On the Arakawa lifting

Atsushi Murase Faculty of Science, Kyoto Sangyo University

Hiro-aki Narita Faculty of Science and Engineering, Waseda University

1 Introduction

For a reductive dual pair (H, G), we have the theta lifting

 \mathcal{L} : {automorphic forms on H} \rightarrow {automorphic forms on G}

defined by

$$\mathcal{L}(f)(g) = \int_{H_{\mathbb{Q}} \setminus H_{\mathbb{A}}} \theta(h, g) f(h) dh \qquad (g \in G_{\mathbb{A}})$$

for an automorphic form f on H, where $\theta(h,g)$ is the theta kernel on $H_{\mathbb{Q}} \backslash H_{\mathbb{A}} \times G_{\mathbb{Q}} \backslash G_{\mathbb{A}}$. One of the fundametal problems is to characterize $\mathrm{Ker}(\mathcal{L})$ and $\mathrm{Im}(\mathcal{L})$ in terms of, say, Fourier expansions or L-values.

The kernel of \mathcal{L} has been studied in many cases. For example, Böcherer and Schulze-Pillot ([BS]) and Hsieh and Namikawa ([HN1],[HN2]) proved the injectivity of the Yoshida lifting. On the other hand, the image of \mathcal{L} is characterized in terms of automorphic L-functions in several cases. As a typical example, we recall the following results on the Saito-Kurokawa lifting due to Evdokimov and Oda.

Theorem 1.1 ([E],[O]). Let F be a Hecke eigenform on $Sp_2(\mathbb{Z})$ of even weight. Denote by

$$L^*(s, F; \operatorname{spin}) = (2\pi)^{-s} \Gamma\left(s + k - \frac{3}{2}\right) \Gamma\left(s + \frac{1}{2}\right) \cdot L(s, F; \operatorname{spin})$$

the completed spinor L-function of F with functional equation

$$L^*(s, F; \operatorname{spin}) = L^*(1 - s, F; \operatorname{spin}).$$

Then the following three conditions are equivalent.

- (1) F is in the Maass space (the image of the Saito-Kurokawa lifting).
- (2) $L^*(s, F; \text{spin})$ has a simple pole at $s = \frac{3}{2}$.
- (3) L(s, F; spin) does not vanish at $s = -\frac{1}{2}$.

In this note, we give a partial analogue of Theorem 1.1 for the *Arakawa lifting*, the theta lifting for the reductive dual pair $(O^*(2,2), Sp(1,1))$.

2 The Arakawa lifting

Let B be a definite quaternion algebra over \mathbb{Q} of discriminant d_B . For $x \in B$, let $\operatorname{tr}(x) = x + \overline{x}$ and $N(x) = x\overline{x}$ be the reduced trace and the reduced norm of x respectively, where $x \mapsto \overline{x}$ denotes the main involution of B. We fix an identification $B \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{H}$, where \mathbb{H} is the Hamilton quaternion algebra.

We define two quaternion unitary groups by

$$H = \left\{ h \in \operatorname{GL}_2(B) : \overline{{}^t h} J h = J \right\}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$G = \left\{ g \in \operatorname{GL}_2(B) : \overline{{}^t g} Q g = Q \right\}, \quad Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Then (H, G) forms a dual reductive pair. Note that $H = O^*(2, 2)$ is isogeneous to $PGL_2 \times (B^{\times}/\mathbb{Q}^{\times})$ and that G = Sp(1, 1) is an inner form of Sp_2 .

We henceforth fix a maximal order \mathcal{O} of B. For a finite place p of \mathbb{Q} , set

$$L_{p} = \begin{cases} (\mathcal{O}_{p}, \mathcal{O}_{p}) & (p \nmid d_{B}) \\ (\mathcal{O}_{p}, \mathfrak{P}_{p}^{-1}) & (p|d_{B}) \end{cases},$$

$$L'_{p} = \begin{pmatrix} \mathcal{O}_{p} \\ \mathcal{O}_{p} \end{pmatrix},$$

where \mathfrak{P}_p is the maximal ideal of $\mathcal{O}_p = \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p$. Let

$$K_f = \prod_{p < \infty} K_p, \quad K_p = \{k \in G_p \mid L_p k = L_p\},$$
 $U_f = \prod_{p < \infty} U_p, \quad U_p = \{u \in H_p \mid uL'_p = L'_p\}.$

We fix an embedding \mathbb{H} into $M_2(\mathbb{C})$. Let

$$K_{\infty} = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \mid a, b \in \mathbb{H}, a \pm b \in \mathbb{H}^1 \right\} \subset G_{\infty},$$

$$U_{\infty} = \mathbb{H}^1 \cdot SO(2, \mathbb{R}) \subset H_{\infty},$$

where $\mathbb{H}^1 = \{ x \in \mathbb{H} \mid \overline{x}x = 1 \}.$

We henceforth suppose that $\kappa > 4$. Let σ_{κ} be the symmetric tensor representation of $M_2(\mathbb{C})$ on V_{κ} , the space of homogeneous polynomials in X and Y of total degree κ . Let S_{κ}^G be the space of smooth functions $F \colon G_{\mathbb{Q}} \backslash G_{\mathbb{A}} \to V_{\kappa}$ satisfying

$$(1) \ F(gk_fk_\infty) = \sigma_\kappa(a+b)^{-1}F(g) \quad (g \in G_\mathbb{A}, k_f \in K_f, k_\infty = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right) \in K_\infty).$$

- (2) $F(g) = \frac{\kappa(\kappa 1)}{8\pi^2} \int_{G_{\infty}} \Omega(x_{\infty}) F(gx_{\infty}^{-1}) dx_{\infty}$, where $\Omega \colon G_{\infty} \to \operatorname{End}(V_{\kappa})$ is the spherical function defined by $\Omega(g) = \sigma_{\kappa}(\Delta_g)^{-1} N(\Delta_g)^{-1}$ with $\Delta_g = \frac{1}{2}(a + b + c + d) \in \mathbb{H}^{\times}$ for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{\infty}$.
- (3) F is bounded.

Next let S_{κ}^H be the space of smooth functions $f: H_{\mathbb{Q}} \backslash H_{\mathbb{A}} \to V_{\kappa}$ satisfying

$$(1) \ f(hu_fu_\infty) = \sigma_\kappa(c + \sqrt{-1}d)^{-1}f(h) \quad (h \in H_\mathbb{A}, u_f \in U_f, u_\infty = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U_\infty).$$

(2)
$$f(h) = \frac{\kappa - 1}{2\pi} \int_{H_{\infty}} \omega(x_{\infty}) f(hx_{\infty}^{-1}) dx_{\infty}$$
, where $\omega \colon H_{\infty} \to \operatorname{End}(V_{\kappa})$ is the spherical function defined by $\omega(h) = \sigma_{\kappa}(\delta_h)^{-1}$ with $\delta_h = \frac{1}{2}(a + d + \sqrt{-1}(-b + c))$ for $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_{\infty}$.

(3) f is bounded.

To define the theta kernel, we define the Weil representation r of $H_{\mathbb{A}} \times G_{\mathbb{A}}$ on $\mathscr{S}(B^2_{\mathbb{A}}) \otimes_{\mathbb{C}} \operatorname{End}(V_{\kappa})$ by

$$r(h,1)\varphi(X) = \varphi({}^{t}\overline{h}X) \qquad (h \in H_{\mathbb{A}}),$$

$$r\left(1, \begin{pmatrix} \alpha & 0 \\ 0 & {}^{t}\overline{\alpha}^{-1} \end{pmatrix}\right) \varphi(X) = |N(\alpha)|^{2} \varphi(X\alpha) \quad (\alpha \in B_{\mathbb{A}}^{\times}),$$

$$r\left(1, \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}\right) \varphi(X) = \psi\left(-\operatorname{tr}(\beta {}^{t}\overline{X}JX)\right) \varphi(X) \quad (\beta \in B_{\mathbb{A}}, \beta + \overline{\beta} = 0),$$

where ψ is the nontrivial additive character of \mathbb{A}/\mathbb{Q} with $\psi(x_{\infty}) = \mathbf{e}(x_{\infty}) := e^{2\pi i x_{\infty}}$ for $x_{\infty} \in \mathbb{R}$, and $\mathscr{S}(B^2_{\mathbb{A}})$ is the space of Schwartz-Bruhat functions on $B^2_{\mathbb{A}}$. The theta kernel $\theta \colon H_{\mathbb{Q}} \backslash H_{\mathbb{A}} \times G_{\mathbb{Q}} \backslash G_{\mathbb{A}} \to \operatorname{End}(V_{\kappa})$ is defined by

$$\theta(h,g) = \sum_{X \in B^2} r(h,g) \varphi_0(X),$$

where

$$\varphi_0(X_f X_{\infty}) = \operatorname{char}_{L_f}(X_f) \exp(-2\pi^{\overline{t}} \overline{X_{\infty}} X_{\infty}) \sigma_{\kappa}((1, -\sqrt{-1}) \overline{X_{\infty}})$$

for $X_f \in B^2_{\mathbb{A}_f}$ and $X_\infty \in \mathbb{H}^2$ and $L_f = \prod_{p < \infty} L_p$. For $f \in \mathcal{S}^H_{\kappa}$, set

$$\mathcal{L}(f)(g) = \int_{H_{\mathbb{O}} \setminus H_{\mathbb{A}}} \theta(h, g) f(h) dh \qquad (g \in G_{\mathbb{A}}).$$

In [Ar], Arakawa proved the following result, which was later generalized to the case of Sp(1, q) ($q \ge 1$) by the second named author ([Na]).

Theorem 2.1. We have $\mathcal{L}(f) \in \mathcal{S}_{\kappa}^{G}$.

We call $\mathcal{L} \colon S_{\kappa}^H \to S_{\kappa}^G$ the *Arakawa lifting*. The authors of this note studied arithmetic properties of \mathcal{L} in [MN1],[MN2] and [MN3].

3 The main results

Let $\mathcal{L}^* \colon \mathcal{S}_{\kappa}^G \to \mathcal{S}_{\kappa}^H$ be the adjoint of \mathcal{L} with respect to the Petersson inner products on \mathcal{S}_{κ}^H and \mathcal{S}_{κ}^G . The main results of this note are given as follows.

Theorem 3.1 (Murase-Narita). Suppose that $F \in S_{\kappa}^{G}$ is a Hecke eigenform. Then $f = \mathcal{L}^{*}(F) \in \mathcal{S}_{\kappa}^{H}$ is a Hecke eigenform and we have

$$L(F, s; std) = \zeta(s)L(f, s; std).$$

Here L(F, s; std) is the standard L-function of F of degree 5 and L(f, s; std) is the standard L-function of f of degree 4, and $\zeta(s)$ is the Riemann zeta function.

Theorem 3.2 (Murase-Narita). Suppose that d_B is a prime number and let $F \in S_{\kappa}^G$ be a Hecke eigenform.

(1) We have

$$\mathcal{L}(\mathcal{L}^*F)(g) = c L(F, 0; std) F(g) \quad (g \in G_{\mathbb{A}}), \tag{3.1}$$

where c is an elementary constant.

(2) We have an inner product formula:

$$||\mathcal{L}^*(F)||^2 = c L(F, 0; \text{std}) \cdot ||F||^2,$$

and hence $\mathcal{L}^*(F) = 0 \iff L(F, 0; std) = 0$.

(3) If $L(F,0; std) \neq 0$, then $f := \mathcal{L}^*(F)$ does not vanish and F is the Arakawa lift of $(c \cdot L(F,0; std))^{-1} f$. In particular $F \in Im(\mathcal{L})$.

Remarks:

- 1. The proof of Theorem 3.2 is based on
 - the doubling method,
 - the Siegel-Weil formula for quaternion unitary groups due to Yamana ([Ya]),

- a trick using the spherical function Ω .
- 2. The assumption on d_B comes from this Siegel-Weil formula. When d_B is a composite, we need a modification of the assertion of Theorem 3.2 (we omit the detail in this note).
- 3. We have a formula for $\mathcal{L}^*(\mathcal{L}(f))$ similar to (3.1) for a Hecke eigenform f on H.
- 4. Let L': {Jacobi forms} → {automorphic forms on O(2, m)} be a generalization of Maass lift studied independently by Gritsenko ([G]) and Sugano ([Su]). In [Su], Sugano showed that the lift is related to the theta lift for the reductice dual pair (SL₂, O(2, m)) studied by Oda and Rallis-Schiffmann, and proved a formula for (L')* ∘ L' similar to (3.1) by a method different from ours.

References

- [Ar] T. Arakawa, unpublished notes.
- [BS] S. Böcherer and R. Schulze-Pillot: Siegel modular forms and theta series attached to quaternion algebras II, Nagoya Math. J. 147 (1997), 71–106, With errata to: Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J. 121 (1991), 35–96.
- [E] S. A. Evdokimov, Characterization of the Maass space of Siegel modular cusp forms of genus 2, Mat. Sbor. 112 (1980), 133–142, 144.
- [G] V. A. Gritsenko, Fourier-Jacobi functions in n variables (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 168, Anal. Teor. Chisel i Teor. Funktsiĭ. 9(1988), 32–44, 187–188; translation in J. Soviet Math. 53 (1991), no.3, 243–252.
- [HN1] M-L. Hsieh and K. Namikawa, Bessel periods and the non-vanishing of Yoshida lifts modulo a prime, Math. Z. 285 (2017), no.3-4, 851—878.

- [HN2] M-L. Hsieh and K. Namikawa, Inner product formula for Yoshida lifts, Ann. Math. Qué. 42 (2018), no.2, 215—253.
- [MN1] A. Murase and H. Narita, Commutation relations of Hecke operators for Arakawa lifting, Tohoku Math. J. 60 (2008), 227—251.
- [MN2] A. Murase and H. Narita, Fourier expansion of Arakawa lifting I: An explicit formula and examples of non-vanishing lifts, Israel J. Math. 187 (2012), 317–369.
- [MN3] A. Murase and H. Narita, Fourier expansion of Arakawa lifting II: Relation with central L-values, Internat. J. Math. 27 (2016), 1650001.
- [Na] H. Narita, Theta lifting from elliptic cusp forms to automorphic forms on Sp(1, q), Math. Z. 259 (2008), 591–615.
- [O] T. Oda, On the poles of Andrianov L-functions, Math. Ann. 256 (1981), no.3, 323—340.
- [Su] T. Sugano, Jacobi forms and the theta lifting, Comment. Math. Univ. St. Paul. 44 (1995), no.1, 1—58.
- [Ya] S. Yamana, On the Siegel-Weil formula for quaternionic unitary groups, Amer. J. Math. 135 (2013), 1383—1432.

Atsushi Murase Hiro-aki Narita

Department of Mathematical Science Department of Mathematics

Faculty of Science Faculty of Science and Engineering

Kyoto Sangyo University Waseda University

Motoyama, Kamigamo, Kita-ku 3-4-1 Okubo, Shinjuku-ku

Kyoto 603-8555 Tokyo 169-8555

JAPAN JAPAN