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1. INTRODUCTION

1.1. The formal degree conjecture. Let I’ be a non-archimedean local field of character-
istic 0 and G a connected reductive group over F' with A the split component of its center.
Set G = G(F) and A = A(F'). For simplicity, throughout this report we shall only consider
quasi-split G.

Let (m,Vy) be a discrete series (i.e. irreducible unitary, square-integrable modulo A) of
G with a fixed invariant inner product (-,-) on V. Let u be a fixed Haar measure on the
quotient group G/A. Recall that the formal degree of m, with respect to the choice of the
measure /i, is defined to be the unique positive real number d(7) = d(m, 1) € R~ such that

Y (g)w,w') '—vav’w’ v, v, w,w
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The formal degree of a discrete series of GG is exactly its Plancherel measure in Harish-
Chandra’s Plancherel formula.

e For real reductive groups, Harish-Chandra exhausted the discrete series and estab-
lished the explicit Plancherel formula in 1970s, which is widely regarded as one of
the highest achievements of representation theory.

e For p-adic groups, there is no explicit classification of discrete series for p-adic groups,
due to Galois complexity. It was in [HIIO8b][HII08a|, assuming the local Langlands
correspondence (conjectural for general G), that an explicit formula for d(7) was
conjectured in terms of the adjoint y-factor.

More precisely, let ¢ be a fixed non-trivial additive character of F' and p,(g) a specific
Haar measure on G depending only on ¢ (cf. [HIIO8a]). Assuming the local Langlands
correspondence for G, let (¢, pr) be the refined Langlands parameter of m. Thus ¢, :
WDp — L@ is an admissible homomorphism from the Weil-Deligne group WDp = Wy X
SLy(C) into the L-group G, and p; is an irreducible character of a certain component group
S, = 10(S,/Z(G)F), where S, := Z(p(WDg)) (cf. §2.1). Let

o G (resp. G’h) be the dual group of G (resp. G/A), thus G c &,
o 5% = Ze(¢x(WDp)), and S%_:= m(S%_) be the corresponding component group.

It was then conjectured that

dim p,
d(ﬂ') = d(ﬂ', ,UQ/,) == _’Sh ‘ . |’7(07 T, Ad7 w)’7
where Ad is the adjoint representation of “G on g/Z(g)", and (s, 7, Ad, v) the corresponding
adjoint vy-factor.
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This conjecture gives a beautiful reformulation of Harish-Chandra’s work over R, and has
been verified for many p-adic groups, such as

e Inner forms of GL(n): Silberger-Zink, cf. [HII08b, §4];

e Unitary groups U(n): Beuzart-Plessis [Beu21] and Morimoto [Mor22];

e Odd orthogonal groups SO(2n+ 1) and the metaplectic group Mp(2n): Ichino-Lapid-
Mao [ILM17];

e Kaletha’s regular and non-singular supercuspidals of tame groups: Schwein [Sch24]
and Ohara [Oha23];

e ctc.

Let us remark here that the precise definition of the measure p, is somewhat technical.
Though it can be defined quite directly in a formal way, to explain the relation of it to Gross’
motive (in [Gro97]) and working properties would be quite time-consuming. However, since
the main purpose of this report is to explain the main results and ideas of the computation,
we shall not give more precise information on it here, but provide some further remarks in
§5.4. Some of the crucial formulas will be given “up to structural constants”.

1.2. The main result of this report. A natural question related to this conjecture is the
reduction to the supercuspidal case.

More precisely, given a discrete series 7 of GG, there exists a parabolic P = MN, a unitary
supercuspidal o of M = M(F), and A € a3, such that 7 is a subquotient of the (normalized)
parabolic induction i%(o @ y,) (where Y, is the unramified character of M associated to ).
If we can compute the quotient d(m)/d(c), then the conjecture for m would be reduced to
that of o, together with some compatibility relation for L-parameters of 7 and o. But the
realization of this approach is quite difficult due to at least two reasons:

(1) the cuspidal support of p-adic discrete series is considerably delicate;
(2) the construction of the L-parameter of 7 in terms of that of ¢ is also elusive.

The purpose of this report is to discuss the simplest nontrivial case. We shall assume
e 7 is generic (G quasi-split), and supported on a maximal Levi M.

Then we can obtain quite complete and satisfactory result (see Theorem 3.1) on the eval-
uation of d(m)/d(c) in this case. As an interesting example or application, we can use it
to verify the formal degree conjecture for discrete series of exceptional groups of type Go
supported on a maximal parabolic.

2. PRELIMINARIES FOR THE MAIN RESULT

For clarity, we first collect some standard notations or conventions for latter use.

e We work over a nonarchimedean local field F' of characteristic 0, and fix a nontrivial
additive character 1 : [ — C!.

e Boldfaced letters such as G, H will denote algebraic groups over F', and usual letters
G, H for their groups of F-points.

e Given an F-group H, we denote by X*(H) the group of F-rational characters, and
afp = X*(H) @ R, agg ¢ := X*(H) ® C. Denote by Ay the split component of the
center of H.

e Next we recall some standard definitions and notations of unramified characters.
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— For any x € X*(H), s € C, we denote by |x|*® the unramified character
IXI*: H = C*, b= [x(h)].
— Let H' := Nyex~m ker x| and
X"(H) := Hom(H/H" C*)
be the group of unramified characters of M. We thus have a surjection aj; o —
X"(H) characterized by y ® s — |x|*, which equipps X" (H ) with a canonical
complex structure. For \ € ajj ¢, we denote by yx € X" (H) its image.
— To simplify the notations, given a smooth representation o of H = H(F) and
A € ajy ¢, we also denote by oy the representation o ® x.
e Now let G be a connected reductive group over I’ with a fixed maximal F-split torus
Ty. Let P = MN be a parabolic subgroup with M D T. We write a5 = ay, . Here

we review some basic facts related to the decomposition of aj with respect to M.
— The inclusion Ag C G induces the restriction morphism

res: X*(G) = X" (Ag)
and gives an isomorphism res ®1 : ag — aj ., of vectors spaces after (-) ® R.
— The inclusions Ay C Ty € M induces
X*(M) = X*(Ty) = X*(Am)
and gives a canonical decomposition
ay = app © ap™.
(Also cf. [Wal03, §I1.1].)
— Similarly, Aq C Ap € M C G induces a canonical decomposition
Gy = 05 ©agy
It would be useful to identify a$* with X*(Anm/Ag) ® R.

2.1. Desiderata of local Langlands correspondence (LLC). For the convenience of the
readers, we recollect some basic facts on the local Langlands correspondence (abbreviated as
“LLC” from now on) and fix the notations here. In the rest of this report, ' will be p-adic
and G will be quasi-split. Denote by I' := I'> the absolute Galois group of F.

Recall that the L-group of G is “G' = (¢ x I, and an L-parameter of G is an admissible
homomorphism

¢ : WDp := Wr x SLy(C) = G,

in the sense that algebraic on SLy(C), smooth on Wp and compatible with the natural
projection “G¢ — T

The LLC (which is conjectural for general quasi-split G) is a finite to one surjection

I(G) » &(G), 7 n,

where

e [I(G) is the set of equivalence classes of irreducible smooth representations of G;
e O(Q) is the set of G-conjugacy classes of L-parameters of G;
e o, is called the L-parameter of 7.
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This correspondence should satisfy a list of properties which we shall not recall here. Given
¢ € ®(G), we denote its fiber, the corresponding L-packet, by IL,.

For quasi-split groups, the refined LLC, which describes the structure of the L-packet II,
can be explained as follows. Throughout this report we only have to work with tempered
parameters ¢ € Piemp(G). We set

S, = Z(p(WDy)), S, = ml(S,/2(C)").

(Here my denotes the component group, and one should pay attention to the quotient by
Z(G)Y in the definition.) Then the refined LLC for quasi-split groups predicts that for each
fixed Whittaker datum w := (B, n) of G, there exists a “good” bijection

L=ty I, = Irr(S,).

This bijection depends on the choice of to, while for each m € I, the dimension dim ¢ ()
is independent of the choice of to. Following the convention in endoscopy, we denote it by

(1,7) := dim 1y (7).
A classical conjecture of Shahidi reads

Conjecture 2.1 (Shahidi, generic packet conjecture). For ¢ € ®ienn(G) and a fized Whit-
taker model v = (B, n), there exists a unique vo-generic my in I, with 1y (Tw) = 1 the trivial
representation of S,.

In particular, if 7 € 1l is generic, then (1,7) = 1.

2.2. Classification of “maximal generic” discrete series. As explained in the intro-
duction, we shall compute d(7)/d(o) for a generic discrete series m of G = G(F) supported
on a maximal parabolic of G. For such 7, there is indeed a classification by Shahidi, using
local harmonic analysis. Before stating it, we need some more preparation and notations.

We fix a Borel B = TU of our quasi-split group G, and denote by Ty the maximal split
subtorus of T. Let afy := X*(Ty) ® R be the dual Lie algebra of T.

The set of (relative) roots ¥ = (G, Ty) is then a subset of afj, and the choice of B gives
the subset A C X of positive simple roots. Then we have a bijection

{standard maximal parabolics P = MIN C G} — {maximal proper subsets of A}

given by P = MN — 0 := A — {a}, where @ € A is the unique positive simple root
“appearing” in the Lie algebra of N. (Recall that a parabolic P is said to be standard if it
contains the fixed Borel B.)

Now we fix such a maximal standard P = MN and its associated o € A. We define the
associated fundamental weight to be

a:= (pp,a”) ™t pp € ajy; C @,

where " is the corresponding coroot and pp the half sum of roots in the Lie algebra of N.

Next let P = “MEN be the L-group of P = MIN, which is a (relevant) parabolic subgroup
of 'G. Denote by r the adjoint representation of M on the Lie algebra “n := Lie(*N) of the
unipotent radical. By Shahidi’s computation (cf. [Sha88, §4]), there exists a k € Z>; such
that each subspace

Inj i ={Xpven|Bex, (a8 =i}, 1<i<k
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is an irreducible (thus nonzero) subrepresentation r;, and (r,n) = ®F_ (r;, In;) gives the
irreducible decomposition of r.

With these preparations, let m be a generic discrete series of G supported on the above
fixed maximal standard Levi M of P, with the associated @ € A. Then Shahidi classified
cuspidal supports of such 7 in terms of poles of L-functions L(s, o, ;) as follows.

Theorem 2.2 (Shahidi, [Sha90]). (Setting as above.) There exists a unique irreducible uni-
tary generic supercuspidal o of M, and a unique j € {1,2}, such that 7 is a subrepresentation
of i%0s);. Furthermore, this j € {1,2} is characterized by

o L(s,o,r;) (resp. v(s,0,7;,1%)) has a simple pole at s =0 (resp. s =1).

Remark. To be more precise, L and ~ here are the Langlands-Shahidi local factors; they are
believed to equal to those obtained from LLC. However, though verified in many cases, this
has not been proved yet for general G.

3. THE MAIN RESULT

With the preparation in §2, we can now state our main result. We re-list the notations
explained in §2:
e P =MN C G a fixed maximal standard parabolic corresponding to § = A — {a},
e 7 a generic discrete series of G supported on M,
e o the irreducible unitary generic supercuspidal of M, with unique j € {1,2} such
that ™ = iGoa,;.
For convenience, we add the following condition for G:

e assume that the center of G is anisotropic, and G is unramified (i.e. splits over a
finite unramified extension of F').

The reason for adding this is to make the final formula less technical. They are not essentially
used in the proof or computation.
In this setting, the main result can be stated as follows.

Theorem 3.1. Assuming (refined) LLC for G and M (with some natural assumptions), we
denote by ¢, (resp. @, ) the L-parameter of m (resp. o). Then under the above setting, we
have
d Ad
(31) (ﬂ-) — j—l . mv . ‘7(07 7T7 77‘/))’ ,
(x;a¥) y(0,0,Ad, )]

where

e x € X*(M) ~ Z is the generator with (x,a") > 0;
e m is the index of the restriction morphism res : X*(M) — X*(Am).

In particular, this result is compatible with the formal degree conjecture if and only if

R v
(32) o =7 (x.a’).
S, |
We remark again that d(7) and d(o) are formal degrees with respect to proper Haar
measures on (G/Ag and M/Ap. The two measures depend only on the choice of the additive

character v, and here we shall not give the precise definition of them (cf. §5.4 and [HII08a]).
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Here the structural constant (yx, «")/m is relatively easy to understand or compute. (For
many simply connected groups it is just 1.)

In summary, the theorem provides the following reduction: to prove the formal degree
conjecture for 7, it suffices to verify the conjecture for o together with the relation (3.2).
Thus it would be convenient to apply it when the conjecture is known for M (such as the
split exceptional group Gs). The interesting point here is that the left hand side consists
of arithmetic invariants from LLC, while the right hand side consists of spectral data from
local harmonic analysis. We shall see later that this gives some clue on the behaviour of
©rlsLy(c) in terms of the spectral information its cuspidal support.

4. AN EXAMPLE: Gy

As a particularly interesting test example and an application of the main theorem, we could
verify the formal degree conjecture for discrete series of split Gy supported on a maximal
Levi.

Let G = G4 be the split exceptional group of type Go over F'. We first recall the classifica-
tion of discrete series representations of G = G(F") supported on a maximal Levi, following
Muié [Mui97] (also cf. [GS23a, §2]).

Fix a maximal torus T of G and a Borel subgroup B containing T. Let ¥ = (G, T) be
the root system and A = {«, 5} the set of simple roots relative to B, with « short and 3
long. Then the positive roots can be written as

a,B,a+ 5,20+ B,3a + B,3a+ 20,
with corresponding coroots
a8, a" +38Y,2a" +36Y,a" + Y, a" + 287,
and

<a7ﬁv> = (_1>7 <Bvav> = (_3>

Let P, = M,N,, (resp. Pg = MsNjy) be the maximal parabolic subgroup of G corre-
sponding to {a} (resp. {5}), i.e. N, (resp. Ng) contains the root subgroup of S (resp. «)
and M, (resp. Mjp) contains the root subgroup of a (resp. f3).

For convenience of the reader, we list the related normalizations and the decomposition
r = @;r; (the adjoint representation of ZM on In) for these two cases as follows.

e« P, = M,N,,

pu= 318+ (a+8) + (2ot 6) + (3a+ B) + (30 +26)] = 5 (3a +25),
B ={pa:BY) " pa = (30 +26).

We may fix an isomorphism M, ~ GLs so that the character det of GLy corresponds

to 3a+ 28 = 3 of M, and the modulus character restricted to M, is J, = |det |3,
In this case the representation r of “M, on ™, decomposes as
71 = std 9 = det rg = std ® det

B8%,Ba+B)" | Ba+28)" | (a+ )Y, (2a+ )"
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L Pg = MBNg,
1 5
ps = §[a+(a+ﬁ)+(2a+ﬁ)+(3a+6)+(3a+25)} = 5(2a+6)7
&= (pg,a”) "' ps = 2a + B).
We may fix an isomorphism Mg ~ GL; so that the character det of GLy corresponds
to 2 + 8 = & of M, and the modulus character restricted to My is dz = | det |°.
In this case the representation r of “Mz on "ng decomposes as
r1 = Sym® @ det ™ ro = det
a,(a+B)Y,(Ba+ B)Y,(Ba+26)" | 2a+B)Y
Note that in these normalizations, the character det of M, (resp. Mjp) corresponds exactly
to the positive root perpendicular to « (resp. [).

Theorem 4.1. Let 7 be an irreducible unitary supercuspidal representation of GLo(I") which
18 self-dual, with central character w,.
(1) Ifw, =1, then i, (r®|det|"?) has a unique irreducible subrepresentation m,(7,1/2).
(2) Ifw, =1, then z'gﬂ (T | det |*2) has a unique irreducible subrepresentation mg(7,1/2).
(3) Ifw, # 1, then igﬁ(r ® | det|) has a unique irreducible subrepresentation ws(T,1).

The representations mo(7,1/2), ,7(7,1/2), m5(7, 1) are generic discrete series, and this clas-
sifies all the discrete series representations of G supported on a mazximal Leuvi.

The full explicit local Langlands correspondence for Go has been established in [GS23b]
based on a series work in exceptional theta correspondence. The conjectural L-parameters
for non-supercuspidal discretes series have already been classified in [GS23a, §3.5], which we
now recall.

We identify the L-group of (split) Go with the complex simple Lie group Go(C) with
trivial center; also, we identify the roots of Go(C) with the coroots of G = Gy. Given a root
7Y € £Y, we denote by SLs ,v the SLy generated by the root subgroups of +v". Now on the
dual side a¥ (resp. ") is the long (resp. short) root, and

Za,(SLoov) = SLy (av428v), Za,(SLagv) = SLa (2av435v).-

Here (a¥ +23Y) (resp. (2a¥ +33Y)) is also the positive root perpendicular to o (resp. 8Y).
Finally, the long root subgroups of Go(C) generate an SLs.

Now let 7 be an irreducible discrete series representation of ¢ with L-parameter ¢ = ¢ :
Wy x SLy(C) — Go(C). We then have
™ ©(SLs) ¢ (Wr) Sy
Ta (T, 1/2) = SLQ’(Q\/J’_QB\/) C SLgyav C L]\/fa Z/2Z
7'['5(7’, 1/2) = SL27(2av+35v) C SLQWBV C L]\/fg Z/2Z
7TB<T, 1) =S03 C SLs | = ZG2 (SOg) ~ S 1
C SLQ.BV C L]\/fg
by [GS23a, §3.5]. (Note that the representations m,(7,1/2), mg(7,1/2), m5(7, 1) above are
denoted by 6p(7), dg(T), Teen[T], respectively, in [GS23a].)
Clearly, the orders of the component groups are compatible with the formal degree conjec-
ture. The compatibility of Langlands-Shahidi ~-factors and those from LLC for split G, has
been verified in [Sha89]. Finally, the formal degree conjecture is known for M,, Mg ~ GLs;
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thus as an application (cf. explanation in §5.4) we have verified the formal degree conjecture
for discrete series of Gy supported on maximal Levi subgroups.

5. IDEA OF THE PROOF

Now we sketch the main ideas of the proof. The computation uses three tools, and the
most difficult part is the evaluation of certain structrual constants.
For simplicity, we shall continue assuming G to be unramified (quasi-split) and Ag = 1.

We fix
(5.1) P=MN, 0=A—{a}, acay, m,0,j€{1,2}
as before, cf. the beginning of §3.

5.1. Heiermann’s formula. The starting point of the computation is the following Heier-
mann’s result. To explain it and for clarity of notations, we temporarily let

e H be a general connnected reductive group over F,

e Q = LU be an arbitrary F-parabolic of H,

e it : ajc — C be the corresponding Harish-Chandra p-function (or the Plancherel
density function) defined on a dense open subset of aj .

For convenience of the readers, we recall the definition of i here. Let 7 be an irreducible
supercuspidal of L. The intertwining operator Jgo(7) : io — zg o is defined to be

JQ|Q(T)f(g) = /Uf(ﬂh)dﬂ, (f € igT,h € H),

and the Harish-Chandra p-function is a rational function p defined on O = O, = {7 ® X, |
A€ aic} by

Joia(T') 0 Joio(7') = u(7') ™
for 7/ in a Zariski open subset of O. Note that the definition here is compatible with [Hei04,
§1.5] but differs from that in [Sha90][Wal03]. When Q = LU is maximal, the p-function
here is equal to v(H/L)u defined in [Sha90][Wal03].

In local harmonic analysis, we always fix a special maximal compact subgroup K of H =
H(F') such that the Iwasawa decomposition G = QK holds, and for each closed subgroup
H'" C H, we equip H' with the measure such that H’ N K has volume one. The notation
deg(-) below means the formal degrees defined by this choice of measures.

Theorem 5.1 (Heiermann [Hei04]). Let 7 be an irreducible supercuspidal of L = L(F).
Then for Ao € af, ¢, the parabolic induction igcr,\o has a discrete series subquotient if and
only if the Harish-Chandra pu function has a pole of maximal order at A = ).

Moreover, in this case, one can compute deg(m)/deg(o) in terms of a “multiple residue”
of the p-function at X = \g. Although we shall not give the general version, in our setting
(5.1) above, we have

(5.2) deg(m) ~ deg(c) - Ress=1/; (0 ® Xsa),
where “~” means up to some explicit structural constant.

In summary, the cuspidal support of a p-adic discrete series can be characterized by a pole
of maximal order for the Harish-Chandra p-function, and the multiple residue here, up to
some structural constants, is deg(m)/ deg(o).
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5.2. Langlands-Shahidi method. The next tool is a fundamental result of the Langlands-
Shahidi method, which expresses the p-function in terms of ~v-factors. Here the adjoint
representation r of “M on ™ and its irreducible components r; would come into play (cf.
notations and review of §2.2). The main theorem together with (3.12) of [Sha90] can then
be formulated as

Theorem 5.2. Let o be an irreducible generic unitary supercuspidal representation of M.
Then

(53) /J,(O' ® Xsd) = H ’ySh(Z“% 0, T, QZ)WSh(_Z“% &7 T, ¢)7
i=1

where > are Shahidi’s y-factors characterized in [Sha90, Theorem 3.5].

Remark. Assuming the L-parameter ¢, of o (conjectural in general), it is believed that these
Sh(s, 0, 1;,1) should coincide with corresponding Artin v-factors (s, 7; o oy, %) obtained
from the L-parameter. Though verified in many cases, this has not yet been established in
full generality. Thus we have to assume this for our computation.

As we can see immediately, if we combine (5.2) with (5.3), then we obtain a relation of
the form

d _
eg(ﬂ.) ~ Res “/Sh<i5, a, T, w)’YSh(_isa 57 Ti, 1/))7

(54) deg(o) =1/

where the (simple) appears in the term 5%(js, o,7;, 1) for variable js, s = 1/j.
To connect the right hand side to the adjoint «-factors of 7 and o, we need a conditional
construction of the parameter ¢, in terms of ¢, .

5.3. Construction of discrete parameters. We shall be brief in this part. A very sub-
tle but fundamental problem in LLC for p-adic groups, is the construction of discrete L-
parameters in terms of those for supercuspidal representations. (On contrary, the Langlands
classification, and the classification of tempered parameters in terms of discrete ones, are
very clear and explicit.)

We shall not discuss any more related detail here, but only want to point out that Heier-
mann posed a conditional construction for this in [Hei06]. One of the main input for this
construction is also Theorem 5.1. We will not need any detail for this construction, but only
have to know that it predicts

1/2
(*) or(w,1) = 1pop,(w,1) forw e Wrp and ¢ ( [q q_l/Q}) = So.,

where tp : P — (G is the embedding and 50 1s an explicit element in M. Furthermore,
when ¢, is trivial on Deligne SLy, the element s,y would lie in the center of LM
For irreducible generic supercuspidals, it is a well-known conjecture that the parameters
of such representations are SLy-trivial (cf. for example, Conjecture 7.1 of [GR10]).
Combining the above, it is technical but not very difficult to obtain

Theorem 5.3. In our setting (r, P = MN, «, o, j, 1y, elc.), assuming

o LLC for G,M with the validity of ¢,|si,cy =1 (0 irreducible generic supercuspidal)
and (¥),
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e the Langlands-Shahidi local factors v do coincide with v-factors from LLC,

we have

—g m
(s, m, Ad, ) = <11_—;,1> -(s,0,Ad, ) - H7(5 + 150, 0,1, Y)Y(S — S0, 0,14, ).
i=1
(We have to emphasize the working hypotheses here, which are not accessible for general
quasi-split groups.)
As explained in Lemma 1.2 of [HIIO8b], v(0, 7, Ad, ¢), (0,0, Ad, ©)) are holomorphic and
nonzero at s = 0. Since when s — 0
1—q* s-logq
1_qs—1 ~ 1_q—1’

we have

Corollary 5.4. Following the setting at the beginning of this subsection,

(0,7, Ad,v) [ loggqg
1—q!

¥(0,0,Ad,¢)
5.4. Completion of the proof. Now it is quite clear that if we combine corollary 5.4 with
(5.4) (obtained by Heiermann’s formula together with Langlands-Shahidi method), then we
can finally obtain a formula of the form

d(r) deg(r) h(0,mAdY)|

d(o)  deg(o)  |7(0,0,Ad, )|
Here “~7” also means up to some structural constant, and j is the main term of interest. It
becomes transparent now how this j appears:

m
> ) E{:eosnlf}/(s + i507 0, T, w)f‘/(s - i507 5_7 T4, 1/))

e in corollary 5.4, the variable for the residue is s + 1 (the j-th term in the right
product), taken at s = 0, while
e in (5.4), the variable for the residue is js, taken at s = 1/5.

This gives a clear explanation on how the cuspidal support could be reflected in arithmetic
invariants of L-parameters.

Finally, let us give some remarks on the evaluation of “structural constants” mentioned
above. There are essentially two constants to determine, for the final formula, which are
indeed the most time consuming steps of the computation.

(1) In (5.2) there is an explicit constant related to the orbit
O=0,={c@xa| € ahc}

(in the sense of isomorphism classes). For a maximal Levi, though technical, this can
be computed directly; but it seems quite tough to generalize it to general Levis.
(2) We have to evaluate the quotient

(52)- ()

via comparison of measures. This would be reduced to a technical exercise in Bruhat-
Tits theory (through Gross’ motive for reductive groups).

That is the reason for adding the condition “(quasi-split) unramified” for our group
G: in this case one can choose a hyperspecial maximal compact group and the
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computation becomes simpler. For general cases, in principle there is no essential
obstruction, but the general formula becomes considerably complicated. The readers
interested in this may take a look at the list of explicit examples in Appendix E of
(GI14].

As we can see, the result reflects some very rigid restrictions of construction of discrete
parameters. As explained in §5.1, if a discrete series 7 has cuspidal support (M, o ® x) where
o is an irreducible unitary cuspidal of M = M(F') and y an unramified character of M, then
©rlw, is just the composition of ¢, and the natural embedding “M — LG. However, the
behaviour of ¢r|sr,(c) is quite mysterious; we do not have more explicit characterization of
it, but it dominates the centralizer of the parameter. From the result explained above, we
see that how this subtle question is related to harmonic analysis and cuspidal support.

It is a natural question to ask whether we can do similar computation for non-generic
discrete series supported on non-maximal Levis. We give a final remark that there are at
least three new problems to resolve.

(1) When the Levi is not maximal, the “multiple residue” and the orbit constant in (5.2)
would become quite tough to evaluate.

(2) For non-generic o, ¢,|sr,(c) may not be trivial, then a general version of corollary
5.4 would become more complicated (due to the nontrivial unipotent class).

(3) For non-generic o, the Langlands-Shahidi method is inaccessible. This is quite essen-
tial, and one needs endoscopy to recover (5.3).
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