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1. INTRODUCTION

In this paper, we explain explicit dimension formulas of the Atkin-
Lehner plus and minus eigenspaces of paramodular forms of degree two
of prime level p of weight det*Sym(j) with k > 3, where Sym(j) is the
symmetric tensor representation of degree j. Since details are in [24],
here we give rough outline. In the final section, we add some lengthy
numerical examples which could not be included in a submitted paper.

Paramodular forms are interesting objects by several reasons. One
of the reasons is related to a generalization of the Shimura-Taniyama
conjecture on modularity of elliptic curves over Q. The Blumer and
Kramer conjectured in [3] that the L function of any abelian surface
defined over Q with conductor p such that End(A) & Z is given by
that of a paramodular form of weight 2 of level p. To check this conjec-
ture for numerical examples, Poor and Yuen gave a lot of experimental
results on paramodular forms, even on higher weights. Another inter-
esting point is a theory of new forms by B. Roberts and R. Schmidt,
using paramodular groups as levels of new vectors (see [29]).

Also paramodular forms can be regarded as typical explicit exam-
ples of Langlands conjecture on correspondence between Siegel modular
forms and algebraic modular forms of the compact twist Sp(2) of sym-
plectic group of rank two. Since our calculation heavily depends on
such correspondence, we review a brief history of this sort. The pro-
totype of a Jaquet-Langlands correspondence between SLy and SU(2)
was first given by M. Eichler ([6], [7]) for T'¢(/N) and algebraic modular
forms, typically with respect to maximal orders of definite quaternion
algebras over Q of prime discriminant N = p. (See also [35] and [12]).
In 1964 in [25], Thara raised a similar problem for Sp(2,R) and its com-
pact twist Sp(2), and gave there a lifting theory to the compact twist, a
pioneering work before Saito-Kurokawa lift was announced much later
in 1978, He himself did not give any concrete conjecture between Siegel
modular forms and algebraic modular forms of Sp(2) except for con-
sidering what should be the corresponding weights. Later, starting in
1980’s, inspired by his thought, we gave several explicit conjectures for
several discrete group of parahoric type in [13], [14], [16], [20], [21].

There we gave explicit dimension formula for Siegel modular forms of
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parahoric levels as well as numerical examples of L functions. Among
these, the conjecture in [16] for paramodular forms of prime level p
seems simplest, and this case has been proved independently by van
Hoften in [39], Rosner and Weissauer in [30] around in 2021, the for-
mer using geometric methods and the latter using trace formulas. We
review here this simplest case for a while.

Let H, be the Siegel upper half space of degree two. For any ring
R, we denote by Sp(2, R) the symplectic group of matrix size 4 with
coefficients in R. For any positive integer N. we put

Z NZ 7 Z
Z Z Z N'Z

NZ NZ NZ Z

This group is called a paramodular group of level N. This group cor-
responds with the moduli of abelian surfaces with polarizations of type
(1, N). Let pr; = det*Sym(j) be the irreducible representation of
GLy(C) where det® is the k-th power of the usual determinant and
Sym(j) is the symmetric tensor representation of degree j > 0 of two
variables. We denote by Vj, ; the representation space of py ;. For any
Vi j-valued function F of Hy and any g = (4 ) € Sp(2,R), we write

Flijlg) = p;(CZ + D) 'F(gZ) 7 € H,.

A Vj ;-valued holomorphic function F' of Hy such that Fli;[7y] = F
for all v € K(N) is called a paramodular form of weight py; of level
N. We denote the space of such functions by A ;(K(N)). For any
function F' of H,, we write

. T 0

O(F) = Jim F (0 M) '
A paramodular form such that ®(F|; ;[g]) = 0 for any g € Sp(2,Q)
is said to be a cusp form. We denote the space of paramodular cusp
forms of weight py, ; of level N by Sy ;(K(N)). Since pg j(—12) = (=1)7,
it is clear that A ;(K(N)) = Sy ,;(K(N)) = 0 if j is odd. Throuout
the paper, we fix a prime p and we mainly treat the case when N = p
is a prime.

Next we define algebraic modular forms with respect to some open
subgroup of the adelization of quaternion hermitian group. Let B be
the definite quaternion algebra over Q ramified at p and infinity. For
any place v of Q, we denote by B, the v-adic completion of B. We
define the quaternion hermitian group G of degree two by

G = {g € My(B); 99" = n(g)1s for some n(g) € Q}},

where Q7 is the set of positive rational numbers and we put ¢* = (gj;)
for g = (g;;) where % is the canonical involution. We denote by G4

the adelization of G, by G, the v component of G4 for any place v of
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Q. We put GY, = {g € Go;n(g) = 1}. Then we have G, = Sp(2)
(the compact twist of Sp(2,R).) To describe open subgroups of G, in a

simpler way, we take £ € GLy(B,) such that ££* = <(1) é) and define

Gy = £Gy¢". (Actually we may take £ € GLy(0,).) So we have

G, = {g € Mx(By); g (? é) 9" =n(g) (2 é) } :

Let O be a maximal order of B. For v # p and v < oo, we define

U, = GLy(0,) N G,.

We fix a prime element 7 of O, such that 72 = —p and put
. (0, 7O\ _ .
5=(9 o) ne

where the superscript x means the group of the invertible elements
of the ring. This is one of the maximal compact subgroups of G up
to conjugation ( another one is G'Ly(O,) N Gy). We denote by U,
the subgroup of G, isomorphic to U; by G, = G,. Now we define a
subgroup U, (p) of G4 by

Unpg(p) = GoUp [ [ U
v#p

This Uppy(p) is nothing but the stabilizer of a lattice in the genus of
maximal lattices L with N(L) =P, where P is a two sided prime ideal
of O over p and N(L) is the two sided ideal of O generated by zy* for
z,y € L C B? (A lattice L is called maximal if L C M with N(M) =
N(L) means L = M.) This genus is often called non-principal genus (so
denoted by U,,,, while the genus containing O? is called principal. We
denote by (pyf, 1,, By, 1,) the irreducible representation of Sp(2) = GL,
corresponding to the Young diagram (f1, f2) (f1 > fo > 0). We assume
that fi = f» mod 2. We prolong py, s, to the representation of G4 by

Ga — Goo — Goo/center = Sp(2)/{£15} "5 GL(T}, 1,).

Then the space My, 1, (Uypy(p)) of algebraic modular forms with respect
to Unpg(p) of weight py, ¢, is defined by

My, 1, (Unpg(p)) ={f : Ga = By, g3 fuga) = py, 1, (u) f(9),
U € Uppy(p), 9 € Ga,a € G}.

For example, if (fi, fa) = (0,0), then f(g) € Moo(Unpy(p)) depends
only on U,,,,(p)gG and dim Mg o(U,,,e(p)) is nothing but the class num-
ber of the non-principal genus.

The following theorem has been conjectured in [14], [16] and proved

by van Hoften [39], Rosner and Weissauer [30], independently.
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Theorem 1.1. For any integer k > 3 and any even integer j > 0, we
have an Hecke equivariant isomorphism

g‘nk—&-] 3,k— 3(Unpg) & Sl(c),j<K(p))7

where superscript 0 means a kind of certain new forms, neglecting lifting
parts and old form parts.

The exact meaning of the superscript 0 will be explained later.

Soon after this theorem had been proved, Dummigan, Pacetti, Rama
and Tornaria generalized this to the case of eigenspaces of Atkin-Lehner
involution. So now we will explain the Atkin-Lehner involution. We
put

00 0 -1
1 f{oo0o -1 0
=0 00

p 0 0 0

Then we have n* = —1, and F ;[n?] = F, so A, ;(K(p)) and Sk (K (p))
are decomposed into the direct sum of eigenspaces Aij(K (p)) and
S,ifj(K (p)) for £1 eigenvalues. On the other hand, for a double coset
Unpg(P)gUnpg (p) for g € G 4, we define the action of U,,,,(p)gUnp,(p) on
for My, 1, (Unpe(p)) as follows. We write

Unpg (P)gUnpg (P H 2iUnpg (P

Then for f € fmflny(Unpg(p)) we define

([Unpg(P)9Usnpg (p) Zp ) f (z € Ga).

For a prime element 7 of O, such that 72 = —p, regard 7 as an ele-
ment 71y of G, C G4 and put R(7) = Uppg(P)TUnpg(p) = Uppe(p)7 =
TUnpg(p). Then the operator R(w) is of order two and we denote the
eigenspaces of R(r) for =1 by fmjfl 1o (Unpg (D))

Theorem 1.2 ([5]). An essential part of 9)?,?+j_3yk_3(Unpg(p)) corre-
spond bijectively to an essential part of Si;(K(p)).

Here “essential part” roughly means forms that are not obtained
by liftings and old forms, but more precise explanation will be given
later. By this theorem, we can state the relation between dimensions
of S,;'fj( (p)) and dimensions of 9} f2(Unpg(p)) up to lifting and old
forms. In order to explain more precise theorem, we prepare several
notation. We write

To(p) = {(‘CL Z) e S;LQ(Z);C = 0 mod p} .



We write W = (\/Oﬁ _lé‘/ﬁ ) This is the usual Atkin-Lehner involution.

We denote by S (I'g(p)) the +1 and —1 eigenspaces of W in the space of
elliptic cusp forms Sy (To(p)), respectively. We write Sp“*(To(p)) the
the space of new forms in each eigenspace in the usual sense. By [39],
[30], [5] and by careful use of [31], [32], [33], [34], we obtain the following
relations of dimensions, which gives explicit dimension formulas for
S,;'fj(K (p)). The notation &, is the usual Kronecker symbol that means
1 for a = b and 0 otherwise.

Theorem 1.3 ([24]). Let p be any prime. For k > 3 and even j > 0,
we have an explicit formula for dim S,fj(K(p)). It is given by

dim S]:j(K(p» = dim S} ;(Sp(2,Z)) + dim mj'_+k—37k—3(Unpg ()

— dim Sﬁ;’*(ro(p)) x dim Soyj—2(SLa(Z))

dim Sk_,j(K(p)) = dim S, ;(Sp(2,Z)) — 50 dim Sop_o(SLa(Z)) — dj00k3
+ dim MY,y gy (Ui (p)) — dim S755 (To(p)) X Sy 2(SLa(Z):

Firstly we explain why this is a dimension formula, and secondly
we explain the real meaning of the above equality. First, the dimen-
sions of M*(U,,,(p)) are newly calculated this time. The formula
(which we omit here since it is very lengthy and precisely written
in [24]) contains (p* — 1)/5760 as a main term, and also class num-
bers of imaginary quadratic field Q(v/—3p), Q(v/—2p), Q(v/—p), as
well as the second generalized Bernoulli number associated with qua-
dratic character corresponding to Q(,/p). This dimension is obtained
by the trace formula of G4. We have already given the formula for
dim My, 7, (Unpg(p)) for any (f1, fo) in [11] II in 1982. So the prob-
lem is to obtain dim 9y, ; (Unpe(p)). By [22] and [23], we know that
NG o (Unpg(p)) is nothing but the class number of some quinary lattices
with discriminant 2p when p # 2. Such class number is explicitly cal-
culated by Teruaki Asai in [1] using trace formula. This trace formula
is calculated as a sum of contribution of groups elements v in the auto-
morphism groups of the quinary lattice classes in the genus in question
with individual characteristic polynomials of 7. These data can be used
to calculate the dimension for general weight by trace formula. Actu-
ally we calculated TrR(r) = dim 97, (Uppg(p)) —dim M5 ¢ (Unpg(p))
by using this. When p = 2, we cannot use the comparison with quinary
lattices, but we can calculate the trace formula directly from concrete
elements of U,,,(2) NG, where the class number of U,,,(2) is one. The
rest of the dimensions in the right hand side of the formula in the
above theorem has been known. For example, formulas for dimension
dim Sy, ;(Sp(2,Z) are due to [38] for k£ > 5 and [27] for k = 3, 4, and
explicitly written. The formula for dim S;fg’Jr(Fo(p)) is known by Ya-
mauchi and dim Soy4;_2(SLy(Z)) is classically known. So for any prime
p, we can really write down formulas for dim S,;'fj(K (p)).
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Secondly we see that two relations above are explained as correspon-
dences between new forms that are not obtained by liftings. First we ex-
plain the paramodular old forms. In case of elliptic modular forms, the
old forms of I'y(N) are roughly defined as forms coming from 'y (Ny) (by
several ways) such that No|N. This time, we have I'o(N) C I'g(N). For
paramodular groups, we have no inclusion relation between K (V) and
K (Ny), but still we want to subtract forms from K (Ny) by the several
trace maps from K(N)N K(Ny) to K(N). Or representation theoret-
ically speaking, we consider an automorphic representation associated
with K (N) which has K (Ny) fixed vectors. For example, for K(p), we
have K (1) = Sp(2,Z), and we may consider two groups Sp(2,Z) and
nSp(2,Z)n~! as local standard maximal compact subgroups in the Tits
building at p. The paramodular forms obtained from Sy ;(Sp(2,7Z))
and Sy ;(nSp(2, Z)n™') by taking the trace are regarded as old forms.
Such explanation first appeared in [14]. It is more clearly explained
by Ralf Schmidt in [31], and there it was proved that when a form
in Sko(Sp(2,7Z)) is a Saito-Kurokawa lift, the both trace images coin-
cide. So the dimension of new forms of Sy ;(/K(p)) in the above sense
are dim Sy ;(K(p)) — 2dim Sy ;j(SP(2,Z)) + Oevenp dim Sa_2(S Lo (Z)),
where depenry = 1 if £k is even and 0 otherwise. The Saito Kurokawa
lifts are known to go to Sy (Sp(2,Z)), so for each Atkin-Lehner sign,
and except for Saito-Kurokawa lift, for each element of Sy ;(Sp(2,7Z)),
there is one old form in S; (K (p)) and one in S ;(K(p)). So the
dimension of new forms are

dim SZ?”’J’(K(p)) =dim Sy ; (K (p)) — dim S, ;(Sp(2,Z))
dim S5 (K (p)) =dim S ; (K (p)) — dim Sy ;(Sp(2,Z))
+ 5j05k,even dim SQk_2<SL2(Z)>

Next we must subtract some parts obtained by liftings. Both S, ;(K(p))
and My ;_35-3(Unpe(p)) contain the same Saito-Kurokawa lifts with
level p for some elliptic cusp forms. We cannot see this part from the
comparison of dimensions since their contribution is the same dimen-
sion. We omit this part from our consideration. Now we have Saito-
Kurokawa lift from Soj,_2(S Lo (Z)) for odd k to My _5 —3(Uppe(p)). This
part is in Mg, _5(Unpg(p)) by [5]. There is no such lift to paramod-
ular forms. So this part is subtracted in the second relations in the
above from dim 9 5, 5(Unpe(p)). (The part when k is even is al-
ready explained by lift to Sy ;(K(p))). We also have the Yoshida
type lift from S7¢5(Lo(p)) X Sortj—2(SLa(Z)) to Miyj3k-3(Unpg(p))
(first constructed in [25]). For these forms, by virtue of [5], we see
that pairs of forms in S5 (Fo(p)) X Sautj—2(SLa(Z)) are lifted into
My, 343(Unpg(p)) and pairs in ST757 (To(p)) X Sapyj—2(SLa(Z)) into
My, 5 s43(Hupg(p)). This explains the subtraction of this part in the

above relations. Finally, the part d,00xs3 is subtracted from 9§ o (Unpg(p))
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since the space MM o (Unpg(p)) contains a constant function which does
not correspond with any paramodular cusp forms.

2. NON EXISTENCE OF WEIGHT 3

Si (K (p)) gives the canonical divisor of the moduli of Kummer vari-
eties with (1, p) polarization ([8]). In [9], it is asked when S3 (K (N)) =
0 and they gave several concrete examples of such N. When N is a
prime p, we can determine exactly when S5 (K (p)) = 0 by evaluating
the dimension formula.

Proposition 2.1. Let p be a prime. Then we have
dim S (K (p)) = 0

if and only if p is any prime such that p < 163 or p = 179, 181, 191,
193, 199, 211, 229, 241.

By the way, we have dim Sy (K (p)) = 1 if p = 167, 173, 197, 223,
233, 239, 251, 271, 277, 281, 313, 331, 337 and dim S5 (K (p)) = 2 if
p =227, 257, 263, 269, 283, 349, 379. 409, 421.

The proof is given in the following way. Roughly speaking, the
dimension formula contains polynomials in p, class numbers and the
Bernoulli numbers, and we evaluate these numbers carefully as order
of p. Then we can give a rough estimate that dim S5 (K (p)) > 0 for big
p. Then we calculate dimensions directly for finitely many remaining

p.
3. BIAS OF DIMENSIONS OF PLUS AND MINUS EIGENSPACES

K. Martin considered in [26] dimensional difference between the space
of the Atkin-Lehner plus and minus in the case of elliptic modular
forms.. Here we can consider the same question for our case. In spite
of the fact that our dimension formulas are much more complicated
than in the case of elliptic modular forms, we can prove the same sort
of bias of dimensions.

Proposition 3.1. For any integer k > 3 and any prime p, we have
(=1)* (dim Syf (K (p)) — dim Sy (K(p))) = 0,

The list of k > 3 and p such that dim S, (K (p)) = dim S, (K(p)) is
giwen as follows.

(p, k) =(2,3),(2,4),(2,5),(2,6),(2,7),(2,9),(2,13)

(3,3),(3,4),(3,5),(3,7),(5,3),(5,4),(7,3), (11, 3).uadratic

These are ezactly the cases such that Si(K(p)) = 0.

We note that asymptotically, the main term of both dim S} (K (p))

and dim S, (K(p)) are k*p? /5760 and the difference occurs from lower

terms.
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4. EXAMPLES OF DIMENSIONS OF LOW LEVELS AND PALINDROMIC
PROPERTY

In this section, we give examples of generating functions of dimen-
sions of paramodular forms for small prime levels and j = 0. It often
happens for small p that the generating function is palindromic (a some
kind of symmetry). We will explain the meaning of this after giving
concrete examples. For p < 7, the examples given below has been
known before (see [18], [15], [4], [19], [40]). Below we omit the case
that are not palindromic except for A(K(11)).

141%
(1 — t4) (1 — 19)(1 — 110)(1 — £12)

f: dim A, (Sp(2, Z))t" =

k=0

0 t8+t10+t12—t20+t23+t33
dim S;F (K (2))t" = ,
; m S (K@) = 00 —ma — o)1 = 2

C L+ 10 1% 4 4%
dim A} (K (2))t" =
; m A KO = G ma —ma —ma =)

t11+t20+t21+t22+t24—t32
dim S; (K (2))t* =
;::0 m S (KR = 0 —ma = ey = )

t11+t12+t21+t22
im A; (K (2))tF =
;dlm e T D T ey

> t6 t8 th t12 _ t18 t21 t23 t31
S dim S (K (3)tF = — AL
2 (1= ) (1= #)(1— 1)

[e’e) 1+t8+t10+t21+t23+t31
dim A} (K (3))t" =
; m A (KGN = = —wpa o)

N t9 tll t18 t19 t20 t22 t24 _ t30
S dim S (K (3)F = L LT
2 (L= (1 = ©)2(1 — 12)

= L A A A e
dim A (K(3))t* =
; m A, (K(3)) (1 — t4)(1 — 19)2(1 — ¢12)

i S+ - 0,
;}dlm S (KON = G ma = m)a — 0oy — 2y

™ i o b QY1)
;dlm S BON = T ma =y — oy = 17)°
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where

Qf)(t) — 6 4 08 4 3410 4 3412 4 opld 4 9416 4 417 4 418
4219 22 422 o7 ot 4 2T 4t 1 %
Q(_S)(t) =15 1T g9 oMl oop1B g1 915 4 16 4 417 L 418
Lp19 0p20 421 | 3422 4 423 4 9y | 426 | 428 4 430 434

o i A - PE (1)
;OdlmAk KO = T a —e)a - oy =)’
> . PO(t)
;}dlmAk KO = T ma—®a - ooy — )’
a ko PO (t)
;dlmA’“(K@)t T (1 — ) (1 5)(1 — £2)’

where

Pf’)(t) —1 5 4 9 £ 910 4 912 4 opld 4 9416 4 1T L I8
2t19 + 2t21 + 2t23 + 2t25 + 2t27 + t29 + t35,

PO() =17 + 17 + 1% + 26" + 112 4 208 4 414 4 2415 4416 1 417 4 418
+ 19 4 220 2 2472 P 22 20 28

PO =1 415 47 4265 4% + 2410 411 - 2412 4 21 4 2416 4 2418
+ 19 4 2620 47 4 2472 2 2 0,

- - 0,
k;)dlmsk (K (7))t = T o0 )
™ i o b 0
kz:;dlm S (K (7))t = T A0 = )1 =)

where

QU (1) =t* + 28 + 265 4 2610 4 2012 4 13 4 4
+ 1% 17 219 - 2171 4 2% 1P
Q(_7)(t) =5 4 24T 4 29 4 o1 4 413 14 4 415
+ 2610 4 1T 218 2120 4 9122 92t %8,



+ PO(1)
ZdlmA O = T =i =)

PO (1)
ZdlmA O = T =y =)

PO(t)
ZdlmA’“ T (o)1 2y

Pf) (1) =1 + 266 + 245 + 2410 4 $12 4 418 414 4 415 4 416
+ 17 4 2¢10 4 2121 2478 41
PO() =17 + 267 + 200 + 21 + ¢12 4 413 4 414 4 415 4 416
+ t17 + 2t18 + 2t20 + 2t22 + t24,
PO(t) =1 41> + 26 + 247 + 265 4+ 2% + 210 - 2411 4 2412 - 2413
+ 261+ 2410 4 2410 4 21T 4 2418 4 2419 4 2470 4 21?1
+ 2t22 + 2t25 + t24 + t29.

A+ ko P ()
;dlmAk (K(11))t" = 081~ 00—

= . P
2 m A = (i — oy —

PUD(8) =1+ #* 4 318 + 565 + 7t10 11 4 9412 4 3¢13
+ 10t + 510 4+ 910 + 717 + 718 + 919 4 5¢*°
+ 10821 + 3t%2 4+ 9% + 2 4 7 4+ 577 4 320 4 43 470
POD(#) =1 4% 1% 4 3t° + 37 + 565 + 47 + 610 + 6t + 8¢ 4 7413
+ 10t + 9t1° 4 910 + 8¢ + 818 + 717 4 70
46620 6122 482 4 32 425 2T 29 4 430

S gt P00

Zdun Ay (K(13)t" = (1 —t4)2(1 — ) (1 — t12)
L Py

Z:dlm AR(K(13))t" = (1 —¢4)2(1 — t6)(1 — t12)
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PP () =1+ ¢ + 51° 4 615 + 6610 + ¢'1 4 5012 4 4413 4 511
+ 5t1° 4+ 410 4 51T 1% 4 6110 4 671 + 5t 20 4 ¢
PUD(#) =143 + t* + 3t° + 55 + 57 + 6t5 + 6¢° 4 7¢'0 4 7! 4 8¢12
+ 9 + 9t 4 981 + 9110 4 8T 4 TS 7eY 4 617
4 6t21 + 5t22 + 5t23 + 3t24 + t25 + t26 + t29

P v P (1)
;dlm AL (KQ7)tk = 20 )1 )

PID(t) =1 4+ 14+ 615 4+ 95 + 17 + 10810 + 48 + 9412 + 8¢13 4 9414 4 9115
+ 8t16 + 9t17 + 4t18 + 10t19 + t20 + 9t21 + 6t23 + t25 + t29

At ko PJ(rlg)(t)
kz:;dlmAk (K(19))t" = 00— )17

PUD(8) =1 + 3¢* 4 81° + 1485 + 7 + 204" + 4 + 2612 + 10¢' 4 29t
+ 16t"° + 2716 4 2247 1 2241 1 27419 4 16120 + 29¢** + 10t%
+ 267 4 4t 4 200%° + 179 + 14177 + 8120 + 33 + %,

9] P(23) (t)
dim A (K (23))t* = s
;::0 m Ay (RB)E = G —apn — )1 — 2
PP () =1 4 26" + 91% + 17 + 14¢5 + 4t° + 170 + o' + 174"
+ 1561 4 17E 1T 4 15610 + 1781 4 91 + 17t

™ dim AF - PE(1)
;dlm AF(K(20)tF = =00 )1

PP (1) =1 + 4¢* + 1405 + 7 + 276% + 5¢° + 410 + 15¢1
+ 55t12 + 29t + 651 + 43t 4 65t + 56t
+ 56t + 65t + 43t%° + 65¢*! 4 29t* + 55t
+ 1582 4 4117 4 5120 4 27427 4+ 128 4 1447 + 483 + 170,

At ko Pfl)(t)
kz:;dlmAk (K(31))t" = A=A 6) = )1 =)
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PEY(1) =1 4 6t* + 176° + 7 + 32t% + 61° + 48" + 16"
+ 64112 + 32t 4 Tat™ 4 48410 4 T3¢0 4+ 63t
+ 631 + 73" + 4820 + T4t 4 32¢% + 64¢%
+ 16t 4 481%° + 612° + 3227 + 128 + 17t% + 6631 + 1%,

™ dim A+ - ()
;dlm Af (K (41)t" = A0 F) = )1 )

PUD () = 1+ Tt* + 2415 + 3t7 + 49¢° + 141° + 770 + 35" + 105¢"2
+ 63" + 126" + 911 + 130¢'° + 116417 + 116¢™ + 130t
+ 9120 + 126¢2" + 63t%% + 105¢%° + 35> + 77t% + 14t
+ 49877 + 3t% 4 24t 4+ T3 4 7,

g - P (t)
;dlm A (K(47)tk = =020 ) 1)

PUO(t) = 14 7t + 10 4 2710 4 87 + 49¢° + 257 + 6611 + 471

+ 7212 + 66t + T3tM + 73t"° + 66t1C + 72417 + 47¢18
+ 6661 + 25620 + 4962 + 822 4+ 27t + 2 + 7t %

S ‘ PE(t)
dim A} (K (59))t" = ,

; m A (KGN = G ma—mya —ma =)
PPV(8) =1 + 11¢* 4 401° + 127 + 87¢° + 30t° + 144¢'0 4 48¢" + 190t
+ 59t + 219t 4 59¢'° + 219¢'° 4 59¢'7 + 190t

+ 481 4 14417 + 306* + 8772 4+ 1267 + 406* + 11420 4 ¢

™ dim A+ - 0
;::Odlm A (K(T1)t" = M) - F) = 7)

PV () =14 15t 4 17 + 561° + 19¢7 + 12315 + 471° + 204¢"°
+ 751 4 27012 4 92413 4 3114 4 93¢15 4 311¢1°
+ 9217 + 27088 4 751 + 204¢%0 + 47 + 123¢%% + 19¢%
+ 5612 + 7% + 15¢%0 4 %

Now we give some theoretical explanation. We consider a graded

C algebra A = @32 A, with Ay = C that is finitely generated over
12



C. Assume that A is of Krull dimension m (maximal number of ele-
ments of A which are algebraically independent over C). We define the
generating function of dimensions of homogeneous part of degree k by

F(At) = @, dim Apt*.

This is a rational function of ¢ ([37] p. 479). We say that F(A,t)
is palindromic if F(A,1/t) = (—1)"t'F(A,t) for some integer £. A
graded ring A is said to be Cohen-Macaulay if there exists algebraically
independent homogeneous elements 61,. .., #,, such that A is free over
Clby, ..., 0,) ([37] Proposition 3.1). Now there exists a polynomial ring
2 such that A = 2(/I for some homogencous ideal I ([37] p. 495). Take
a finite free resolution of A as 2 module, that is, an exact sequence of
2 free modules

0— M, —-— M — My—A—0.
Take the dual sequence, that is,
0—=M;— - —= M,

where M} = Homg(M,2l) and define Qg(A) as M;/Im(M; ;). Here
Q9 (A) has an A module structure and this depends only on A and not
on A, When A is Cohen-Macaulay, the graded ring A is Gorenstein
if and only if Q(A) = A ([37] p.502). The following theorem was in-
formed to me by Ralf Schmidt, who is interested in several palindromic
generating functions of dimensions.

Theorem 4.1 ([36] Theorem 4.4). Assume that A is a Cohen-Macaulay
graded ring. Then F(A,t) is palindromic if and only if A is Gorenstein.

We calculated F(A(K(p)),t) and F(AT(K(p))) for primes p < 100
and could observe the following results.

Proposition 4.2. For primes p < 100. we have the following results.
(i) F(A(K(p)),t) is palindromic if and only if p=2, 3, 5, 7, 13.

(ii) F(AT(K(p)),t) is palindromic if and only if p = 2, 3, 5, 11, 13,
17,19, 23, 29, 31, 41, 47, 59, 71.

(iii) The primes in (1) are exactly those such that So(To(p)) = 0. The
primes in (ii) are exactly those such that Jy, = 0, where Jy,, is the
space of Jacobi forms of SLs(Z) of weight 2 of index p.

I do not understand any intrinsic meaning of (iii). By seeing A(K (11),1),
maybe A(K(11)) is not Cohen-Macaulay. By [15] and [4], A(2), A*(2),
A(3), AT(3) are Cohen-Macaulay and Gorenstein. Brandon Williams
informed me that A(K(p)) and AT(K(p)) are Cohen-Macaulay for
p =5 and 7 by using his result in [40]. So these are also Gorenstein.
We may ask if the list in the above Proposition would be Gorenstein

and if those p < 100 not listed in the above would not be Gorenstein.
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