GALOIS TRACE FORMS OF TYPE A_n, D_n, E_n FOR ODD n AND CODES

RIKU HIGA

ABSTRACT. Let F/\mathbb{Q} be a Galois extension of odd degree, then F has a self-dual basis over \mathbb{Q} . In this note, we construct A_n , D_n -lattices that can be embedded in F from the basis. Furthermore, we report a method for constructing unimodular lattices from these lattices and the correspondence with codes.

1. Introduction

For every odd prime number p, Ebeling [3, Ch. 5] constructed a Hilbert modular theta function over $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ by constructing an even unimodular lattice from the fractional ideal of $\mathbb{Q}(\zeta_p)$ generated by $(1 - \zeta_p)^{-(p-3)/2}$ which is a lattice of type A_{p-1} .

In order to generalize Ebeling's construction to more general even root lattices, especially irreducible ones of type A_n, D_n, E_n , it is natural to ask which lattices can be realized as ideal lattices over number fields. In [9], the following result is obtained.

Theorem 1.1. Let n be an odd positive integer and F/\mathbb{Q} be a Galois extension of degree n. Then, there exist no fractional ideals $\Lambda \subset F$ such that $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ are of type A_n, D_n, E_n .

This leads us to the following question:

Question 1.2. Let n be an odd positive integer.

Can one find a totally real F of degree n and a sub \mathbb{Z} -module Λ of F such that the lattice $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ is of type A_n, D_n, E_n ?

Every Galois extension of odd degree has a self-dual basis (see [4, Theorem 2.1]). Using the basis, we gain the following Theorem 1.3. This is the first main result of this note.

Theorem 1.3. Let n be an odd positive integer and F/\mathbb{Q} be a Galois extension of degree n.

- (1) There exists a lattice $\Lambda \subset F$ of type A_n such that $n+1 \in \mathbb{Q}^{\times 2}$ or of type D_n .
- (2) There exist no \mathbb{Z} -modules $\Lambda \subset F$ such that $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ are of type A_n for $n+1 \notin \mathbb{Q}^{\times 2}$ or of type E_7 .

In addition to the result, we give the following Theorem 1.4.

Theorem 1.4. Let $\Lambda \subset F$ be a Theorem 1.3 (1)'s lattice, and let C be a Λ^*/Λ -code of length m. If C is self-dual, there exists the unimodular lattice which lies between $(\Lambda)^{\oplus m}$ and $(\Lambda^*)^{\oplus m}$.

The organization of this note is as follows. In §2, we recall some basic definitions. In §3, we give a proof of Theorem 1.3. In §4, we give a proof of Theorem 1.4.

Notation. In this paper, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the ring of integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively.

A subfield F of \mathbb{C} is called a number field if its degree $[F:\mathbb{Q}]$ over \mathbb{Q} is finite.

2. Basic definitions

First, we recall some basic definitions. For details, see e.g. [3, Ch. 1].

Definition 2.1. Let Λ be a free \mathbb{Z} -module of rank n and $\langle , \rangle : \Lambda \times \Lambda \to \mathbb{R}$ be a bilinear form.

- (1) A pair $\Lambda = (\Lambda, \langle , \rangle)$ is called a lattice if \langle , \rangle is positive-definite and symmetric, that is, $\langle x, x \rangle > 0$ for every $x \in \Lambda \setminus \{0\}$ and $\langle x, y \rangle = \langle y, x \rangle$ for every $x, y \in \Lambda$.
- (2) A lattice Λ is called integral if $\langle x, y \rangle \in \mathbb{Z}$ for every $x, y \in \Lambda$.
- (3) An integral lattice Λ is called even if $\langle x, x \rangle \in 2\mathbb{Z}$ for every $x \in \Lambda$, and odd otherwise.
- (4) A lattice Λ is called of type A_n if Λ has a basis (e_1, \ldots, e_n) such that

$$\langle e_i, e_j \rangle = \begin{cases} 2 & \text{if } |j - i| = 0, \text{ i.e., } j = i, \\ -1 & \text{if } |j - i| = 1, \\ 0 & \text{if } |j - i| \ge 2. \end{cases}$$

(5) A lattice Λ is called of type D_n $(n \geq 4)$ if Λ has a basis (e_1, \ldots, e_n) such that

$$\langle e_i, e_j \rangle = \begin{cases} 2 & \text{if } |j - i| = 0, \text{ i.e., } j = i, \\ -1 & \text{if } (|j - i| = 1 \text{ and } \{i, j\} \neq \{n - 1, n\}) \text{ or } \{i, j\} = \{n - 2, n\}, \\ 0 & \text{if } (|j - i| \geq 2 \text{ and } \{i, j\} \neq \{n - 2, n\}) \text{ or } \{i, j\} = \{n - 1, n\}. \end{cases}$$

(6) A lattice Λ is called of type E_n (n = 6, 7, 8)

$$\langle e_i, e_j \rangle = \begin{cases} 2 & \text{if } |j-i| = 0, \text{ i.e., } j = i, \\ -1 & \text{if } (|j-i| = 1 \text{ and } \{i,j\} \neq \{n-1,n\}) \text{ or } \{i,j\} = \{n-3,n\}, \\ 0 & \text{if } (|j-i| \geq 2 \text{ and } \{i,j\} \neq \{n-3,n\}) \text{ or } \{i,j\} = \{n-1,n\}. \end{cases}$$

(7) For a lattice Λ of rank n, its dual lattice Λ^* is defined by

$$\Lambda^* := \left\{ x \in \mathbb{R}^{\oplus n} \mid \langle x, y \rangle \in \mathbb{Z} \text{ for every } y \in \Lambda \right\},\,$$

where $\mathbb{R}^{\oplus n} \simeq \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$ and we extend $\langle \ , \ \rangle$ \mathbb{R} -bilinearly to $\mathbb{R}^{\oplus n} \times \mathbb{R}^{\oplus n}$.

Note that a lattice Λ is integral if and only if $\Lambda \subset \Lambda^*$. We are interested in integral lattices arise as submodules of certain number fields.

Definition 2.2. Let F be a number field. F is called totally real if every field homomorphism $F \to \mathbb{C}$ has the image in \mathbb{R} .

Lemma 2.3. Suppose that F is a totally real. Then, the bilinear form

$$\operatorname{Tr} = \operatorname{Tr}_F : F \times F \to \mathbb{Q}; (x, y) \mapsto \operatorname{Tr}_{F/\mathbb{Q}}(xy)$$

is positive-definite and symmetric. In particular, for every sub \mathbb{Z} -module Λ of F, the pair $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ is a lattice.

Let K be a field, and let F be a finite Galois extension of K. Set n = [F : K].

Definition 2.4. A basis (e_1, \ldots, e_n) of the K-vector space F is said to be self-dual if $\operatorname{Tr}(e_i, e_j) = \delta_{i,j}$ (Kronecker delta).

Theorem 2.5. If [L:K] is odd, then L has a self-dual basis over K.

Proof. This was proved in [4, Theorem 2.1].

Definition 2.6. Let $n \geq 2$ and $m \geq 1$ be an integer.

- (1) A code C of length m over $\mathbb{Z}/n\mathbb{Z}$ (or a $\mathbb{Z}/n\mathbb{Z}$ -code C of length m) is a $\mathbb{Z}/n\mathbb{Z}$ -submodule of $(\mathbb{Z}/n\mathbb{Z})^{\oplus m}$.
- (2) The elements of C are called codewords.
- (3) The number of coordinates i in a codeword x is denoted by $n_i(x)$
- (4) The Euclidean weight $wt_E(x)$ of a codeword x is defined by

$$\operatorname{wt}_{\mathbf{E}}(x) := (1^2)n_1(x) + \dots + (n^2)n_n(x).$$

(5) The inner product of $x=(x_1,\cdots,x_m),\ y=(y_1,\cdots,y_m)$ in $(\mathbb{Z}/n\mathbb{Z})^{\oplus m}$ is given by

$$x \cdot y := \sum_{i=1}^{m} x_i y_i .$$

(6) The dual code of a $\mathbb{Z}/n\mathbb{Z}$ -code C of length m is defined by

$$C^{\perp} := \{ x \in (\mathbb{Z}/n\mathbb{Z})^{\oplus m} \mid x \cdot y = 0 \text{ for every } y \in C \}.$$

- (7) A $\mathbb{Z}/n\mathbb{Z}$ -code C is called self-dual if $C = C^{\perp}$
 - 3. Constructions of lattices of type $A_n,\ D_n$ from self-dual basis

We determine which irreducible even root lattices as \mathbb{Z} -module can be embedded in Galois extension of odd degree.

In this section, let F/\mathbb{Q} be a Galois extension of odd degree $n, \Lambda \subset F$ be an integral lattice with basis (e_1, \ldots, e_n) , and $(\varepsilon_1, \ldots, \varepsilon_n)$ be a self-dual \mathbb{Q} -basis of F.

Then

$$e_i = \sum_{j=1}^n a_{ij} \varepsilon_j,$$

and the matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ is in $GL_n(\mathbb{Q})$, which means in particular that $\det A \in \mathbb{Q}$. Thus,

$$\#(\Lambda^*/\Lambda) = \det(\operatorname{Tr}(e_i \cdot e_j))_{1 \leq i,j \leq n}$$

=
$$\det(A (\operatorname{Tr}(\varepsilon_i \cdot \varepsilon_j))_{1 \leq i,j \leq n} {}^{t}A)$$

=
$$(\det A)^2 \in \mathbb{Q}^{\times 2}.$$

We summarize the information of Λ^*/Λ for Λ is of type A_n, D_n, E_n :

$$\Lambda^*/\Lambda \simeq \begin{cases} \mathbb{Z}/(n+1)\mathbb{Z} & \text{if } \Lambda \text{ is of type } A_n, \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus 2} & \text{if } \Lambda \text{ is of type } D_n \text{ for even } n, \\ \mathbb{Z}/4\mathbb{Z} & \text{if } \Lambda \text{ is of type } D_n \text{ for odd } n, \\ \mathbb{Z}/(9-n)\mathbb{Z} & \text{if } \Lambda \text{ is of type } E_n. \end{cases}$$

In particular, there exist no \mathbb{Z} -modules $\Lambda \subset F$ such that $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ are of type A_n for $n+1 \notin \mathbb{Q}^{\times 2}$ or of type E_7 .

3.1. Lattices of type D_n . We construct the lattice of type D_n in F. Let

$$e_i = \begin{cases} -\varepsilon_i + \varepsilon_{i+1} & (1 \le i \le n-1), \\ -\varepsilon_{n-1} - \varepsilon_n & (i=n). \end{cases}$$

Then $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ with basis (e_1, \ldots, e_n) is lattice of type D_n .

3.2. Lattices of type A_n ($n+1 \in \mathbb{Q}^{\times 2}$). We construct the lattice of type A_n in F. Suppose that a is an even positive integer, and $n+1=a^2$ (i.e. n is odd integer). Let

$$e_{i} = \begin{cases} -\varepsilon_{i} + \varepsilon_{i+1} & (1 \leq i \leq n-2), \\ -\varepsilon_{n-1} - \varepsilon_{n} & (i = n-1), \\ \frac{1}{a-1}(\varepsilon_{1} + \dots + \varepsilon_{n-1} + (a-2)\varepsilon_{n}) & (i = n). \end{cases}$$

Then $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ with basis (e_1, \ldots, e_n) is lattice of type A_n .

By summarizing the results of this section, we have the following Theorem 3.1.

Theorem 3.1. Let F be a Galois extension over \mathbb{Q} of odd degree n.

- (1) There exists a lattice $\Lambda \subset F$ of type A_n such that $n+1 \in \mathbb{Q}^{\times 2}$ or of type D_n .
- (2) There exist no \mathbb{Z} -modules $\Lambda \subset F$ such that $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ are of type A_n for $n+1 \notin \mathbb{Q}^{\times 2}$ or of type E_7 .

4. Lattices from codes

In this section, we construct the unimodular lattice from the lattice of type A_n or D_n .

4.1. D_n and $\mathbb{Z}/4\mathbb{Z}$. We consider lattices of type D_n and $\mathbb{Z}/4\mathbb{Z}$ -codes.

Suppose that n is an odd integer, F/\mathbb{Q} is a Galois extension of degree n, and $(\varepsilon_1, \dots, \varepsilon_n)$ is a self-dual \mathbb{Q} -basis of F.

We define

$$e_i = \begin{cases} \varepsilon_i + \varepsilon_{i+1} & (1 \le i \le n-1), \\ \varepsilon_n + \varepsilon_1 & (i=n), \end{cases}$$

and

$$e_{i}^{*} = \frac{1}{2}\varepsilon_{i} + (\frac{1}{2}\varepsilon_{i+1} - \frac{1}{2}\varepsilon_{i+2} + \dots + \frac{1}{2}\varepsilon_{i-2} - \frac{1}{2}\varepsilon_{i-1})$$
$$= \frac{1}{4}\left(\sum_{l=0}^{n-1}(-1)^{l}(n-2l)e_{i+l}\right)$$

Then,

$$\operatorname{Tr}_{F/\mathbb{Q}}(e_i^* \cdot e_j) = \delta_{ij}$$
 (Kronecker delta).

Let

$$\Lambda = \left\{ \sum_{i=1}^{n} a_i e_i \mid a_i \in \mathbb{Z} \right\}_{\cdot}$$

Hence,

$$\Lambda^* = \left\{ \sum_{i=1}^n a_i e_i^* \mid a_i \in \mathbb{Z} \right\}.$$

Let

$$A = \begin{pmatrix} 0 & -1 & & & -1 & 0 \\ 1 & 0 & & \vdots & 0 \\ -1 & 1 & \ddots & & 1 & \vdots \\ 1 & -1 & & & -1 & \\ -1 & 1 & & & 1 & \\ \vdots & -1 & & & -1 & \\ 1 & \vdots & & & 0 & 0 \\ -1 & 1 & & & 1 & \end{pmatrix}$$

Thus,

$$A \in \mathrm{SL}_n(\mathbb{Z}),$$

and

$$\begin{bmatrix} e_1 & \cdots & e_n \end{bmatrix} A = \begin{bmatrix} \varepsilon_1 & \cdots & \varepsilon_n \end{bmatrix} \begin{pmatrix} -1 & & & \\ 1 & \ddots & & \\ & \ddots & -1 & -1 \\ & & 1 & -1 \end{pmatrix}$$

Hence $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ is the lattice of type D_n , and

$$\Lambda^*/\Lambda \cong \mathbb{Z}/4\mathbb{Z}.$$

We consider

$$\rho^{\oplus m}: \qquad (\Lambda^*)^{\oplus m} \qquad \longrightarrow \qquad (\mathbb{Z}/4\mathbb{Z})^{\oplus m}$$

$$\left(\sum_{j=1}^n a_{ij} e_j^*\right)_{1 \le i \le m} \qquad \longmapsto \qquad \left(\rho \left(\sum_{j=1}^n a_{ij}\right)\right)_{1 \le i \le m}.$$

For $\mathbb{Z}/4\mathbb{Z}$ -code C of length m, let

$$\Gamma_C = (\rho^{\oplus m})^{-1}(C),$$

and let

$$\langle x, y \rangle = \sum_{i=1}^{m} \operatorname{Tr}(x_i y_i)$$
 (for every $x = (x_i), y = (y_i) \in F^{\oplus m}$).

Then, $(\Gamma_C, \langle , \rangle)$ is a lattice.

Let $x = (x_i)_{1 \le i \le m}$, $y = (y_i)_{1 \le i \le m} \in (\Lambda^*)^{\oplus m}$, and let $x_i = \sum_{l=1}^n x_{il} e_l^*$, $y_i = \sum_{l=1}^n y_{il} e_l^*$. Then,

$$\sum_{l=1}^{n} y_{il} e_l^* = \sum_{l=1}^{n} \frac{1}{4} \left(\sum_{j=0}^{n-1} (-1)^j (n-2j) y_{i(l-j)} \right) e_l,$$

and

$$Tr(x_{i}y_{i}) = \sum_{l=1}^{n} \frac{1}{4}x_{il} \left(\sum_{j=0}^{n-1} (-1)^{j} (n-2j)y_{i(l-j)} \right)$$

$$= \frac{1}{4}n \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} y_{il} \right) - \frac{1}{4}n \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} y_{il} \right) + \sum_{l=1}^{n} \frac{1}{4}x_{il} \left(\sum_{j=0}^{n-1} (-1)^{j} (n-2j)y_{i(l-j)} \right)$$

$$= \frac{1}{4}n \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} y_{il} \right) + \sum_{l=1}^{n} \frac{1}{4}x_{il} \left(\sum_{j=0}^{n-1} -ny_{i(l-j)} + \sum_{j=0}^{n-1} (-1)^{j} (n-2j)y_{i(l-j)} \right)$$

$$= \frac{1}{4}n \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} y_{il} \right) + \sum_{l=1}^{n} \frac{1}{4}x_{il} \left(\sum_{j=0}^{(n-1)/2} (-4j)y_{i(l-2j)} - \sum_{j=1}^{(n-1)/2} (2(n+1) - 4j)y_{i(l-2j+1)} \right).$$

Ву

$$\sum_{i=0}^{(n-1)/2} (-4j)y_{i(l-2j)} - \sum_{i=1}^{(n-1)/2} (2(n+1) - 4j)y_{i(l-2j+1)} \in 4\mathbb{Z}.$$

we get the following Lemma 4.1.

Lemma 4.1. For every $x, y \in (\Lambda^*)^{\oplus m}$,

$$\langle x, y \rangle \in \mathbb{Z} \iff \frac{1}{4} \sum_{i=1}^{m} \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} y_{il} \right) \in \mathbb{Z} \iff \rho^{\oplus m}(x) \cdot \rho^{\oplus m}(y) = 0.$$

Lemma 4.1 shows that

$$\Gamma_{C^{\perp}} = \Gamma_{C}^{*}$$
.

Moreover, by

$$\operatorname{Tr}(x_i x_i) = \frac{1}{4} n \left(\sum_{l=1}^n x_{il} \right) \left(\sum_{l=1}^n x_{il} \right) + \sum_{l=1}^n \frac{1}{4} x_{il} \left(\sum_{j=0}^{(n-1)/2} (-4j) x_{i(l-2j)} - \sum_{j=1}^{(n-1)/2} (2(n+1) - 4j) x_{i(l-2j+1)} \right)$$

and,

$$\sum_{l=1}^{n} \frac{1}{4} x_{il} \left(\sum_{j=0}^{(n-1)/2} (-4j) x_{i(l-2j)} - \sum_{j=1}^{(n-1)/2} (2(n+1) - 4j) x_{i(l-2j+1)} \right)$$

$$= \sum_{l=1}^{n} \frac{1}{4} (-4 \cdot 0) x_{il} x_{il}$$

$$+ \sum_{\substack{1 \le s < l \le n \\ l-s \in 2\mathbb{Z}}} \frac{1}{4} \left(-4 \frac{l-s}{2} - \left(2(n+1) - 4 \frac{n+1-(l-s)}{2} \right) \right) x_{il} x_{is}$$

$$+ \sum_{\substack{1 \le s < l \le n \\ l-s \notin 2\mathbb{Z}}} \frac{1}{4} \left(-4 \frac{n-(l-s)}{2} - \left(2(n+1) - 4 \frac{(l-s)+1}{2} \right) \right) x_{il} x_{is}$$

$$= \sum_{\substack{l > s \\ l-s \in 2\mathbb{Z}}} (s-l) x_{il} x_{is} \in 2\mathbb{Z},$$

we get the following Lemma 4.2

Lemma 4.2. For every $x \in (\Lambda^*)^{\oplus m}$,

$$\langle x, x \rangle \in 2\mathbb{Z} \Longleftrightarrow \frac{1}{4} \sum_{i=1}^{m} \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} x_{il} \right) \in 2\mathbb{Z} \Longleftrightarrow \operatorname{wt}_{E}(\rho^{\oplus m}(x)) \in 8\mathbb{Z}.$$

From Lemma 4.1 and Lemma 4.2, we get the following result.

Theorem 4.3. Let C be a $\mathbb{Z}/4\mathbb{Z}$ -code.

$$(1) C \subset C^{\perp} \Longleftrightarrow \Gamma_C \subset \Gamma_{C^{\perp}},$$

$$(2) C = C^{\perp} \iff \Gamma_C = \Gamma_{C^{\perp}},$$

(1)
$$C \subset C^{\perp} \iff \Gamma_C \subset \Gamma_{C^{\perp}},$$

(2) $C = C^{\perp} \iff \Gamma_C = \Gamma_{C^{\perp}},$
(3) $\operatorname{wt}_{\mathrm{E}}(x) \in 8\mathbb{Z} \text{ for every } x \in C \iff \Gamma_C \text{ is even.}$

4.2. A_n and $\mathbb{Z}/(n+1)\mathbb{Z}$. We consider lattices of type A_n and $\mathbb{Z}/(n+1)\mathbb{Z}$ -codes.

Suppose that a is an even positive integer, and $n+1=a^2$ (i.e. n is odd integer), F/\mathbb{Q} is a Galois extension of degree n, and $(\varepsilon_1, \dots, \varepsilon_n)$ is a self-dual \mathbb{Q} -basis of F.

We define

$$e_{i} = \begin{cases} \frac{1}{a-1} \left(-(a-1)\varepsilon_{i} - 2\varepsilon_{n} + \sum_{l=1}^{n} \varepsilon_{l} \right) & (1 \leq i \leq n-1), \\ \frac{1}{a-1} \left((a-1)\varepsilon_{i} - 2\varepsilon_{n} + \sum_{l=1}^{n} \varepsilon_{l} \right) & (i = n), \end{cases}$$

and

$$e_i^* = \begin{cases} \frac{1}{a(a-1)} \left(-a(a-1)\varepsilon_i - 2\varepsilon_n + \sum_{l=1}^n \varepsilon_l \right) & (1 \le i \le n-1), \\ \frac{1}{a(a-1)} \left(a(a-1)\varepsilon_i - 2\varepsilon_n + \sum_{l=1}^n \varepsilon_l \right) & (i=n). \end{cases}$$

Then,

 $\operatorname{Tr}_{F/\mathbb{O}}(e_i^* \cdot e_i) = \delta_{ii}$ (Kronecker delta).

Let

$$\Lambda = \left\{ \sum_{i=1}^{n} a_i e_i \mid a_i \in \mathbb{Z} \right\}.$$

Hence,

$$\Lambda^* = \left\{ \sum_{i=1}^n a_i e_i^* \mid a_i \in \mathbb{Z} \right\}.$$

Let

$$A = \begin{pmatrix} 1 & & & \\ -1 & \ddots & & \\ & \ddots & 1 & \\ & & -1 & 1 \end{pmatrix}$$

Thus,

$$A \in \mathrm{SL}_n(\mathbb{Z}),$$

and

$$\begin{bmatrix} e_1 & \cdots & e_n \end{bmatrix} A = \begin{bmatrix} \varepsilon_1 & \cdots & \varepsilon_n \end{bmatrix} \begin{pmatrix} -1 & & \frac{1}{a-1} \\ 1 & \ddots & & \\ & \ddots & -1 \\ & & 1 & -1 & \frac{1}{a-1} \\ & & & -1 & \frac{a-2}{a-1} \end{pmatrix}$$

Hence $(\Lambda, \operatorname{Tr}|_{\Lambda \times \Lambda})$ is the lattice of type A_n , and

$$\Lambda^*/\Lambda \cong \mathbb{Z}/(n+1)\mathbb{Z}.$$

We consider

$$\rho^{\oplus m} : \qquad (\Lambda^*)^{\oplus m} \longrightarrow \qquad (\mathbb{Z}/(n+1)\mathbb{Z})^{\oplus m}$$

$$\left(\sum_{j=1}^n a_{ij} e_j^*\right)_{1 \le i \le m} \longmapsto \left(\rho\left(\sum_{j=1}^n a_{ij}\right)\right)_{1 \le i \le m}.$$

For $\mathbb{Z}/(n+1)\mathbb{Z}$ -code C of length m, let

$$\Gamma_C = (\rho^{\oplus m})^{-1}(C),$$

and let

$$\langle x, y \rangle = \sum_{i=1}^{m} \operatorname{Tr}(x_i y_i)$$
 (for every $x = (x_i), y = (y_i) \in F^{\oplus m}$).

Then, $(\Gamma_C, \langle , \rangle)$ is a lattice.

Let $x = (x_i)_{1 \le i \le m}$, $y = (y_i)_{1 \le i \le m} \in (\Lambda^*)^{\oplus m}$, and let $x_i = \sum_{l=1}^n x_{il} e_l^*$, $y_i = \sum_{l=1}^n y_{il} e_l^*$. Then,

$$\operatorname{Tr}(x_{i}y_{i}) = \operatorname{Tr}\left(\left(\sum_{l=1}^{n} x_{il} e_{l}^{*}\right) \left(\sum_{l=1}^{n} y_{il} e_{l}^{*}\right)\right) \\
= \operatorname{Tr}\left(\left(\sum_{l=1}^{n} x_{il} e_{l}^{*}\right) \left(\sum_{l=1}^{n} \left(y_{il} - \frac{1}{a^{2}} \sum_{j=1}^{n} y_{ij}\right) e_{l}\right)\right) \\
= \sum_{l=1}^{n} x_{il} \left(y_{il} - \frac{1}{a^{2}} \sum_{j=1}^{n} y_{ij}\right) \\
= -\frac{1}{n+1} \left(\sum_{l=1}^{n} x_{il}\right) \left(\sum_{j=1}^{n} y_{ij}\right) + \sum_{l=1}^{n} x_{il} y_{il}.$$

Thus, we get the following Lemma 4.4.

Lemma 4.4. For every $x, y \in (\Lambda^*)^{\oplus m}$,

$$\langle x, y \rangle \in \mathbb{Z} \iff \frac{1}{n+1} \sum_{i=1}^{m} \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} y_{il} \right) \in \mathbb{Z} \iff \rho^{\oplus m}(x) \cdot \rho^{\oplus m}(y) = 0.$$

Lemma 4.1 shows that

$$\Gamma_{C^{\perp}} = \Gamma_{C}^{*}$$
.

Moreover, we have

$$\langle x, x \rangle = -\frac{1}{n+1} \sum_{i=1}^{m} \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} x_{il} \right) + \sum_{i=1}^{m} \sum_{l=1}^{n} x_{il} x_{il}$$
$$= \frac{n}{n+1} \sum_{i=1}^{m} \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} x_{il} \right) - \sum_{i=1}^{m} \sum_{1 \le l \le s \le n} 2x_{il} x_{is}.$$

Then, we get the following Lemma 4.5.

Lemma 4.5. For every $x \in (\Lambda^*)^{\oplus m}$

$$\langle x, x \rangle \in 2\mathbb{Z} \Longleftrightarrow \frac{1}{n+1} \sum_{i=1}^{m} \left(\sum_{l=1}^{n} x_{il} \right) \left(\sum_{l=1}^{n} x_{il} \right) \in \mathbb{Z} \Longleftrightarrow \operatorname{wt}_{E}(\rho^{\oplus m}(x)) \in 2(n+1)\mathbb{Z}$$

From Lemma 4.4 and Lemma 4.5, the following result holds.

Theorem 4.6. Let C be a $\mathbb{Z}/(n+1)\mathbb{Z}$ -code.

- $C \subset C^{\perp} \iff \Gamma_C \subset \Gamma_{C^{\perp}},$ (1)
- (2)
- $C = C^{\perp} \iff \Gamma_C = \Gamma_{C^{\perp}},$ $\operatorname{wt}_{\mathbf{E}}(\rho^{\oplus m}(x)) \in 2(n+1)\mathbb{Z} \text{ for every } x \in C \iff \Gamma_C \text{ is even.}$ (3)

References

- [1] Eva Bayer-Fluckiger, Lattices and number fields, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 69–84, DOI 10.1090/conm/241/03628. MR1718137
- [2] Robson R. de Araujo and Grasiele C. Jorge, Constructions of full diversity D_n-lattices for all n, Rocky Mountain J. Math. **50** (2020), no. 4, 1137–1150, DOI 10.1216/rmj.2020.50.1137. MR4154799
- Wolfgang Ebeling, Lattices and codes, 3rd ed., Advanced Lectures in Mathematics, Springer Spektrum, Wiesbaden, 2013. A course partially based on lectures by Friedrich Hirzebruch. MR2977354
- [4] Eva Bayer-Fluckiger, Self-dual normal bases, Indagationes Mathematicae (Proceedings) 92 (1989), no. 4, 379-383, DOI https://doi.org/10.1016/1385-7258(89)90002-4.
- [5] Vladimir L. Popov and Yuri G. Zarhin, Root lattices in number fields, Bull. Math. Sci. 11 (2021), no. 3, Paper No. 2050021, 22, DOI 10.1142/S1664360720500216. MR4354460
- [6] Masaaki Harada, Self-dual Z4-codes and Hadamard matrices, Discrete Mathematics 245 (2002), no. 1, 273-278, DOI https://doi.org/10.1016/S0012-365X(01)00310-7.
- [7] E. M. Rains and N. J. A. Sloane, Self-Dual Codes (2002), available at math/0208001.
- [8] Riku Higa, [Construction of A₃-root lattices from codes] Fuqo kara kosei sareru koshi de A₃-root koshi wo kosei suru hoho ni tsuite, Tokyo University of Science, master thesis (japanese).
- [9] Riku Higa and Yoshinosuke Hirakawa, Galois trace forms of type A_n, D_n, E_n for odd n (2023), available at 2307.06612.
- [10] Pierre Samuel, Algebraic theory of numbers, Houghton Mifflin Co., Boston, Mass., 1970. Translated from the French by Allan J. Silberger. MR0265266
- [11] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR554237

(Riku Higa) Department of Mathematics, Faculty of Science and Technology, Tokyo Univer-SITY OF SCIENCE, 2641, YAMAZAKI, NODA, CHIBA, JAPAN

Email address: 6123702@ed.tus.ac.jp, 6121510@ed.tus.ac.jp