GALOIS TRACE FORMS OF TYPE A,.D,,E, FOR ODD n AND CODES

RIKU HIGA

ABSTRACT. Let F/Q be a Galois extension of odd degree, then F' has a self-dual basis over
Q. In this note, we construct A,, D,-lattices that can be embedded in F' from the basis.
Furthermore, we report a method for constructing unimodular lattices from these lattices
and the correspondence with codes.

1. INTRODUCTION

For every odd prime number p, Ebeling [3, Ch. 5] constructed a Hilbert modular theta
function over Q(¢, +¢, D) by constructing an even unimodular lattice from the fractional ideal
of Q(¢p) generated by (1 — Cp)_(p_?’)/g which is a lattice of type A4, 1.

In order to generalize Ebeling’s construction to more general even root lattices, especially
irreducible ones of type Ay, Dy, Ey, it is natural to ask which lattices can be realized as ideal
lattices over number fields. In [9], the following result is obtained.

Theorem 1.1. Let n be an odd positive integer and F/Q be a Galois extension of degree n.
Then, there exist no fractional ideals A C F such that (A, Tr |axa) are of type Ay, Dy, Ey,.

This leads us to the following question:

Question 1.2. Let n be an odd positive integer.
Can one find o totally real F' of degree n and a sub Z-module A of F' such that the lattice
(A, Tr|axn) is of type Ap, Dy, Ep?

Every Galois extension of odd degree has a self-dual basis (see [4, Theorem 2.1]). Using
the basis, we gain the following Theorem 1.3. This is the first main result of this note.

Theorem 1.3. Let n be an odd positive integer and F/Q be a Galois extension of degree n.

(1) There erists a lattice A C F of type A, such that n+1 € Q*? or of type D,,.
(2) There exist no Z-modules A C F such that (A, Tr [axa) are of type A, for n+1 ¢ Q%2
or of type Fr.

In addition to the result, we give the following Theorem 1.4.

Theorem 1.4. Let A C F be a Theorem 1.3 (1)’s lattice, and let C' be a A*/A-code of length
m. If C is self-dual, there exists the unimodular lattice which lies between (A)®™ and (A*)®™.

The organization of this note is as follows. In §2, we recall some basic definitions. In §3,
we give a proof of Theorem 1.3. In §4, we give a proof of Theorem 1.4.

Notation. In this paper, Z, Q, R, C denote the ring of integers, the field of rational numbers,
the field of real numbers, and the field of complex numbers, respectively.
A subfield F' of C is called a number field if its degree [F : Q] over Q is finite.
1



2. BASIC DEFINITIONS
First, we recall some basic definitions. For details, see e.g. [3, Ch. 1].

Definition 2.1. Let A be a free Z-module of rank n and (, ) : A x A — R be a bilinear form.

(1) A pair A = (A, (, )) is called a lattice if ( , ) is positive-definite and symmetric, that

is, (x,z) > 0 for every x € A\ {0} and (x,y) = (y, z) for every x,y € A.

(2) A lattice A is called integral if (z,y) € Z for every z,y € A.

(3) An integral lattice A is called even if (x,z) € 2Z for every x € A, and odd otherwise.

(4) A lattice A is called of type A,, if A has a basis (eq,...,e,) such that

2 if[j—i|=0,ie., j =1,
(eives) =4 —1 it |j—il =1,
0 if]j—i|>2

(5) A lattice A is called of type Dy, (n > 4) if A has a basis (e1, ..., e,) such that
2 if[j—i|=0,ic., j =1,
<€Z‘,€j>: -1 1f(\]—z\:1and {27‘7}75{77‘_17”}) or {iaj}:{n_27n}7
0 if (‘j - Z| > 2 and {27]} 7é {Tl - 27”}) or {27]} = {TL— 1777‘}
(6) A lattice A is called of type E,, (n =6,7,8)
2 if|j—i=0,ie.,j=1i

<6i,€j>: -1 1f(\]—z\:1and {27‘7}75{77‘_17”}) or {iaj}:{n_37n}7

0 if(lj—il>2and {i,j} #{n—3,n}) or {i,j} ={n—1,n}.
(7) For a lattice A of rank n, its dual lattice A* is defined by
A = {z e R™" ‘ (z,y) € Z for every y € A},
where RY™ ~ A @7 R and we extend (, ) R-bilinearly to RY™ x RP",

Note that a lattice A is integral if and only if A C A*. We are interested in integral lattices
arise as submodules of certain number fields.

Definition 2.2. Let F' be a number field. F' is called totally real if every field homomorphism
F — C has the image in R.

Lemma 2.3. Suppose that F' is a totally real. Then, the bilinear form
Tr=Trp: F x F — Q;(z,y) = Trpgzy)

is positive-definite and symmetric. In particular, for every sub Z-module A of F', the pair
(A, Tr |axp) is a lattice.

Let K be a field, and let F' be a finite Galois extension of K. Set n = [F : K].
Definition 2.4. A basis (e1, ..., e,) of the K-vector space F' is said to be self-dual if
Tr(e;,e;) = 955 (Kronecker delta).
Theorem 2.5. If [L : K] is odd, then L has a self-dual basis over K.
Proof. This was proved in [4, Theorem 2.1]. O

Definition 2.6. Let n > 2 and m > 1 be an integer.
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(1) A code C of length m over Z/nZ (or a Z/nZ-code C of length m ) is a Z/nZ-submodule
of (Z/nZ)®™.

(2) The elements of C' are called codewords.

(3) The number of coordinates i in a codeword z is denoted by n;(x)

(4) The Euclidean weight wtg(x) of a codeword z is defined by

wtg(z) := (1%)n1(z) + - - - + (n*)n, (o).
(5) The inner product of x = (1, ,2m), ¥y = (Y1, ,Ym) in (Z/nZ)P™ is given by

i=1
(6) The dual code of a Z/nZ-code C' of length m is defined by
Ct ={x e (Z/nZ)®" | -y =0 for every y € C}.
(7) A Z/nZ-code C is called self-dual if C' = C+

3. CONSTRUCTIONS OF LATTICES OF TYPE A,, D, FROM SELF-DUAL BASIS

We determine which irreducible even root lattices as Z-module can be embedded in Galois
extension of odd degree.

In this section, let F'/Q be a Galois extension of odd degree n, A C F be an integral lattice
with basis (e1, ..., e,), and (€1, ..., &,) be a self-dual Q-basis of F.

Then
n
€, = E AiGEq,
j=1

and the matrix A = (aij)1<i j<n is in GL,(Q), which means in particular that detA € Q.
Thus,
#(AT/A) = det(Tr(e; - €5))1<ij<n
= det(A (Tr(ei - £)))1<ij<n “A)
= (detd)? € Q*%.
We summarize the information of A*/A for A is of type A,,, Dy, Ep:
Z/(n+1)Z if A is of type Ay,
(Z)22)%?  if A is of type D, for even n,
YARY/ if A is of type D,, for odd n,
Z](9—n)Z if A is of type E,.

A" /A ~

In particular, there exist no Z-modules A C F such that (A, Tr|yxp) are of type A, for
n+1¢ Q*?2 or of type Er.

3.1. Lattices of type D,. We construct the lattice of type D, in F.
Let
—&; + Ei41 (1§i§n—1),
€; = .
—ep—1—¢p (i=mn).
Then (A, Tr|axa) with basis (eq,...,e,) is lattice of type D,,.
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3.2. Lattices of type 4, (n+1 € Q*?). We construct the lattice of type A, in F.
Suppose that a is an even positive integer, and n + 1 = a? (i.e. n is odd integer).
Let

—&; + €41 (1§i§n—2),
€ =94 ~En-1—¢€n (i=n-1),
ﬁ(sl +-Fep1+(a—2)e,) (i=n).

Then (A, Tr|axa) with basis (eq,...,e,) is lattice of type A,,.
By summarizing the results of this section, we have the following Theorem 3.1.

Theorem 3.1. Let F' be a Galois extension over Q of odd degree n.

(1) There exists a lattice A C F of type A, such that n +1 € Q*? or of type D,,.
(2) There exist no Z-modules A C F such that (A, Tr |sxa) are of type A, forn+1 ¢ Q*2
or of type Fr.

4. LATTICES FROM CODES

In this section, we construct the unimodular lattice from the lattice of type A, or D,,.

4.1. D, and Z/4Z. We consider lattices of type D,, and Z/4Z-codes.

Suppose that n is an odd integer, F'/Q is a Galois extension of degree n, and (e1,---, &)
is a self-dual Q-basis of F'.

We define

€+ Eiv1 (1§i§n—1),
€; = .
enter (i=n),

and
*_14+(14 1'++14 1')
€ = 251 25H—1 2€z+2 26172 26171
1 n—1
= (Z(—l)l(n—Ql)eH_l)
1=0 .
Then,
Trpgle; - ej) = 0 (Kronecker delta).
Let
n
A= {Zaiei a; € Z}
i=1 .
Hence,

A = {Zn: a;e;

i=1

aiGZ}
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Let

0 -1 -1 0
1 0 0
-1 1 1
1 -1 -1
A=1_ 1
-1 —1
1 0 0
-1 1 1 -1
Thus,
A€ SL,(Z),
and
-1
1
ler o en]A=[a1 - e
-1 -1
1 -1
Hence (A, Tr|axa) is the lattice of type D,,, and
AN* /A 2 Z/47.
We consider
oo agem s (zjazen
w w
n n
Sai] o (oSw
Jj=1 1<i<m J=1 1<i<m.

For Z/4Z-code C of length m, let

Lc = (p"")7H(0),

and let
m
(w,y) =Y Tr(zy;) (for every z = (2;), y = (y;) € F¥™).
i=1
Then, (', (, )) is a lattice.
Let © = (¥i)1<i<m, ¥ = (Wi)1<icm € (A*)P", and let x; = Y70 zael, yi = D) vae;
Then,

n n—1

n
\ 1 : ,
dovael =Y 5 | 2V (0= 2)yiay | e
=1 =1 7=0
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and

Tr(xiy;) = ZZ il Z DY (n = 2j)yia-j)

7=0 7=0
1 n n 1 (n—1)/2 (n=1)/2
= " l"d) Z%l) + Z 1%l (—47)Yi1—25) — Z (2(n +1) = 45)via—2j+1)
=1 =1 =0 =1
By
(n—1)/2 (n—1)/2
Z (—=47)vi—25) — Z (2(n + 1) = 45)yiq—2j+1) € 4Z,
=0 =1

we get the following Lemma 4.1.
Lemma 4.1. For every z, y € (A*)®™,
n
{w,y) €L = 7 Z (Z xzz> (Z yil) €L p™"(x) - p""(y) = 0.
i=1 \I[=1 =1

Lemma 4.1 shows that
ch_ — F*C'

Moreover, by

(n—-1)/2 (n—-1)/2
1 . .
Tr(z;w;) = " ( E szl> ( E szl> + E —szl ( E (—47)@i—2j) — E (2(n+1) - 4])95i(12j+1)>

=0 j=1

J=0 J=1

. (n—1)/2 (n—1)/2
7% (—4))mi0-25) — Z 2(n+1) = 4j)zig-2j41)

+ ) i (—4l 5 5 (2(n+ 1) — 4%)) Tais

1<s<l<n
l—s€2Z

+ > i (—4# - <2(n +1) - 4(1_3%» s

1<s<i<n
l—s¢27

= Z (S - l):L'il:L'z’s € 2Za

I>s
l—s€e2Z



we get the following Lemma 4.2
Lemma 4.2. For every x € (A*)®™,
n
(x,x) € 27 <—> — Z (Z le) (Z :L'Z'l> € 27 <= wtg(p®™(x)) € 8Z.
=1 = =1
From Lemma 4.1 and Lemma 4.2, we get the following result.

Theorem 4.3. Let C be a Z/47Z-code.

(1) CcOte=TccClou,
(2) C=Ct<=Tc=Tq,
(3) wtg(x) € 8Z for every v € C <= I'¢ is even.

4.2. A, and Z/(n + 1)Z. We consider lattices of type A, and Z/(n + 1)Z-codes.

Suppose that a is an even positive integer, and n+ 1 = a? (i.e. n is odd integer), F/Q is a
Galois extension of degree n, and (e1,---, &,) is a self-dual Q-basis of F'.

We define

ﬁ((a—l —2En+Z€l> (1<i<n—1),

€; —
ﬁ((a—l —2€n+261> (i =n),
and
a(a1—1)< (a_l _25n+281> 1§i§n—1)7
e =
a(al_l) <a(a - 1)52 — 2677, -+ ZZ:sl> (’L = n)
=1
Then,
TTF/Q(EI -ej) = 0;; (Kronecker delta).
Let
A= {Zaiei | a; € Z}.
i=1
Hence,
= {Zaz‘ef | a; € Z}.
i=1
Let
1
a=| !
1
-1 1
Thus,
A € SL,(Z)



and

-1 a_il
1
[e1 - en]A=[e1 -+ e S
1 -1 L
-1 Z_:%

Hence (A, Tr|axa) is the lattice of type A,, and
A A2 Z/(n+1)Z.

We consider

P @em = (Z/ )2
w w

n n
*
E a;j€; — P E Qij
Jj=1 Jj=1

For Z/(n + 1)Z-code C of length m, let
Le = (p™™)H(O),

1<i<m 1<i<m.

and let

(w,y) =Y Tr(zy;) (for every z = (2;), y = (y;) € F¥™).
i=1

Tr(ziy;) = Tr ((Z wil€7> (Z yud‘))
=1 =1

1 n n n
j=1 =1

I=1
Thus, we get the following Lemma 4.4.
Lemma 4.4. For every z, y € (A*)®™,

(w,y) €L = n%rl > (Z wiz) <Z yu) € Z < p*"(x) - p""(y) = 0.

i=1 \l=1 =1
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Lemma 4.1 shows that

ch_ — F*C
Moreover, we have
1 m n n m n
(x,2) = —n+1§ E il Eam +E i
i=1 \i=1 =1 i=1 =1
m n n m
n
= E E Zil E il | — E 24T
n-+1
i=1 \I=1 =1 =1 1<I<s<n

Then, we get the following Lemma 4.5.

Lemma 4.5. For every x € (A*)®™,

1 m n n
(v,2) € 2L 4= —— S x| (D za | € Z = wtg(p®(2)) € 2(n +1)Z
i=1 =1 =1

From Lemma 4.4 and Lemma 4.5, the following result holds.

Theorem 4.6. Let C be a Z/(n + 1)Z-code.

(1) CcCOte=T¢cClgu,

(2) C=Ct=Tc=T¢1,

(3) wtg(pP™(x)) € 2(n + 1)Z for every x € C <= T'¢ is even.
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