a bound of all b;.

So we have (A+)¥ 2 (A1 )4, O



Theorem 13. Let x and p be infinite cardinals satisfying p < k. Then the following
are equivalent.

(1) 2

(2) SAT!(27).
(3) SATY(k)
(4) KTH(27).

Proof. Recall that there is a kT-good ultrafilter U on . That is, for every language
L of size < k, all U-ultraproducts of L-structures are x*-saturated. The implication
2F = kT = SAT*#(2"%) follows from this fact.

The implication SAT#(k*) = 2% = k™ is just Lemma 11.

The implication KT#(2%) — 2% = ™ follows from Lemma 12. O

Theorem 14. Let & be a regular cardinal. Then KT (k) implies b, = x™.

Proof. Take the same structure M as in Lemma 12. Consider two elementary sub-
structures A, and A,+.

Take a regular ultrafilter U on  that witnesses KTX (k). As we saw in Lemma
12, we have cf((A+)¥) = k™.

On the other hand, we have cf(A,) = x. So it holds that cf ((A,)¥) = cf (k" /U).

Since the ultrafilter ¢ is uniform, we have b, < cf(x"/U).

By KT (k%), the two models (A.)¥ and (A,+)¥ are isomorphic. So we have
b, < cf(k"/U) = k. The other inequality is obvious. O

Theorem 15. SAT} (k) implies 2<% = 2~

Proof. Fix a witness U for SAT}°(x). Let A < 2¢. Define a language £ and L-
structure A by £ = {C} and A = ([k]¥,C). We have |A| = k. Put A, = A"/U.
Since U is regular (Lemma 8), we have |A,| = k" = 2%. Let ¢: k*/U — A, be the
function defined by:

u([2]) = [{({z(a)} : a < K)].
Fix F' C k" /U of size A\. For X C F', we define a set px(z) of formulas with a free
variable 2z by:

px(z) ={"uwly) S22y e XJU{"u(y) £ 27y € F\ X}.

Each py(z) is finitely satisfiable and the number of parameters occurring in py(z)
is . Therefore, by SAT °(k), for each X C F, we can take [2x] € A, satisfying
px(z). For distinct X, Y C F, we have [2x] # [2y]. Thus we have 2* = |{[2x] : X C
F}| < A, = 2" Since A < 2" was arbitrary chosen, we have 2<?" = 2", O

Theorem 16. Let s be a regular cardinal. Let p be a cardinal less than 2%. Then
cov(M,) = 2" implies KT% (k).



Proof. Note that the assumption cov(M,) = 2" is equivalent to MA _o« (Fn,(k, 2)).
Fix a enumeration of 2".
Let £ be a language of size < p and A° and A' are L-structures of size < &
which are elementarily equivalent.
Enumerate (A" for i = 0,1 as

(AN = {fl 1 a < 2"}
By a back-and-forth method, we construct a sequence of triples (s, g2, gl) : o < 2)
satisfying:
(1) ga € (A",
(2) ga € (A",
(3) U, is a filter on x generated by x + |a| sets,

(4) (U, : a < 2%) is an increasing continuous sequence,

(5) If (zo,...,zy_1) is an L-formula and Sy, ..., B, < a, then the set

{¢er: A" p(g5,6), ..., 05, (&) <= A= (g5,©). ..., 95,_,()}

belongs to Uy 1.

In the construction, when « is even, we put g2 = fg where 7 is the least ordinal
19 & {93 : B < a}. And P is the poset of partial functions of size <x from & to A".
This poset is forcing equivalent to Fn,(k, 2).

Take a generating set F of U, of size g+ ||. Then by using MA -5« (Fn,(x, 2)),
take a P-generic filter G with respect to the following family of dense sets of PP:

D¢ ={peP:¢ e domp} (for £ € k)
and

EX,(LpL:LEI),('yi ..... Vi, €I) :{p eP: (35 € dOIIl(p) N X)(VL € [>
(A = (2 (0), . P, (€). 00(E))
AT E (g (©). - g (©.p(O))).

where X € F, (¢, : ¢ € I) is a finite sequence of L-formulas and ~f,....~}, forc e [
are ordinals less than a.

We now prove that £ = EX,<¢L:LEI),(7;,...%L:LeI> is dense. Let p € P. For each
€ rand €1, put

Lif A = (99, (6), - 99, (€), 90(6))

0 otherwise.

(€ 0) =



And for each £ € k put
v(€) = (v(k,1) 0 €I).
Then by finiteness of 2, for some vy € 12, we have k ~\ v (v) & U,.
For each + € I, put

ot .. m L y) ifue(e) =1

—@ (2f,..., 2, ,y) otherwise.

o (@, y)

Put
b= N\ (@),
el

Then by the induction hypothesis (5), Yo int,n, wery € Ua. So take § € XNot(v)N
Yo (0t t, wed) N dom(p).

Since M = ¥((93:(€), .- g5 (§) : ¢ € 1)), we have M |= ({93 (§), - .- g, (§) 1L € 1))

By the definition of 7, we can take y € M' such that M |= ¢ (gii €,..., g%“ €),y)
for every ¢ € I. We now put ¢ = pU {(§,y)}. This witnesses denseness of E.

Then we put g} = |JG and letting U, contain U, and the sets in (5) and have
either the a-th element of the enumeration of 2 or its complement.

When « is odd, do the same construction above except for swapping 0 and 1.

Then the construction guarantees that ¢ = U, is an ultrafilter and that

<2k
the function

((lgalus lgalu) + @ < 27)

is an isomorphic from (A% to (A')X. O

Fact 17 ([V1u23, Theorem 4.3]). Let x be an inaccessible cardinal. Then cov(M,) >
A holds iff for every X C k" of size <\ there is S € [[,_,.[£]=/*! such that for all
z € X we have {i < k:z(i) € S(i)} is cofinal in k.

Fact 17 does not seem to generalize to anything other than inacessible cardinals.
In fact, it is known that when x is a successor cardinal, the cardinal invariant
determined by slaloms as claimed above is equal to 0.

Theorem 18. Let  be an inaccessible cardinal. Then SAT° () implies cov(M,,) =
2%,

Proof. Let U be a regular ultrafilter on x witnessing SATY (k). Let X C x* of size
<2%. Define a language £ by £ = {C}. For i < k, define a L-structure A; by
A; = ([k]<1], ©). Since & is inaccessible, we have |A;| = k. For x € k", we define
Sy = ({x(i)} :i < ). Put A, =[], Ai/U. Consider a set of formulas p(5) defined
by

p(S)={"[S.]C STz e X}

Then p(S) is finitely satisfiable and the number of parameters occurring in p(S) is
<2%. Thus, by SATY(k), we can take [S] € A, realizing p(S). Then we have

(Vo € X)({i < k: 2(d) € S(i)} € U).
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But since our ultrafilter ¢ is uniform, we have
(Ve e X)({i <k :z(i) € S(i)} is cofinal).
So by Fact 17, we showed cov(M,) = 2". O

Theorem 19. Let s be a regular cardinal. Then cov(M,) = 2<% = 2¢ implies

SAT (k).

Proof. Let (b, : @ < 27) be an enumeration of k".

Let LT = LU {c, : a < ¢} where the ¢,’s are new constant symbols and let
Fml(L") be the set of all LT formulas with one free variable.

Let ((Le, Te, Be, A¢) : € < 2%) be an enumeration of tuples (£, T, B, A) such that
L is a language of size < k, T: k > K+ 1, B = (A; : i < k) is a k-sequence of L-
structures with é-th universe 7°(7) and A is a subset of Fml(£") with |A| < 2%. Here
we used (27)<?" = 2%, Ensure each (£, T, B, A) occurs cofinally in this sequence.

For B = (AS 1 < k), we put

Be(i) = (A5, bo(0) 1 Te(8), 02 (6) | Te(0), - ),

a ifa<
which is a Lt-structure. Here o | § = b for a and [ are ordinals.
0 otherwise

Let (X¢ : € < 27) be an enumeration of P(x). We construct a sequence of filters
(F¢ : & < 27) satisfying following conditions:

1) Fy is the filter generated by a regularizing set for k.
2) Fe C Feyq and Fe =, Fl for a limit €.

(1)

(2)

(3) X¢ € Fepq or 6\ X¢ € Feyq.

(4) F¢is generated by < 2" members.
()

5) If
(VT € [Ag]=™)({i < & : T is satisfiable in Be(i)} € F) (%)

Then there is f € ], . Te(7) such that for every ¢ € A¢ we have {i < & :
f(i) satisfies ¢ in Be(i)} € Feq.

Suppose that F¢ is constructed and (x) holds. Let
P = {p: pis a partial function of size < k from & to s}

This forcing notion P is forcing equivalent to the forcing adding a x-Cohen function.
Fix a generating set F{ of F¢ of size < 2%. For each A € F and ¢, ..., pn € Ag,
we put
oripn = 1P € P 1 (Fi € dom(p) N A)(p(i) is element of T¢(7)
and satisfies @1, ..., @, in Be(7))}



By assumption (x), these E4,, . ,.’s are dense subsets in P.

So using MA o« (P), we have a filter G of IP that intersects all E4 ., . 's. Put
f(0) =(UG)(@H) I Te(7). Then we can extend our filter F¢ to Fgiq such that for every
¢ € A¢ {i < k: f(i) satisfies ¢ in Be(i)} € Feyq. Moreover we can extend this filter
satisfying X¢ € Feyq or K \ X¢ € Fgyq. This finishes the construction.

In order to check that the resulting ultrafilter I = {J_,. F¢ witnesses SAT} (),
let £ be a language of size < x and B = (A; : i € k) be a sequence of L-structures.
We may assume that, for each i < k, the universe of 4; is an ordinal. Let T'(i) =
the universe of A;. Let A be a subset of Fml(£") with |A| < 2%. Assume that for
all T' C A finite, Xp := {i € k : ' is satisfiable in B(i)} € F. By the regularity
of 2" which follows from the cardinal arithmetical assumption of the theorem, we
have a < 2% such that for all ' C A finite, Xr € F,. Let & > a be satisfying
(Le,Te, Be, Ae) = (L£,T,B,A). Then by (5), there is a f € [[,_,T'(¢) such that for
all p € A, {i € s : f(i) satisfies ¢ in B(i)} € F. Thus [[,., Ai/F is saturated. O

3 Discussion

From the results of Section 2, the following figure can be drawn for an inaccessible
cardinal k.

2F = gt

\

SAT" (k™)

cov(M,) = 28 = 2<%
!
SAT% (k)
|
cov(M,) = 2~
|

KT (k) KT (x)

! l

b, =r" 77

SAT*(2%)

KT (2%)

In light of this, the following two questions naturally arise.

Question 20. (1) Can we eliminate the inaccessibility assumption from the result
which states SATY (k) implies cov(M,.) = 257

(2) Can we prove the consistency of = KT%(x)?

For the second question the answer Yes is obtained when x = ¥, ([She92]).
[Got22] improves on that result, showing KTSS (Rg) = cov(N) < 0. By generalizing
the proof to an inaccessible cardinal, we obtain the following.

Theorem 21. Let x be an inaccessible cardinal. Then KT () implies b7 < 9,. [
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Here, for a cardinal x and c,h € ", letting [[c = [],., c(a) and S(c,h) =
[T, [c(a)]<") we define

vy ., =min{|X|: X C [[ e (Vo € S(c. h)) (3 € X)
(Voo < k)(3B € [, k) (w(a) € p(a))}-

Also, we define v] = min{v} ., : ¢,h € ", and h diverges to co}.

However, for an inaccessible cardinal &, the consistency of 9, < v? is not cur-

rently known. The situation differs from cardinal invariants at w in that forcing

notions such as random forcing are not known for higher cardinals, nor are good

generalizations of properties such as w“-bounding proper forcing.
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