Diophantine problems of the equations yielding generalized
Pythagorean triplets

Takao Komatsu
Department of Education, Nagasaki University

1 Introduction

For integer k > 2, consider a set of positive integers A = {ay, ..., a;}. The number of non-
negative integral representations xy, s, ..., zy, denoted by d(n; A) = d(n; a1, aq,. .., a;),
to a1x1+asxo+- - - +apxr = n for a given positive integer n is often called the denumerant
and is equal to the coefficient of 2" in

1
(1 —z9)(1—a92)--- (1 —x™)

([22]).

For a non-negative integer p, define S, and G, by
Sp(A) ={n € No|ld(n; A) > p} and G,(A) ={n € Ny|d(n; A) < p}

respectively, satisfying S, U G, = Ny, which is the set of non-negative integers.

We assume that ged(A) = ged(ay,...,ar) = 1. Then the set S, = S,(A) is called
p-numerical semigroup [17]. G, = G,(A) is the set of p-gaps. Notice that the set G, is
finite if and only if gcd(A) = 1. Define g,(A), n,(A) and s,(A) by

gp(A) = max n, ny(A)= Z 1, s,(A)= Z n,

neGp(4) neGy(A) neGy(A)

respectively, and are called the p-Frobenius number, the p-Sylvester number (or p-genus)
and the p-Sylvester sum, respectively. When p = 0, g(A) = go(A4), n(A) = no(A)
and s(A) = so(A) are the original Frobenius number, Sylvester number (or genus) and
Sylvester sum, respectively.

When k = 2, for any non-negative integer p, we have

gp(a,b) = (p+1)ab—a—b,
ny(a,b) = %((2p+1)ab—a—b+1),

1
sp(a,b) = E(2(3102 +3p 4+ 1)a?b* — 3(2p + 1)ab(a + b)

+a2+bz+3ab—1),



each of which is a generalization of the results in [23], [22] and [3], respectively, where
p = 0. However, when k > 3, these values cannot be given by any set of closed formulas,
which can be reduced to a finite set of certain polynomials ([5]) even if p = 0. Only some
special cases, explicit closed formulas have been found, including arithmetic, geometric,
Fibonacci, Mersenne, repunits and triangular (see, e.g., [20] and references therein). When
p > 1 and k£ > 3, the situation becomes even harder, but recently explicit closed formulas
have been obtained for the triangular number triplet ([8]), for repunits ([9, 12]), Fibonacci
triplet ([15]), Jacobsthal triplets ([13, 11]) and arithmetic triplets ([16]).

In this paper, we consider the triple of the parametrizations yielded from the Dio-
phantine equation x? — y? = 2" (r > 2). For the solution of the Diophantine equation
22 —y? = 2" (r > 2), we obtain two kinds of parameterizations [4]. If s # ¢ (mod 2), then

(2.1, 7) = ((s+t)r+(s—t)r (s+t)r_(s—t)r782_t2) | )

2 ’ 2
where ged(s,t) = 1. If 2 1 ¢, then
(z,y,2) = (272" + 7,27 725" — ", 2st) (2)
where ged(s,t) = 1. When r = 2, both cases reduce to the Pythagorean triple
(z,y,2) = (s* +1%,2st, 5% — t?).
One of the main aims of this paper is to give the p-Frobenius numbers of these triples.

Theorem 1. If s £t (mod 2), for a non-negative integer p with p < |t/(s —1t)]

gp(<s+t>7"+<s—t>r <s+t>r—<s—t>j$2_t2)

2 ’ 2
_ ((p—i—Z)s— (p+ 1)t—2)(s+t)’”—|— (ps— (p— 1)t)(s—t)7”
2
—(s* = 1?).

If 2t t, then for a non-negative integer p with p < |(s —1t)/t]

gp(27728" 17,2728 — 17 2st)
=2""(s+ (p+2)t —2)s" + (pt — s)t" — 2st.

For the number of pages, the formula for n,(A) or s,(A) is not included in this article.

2 Preliminaries

For a non-negative integer p, we introduce the p-Apéry set [1, 10], given by
()

a1—1

App(A>:App(a17a27"'7 ) {mO 7m1 7"'7m



Without loss of generality, we set a; := min{A}.
(»)

[

() mP =i (moday), (i) m¥® € S,(A), (i) mP —a, & S,(A).

Here, for each 0 < i < a; — 1, each element m,"’ satisfies the conditions

Note that m(()o) = 0. This set is congruent to the set
{0,1,...,a1 — 1} (mod ay).

Once knowing the structure of the elements of the p-Apéry set, we can obtain the
p-Frobenius number, the p-genus and the p-Sylvester sum ([7, 10]). More general formula
including weighted power Sylvester sums can be found in [7, 18, 19].

Lemma 1. Assume that gcd(A) = ged(ay, ..., ax) = 1. We have

wld) = o i =,
1 9= a — 1
A)y==>"ml -
np( ) a, g mz 2 )
1 a;—1 (2 1 a;—1 ®) CL% 1
A) = — E P2 _ Z E (P .
Sp( ) 2&1 g (mz ) 2 g mz + 12

Each formula is a generalization of the classical formula by Brauer and Shockley [2],
Selmer [21] and Tripathi [24], where p = 0. Note that m(()o) =0.

3 Frobenius numbers of the triple formed from the Diophantine
equations

For p = 0 and r > 2, the Frobenius numbers of the triples of (1) and (2) are given as
follows. This is a special case of Theorem 1, but the general p case cannot be obtained
directly, but is based upon the case where p = 0.

Theorem 2. If s #t (mod 2), then
t’/‘ t’f’ t?" t7‘
go((5+)+(3_) (S+)_<S_),32 tz)

2 ’ 2
(2s =t =2)(s+ )" +t(s—t)"
2

(s* — 7).

If2¢t, then
Go(27 728" 17, 272" — " 2st) = 272 (s + 2t — 2)s" — 51" — 2st .

Remark. When r = 2, two kinds of parameterizations depend upon which of s? — ¢? and
2st is smaller. Both formulas in Theorem 2 reduce to that by Gil et al. [6]:

go(s* +12,2st, 5% — t?) = (s — 1)(s* — %) + (s — 1)(2st) — (s* +t%).



3.1 When s #t (mod 2)

For convenience, we put

o (s+t)" +(s—1) y = (s+t)" —(s—1t) s 2

3
2 ’ 2 ’ (3)
Since x,y,z > 0 and ged(x,y,z) = 1, we see that s > ¢ and ged(s,t) = 1. Note that
X >y >z when r > 3. When r = 2, we assume that y > z.

The elements of the (0-)Apéry set are given as in Table 1, where each point (Y, X)
corresponds to the expression Yy + Xx and the area of the (0-)Apéry set is equal to
52 — 12,

0,0) G—i-1,0) G-10) G-1,0)

((),s;tfl) (sftfl;sftfl) (sft,s.ftfl) (sfl,s'ftfl)
0,s—1) (s—t—1,5—1)

((),s; 1) (sftf'l,sfl)

Table 1: Apy(x,y,z) when s Z ¢ (mod 2)

Since
1r/2) o
sy—tX—th(]_l) A (4)

we have sy = tx (mod z) and sy > tx. Therefore, the sequence {fy (mod z)}%} can be
arranged as follows.
[Step 1] After the row of the longer term

(07X)7(17X)7”'7(S_17X) (OSXSS_t_:D
with length s, by increasing by ¢ in the vertical direction, we move to the row
(0, X +t),(1, X +1),...

because sy = tx (mod z). If it is still in the longer term, we repeat this [Step 1].
[Step 2] If it reaches the shorter term

0,X),(1,X"),...,(s—t—1,X") (s—t<X <s—1)
with length s — t, by decreasing by (s — t) in the vertical direction, we move to the row
0, X' —s+1t),(1,X —s+1),...

because
(s—ty+(s—t)x=(s—t)(s+t)"=0 (modz). (5)

If it is still in the shorter term, we repeat this [Step 2]. Otherwise, we apply [Step 1]. In
fact, after the point (s —t — 1, s — t), one moves back to (0,0).



Since ged(s, t) = 1, all the points inside the area in Table 1 appear in the sequence {ly
(mod z)}%-; just once. Indeed, this sequence is equivalent to the sequence {¢ (mod z)}7-;.

It is clear that one of the values at (s —t —1,s — 1) or at (s — 1,5 —t — 1) takes the
largest element. Since (s —¢t—1)y+(s—1)x— ((s—1)y+(s—t—1)x =t(s—t)" > 0, the
element at (s —¢ — 1, s — 1) is the largest in the Apéry set. Hence, by the first formula of
Lemma 1, we have

g(x,y,z) =(s—t—1y+(s—1)x—=z

_ (s—t—l)((s—;—t)T—(S—t)r) N (s—l)((s+7;)’“+(8—t)’") (s 1)
_ @s—t=2)(s+ 1) +t(s—t) (22— 1)
: :

3.2 When 21t
For convenience, we put
x =2ty =272 — " 7= 2st. (6)

Since x',y’,z' > 0 and ged(x',y’,2z’) = 1, we see that s > v/4t/2 and gcd(s,t) = 1. Note
that x’ >y’ >z’ when r > 3. When r = 2, we assume that y' =z >z =y.

Since (s +t)x' — (s —t)y’ = (272" — ")z’ > 0, we have (s + t)x' = (s — 1)y’
(mod z') and (s+1t)x’ > (s —t)y’. By a similar way, we know that all the elements of the
(0-)Apéry set are given as in Table 2.

00 - (-5 #0) - - (s+t-1L0)

Of-1) - (t=Lt-1) (Lt—1) - o (stt—1t—1)
0.8 (-1

(U.,s:f 1) .- (tfl,:sfl)

Table 2: Apy(x’,y’,2z') when 21t

Compare the elements at (t—1,s—1) and (s+¢—1,¢—1), which take possible maximal
values. Since
(s+t—1y' +(t—1)x = (t—=1)y +(s—1)x') =2st(2" s =" ) +t" >0,

we find that the element at (s +¢ — 1,¢t — 1) is the largest in the Apéry set. By the first
formula of Lemma 1, we have

g%y d) = (s 41— 1y +(t—1)x —2
= (s4+t—1)(2"7%" —t") + (t — 1)(2" 725" + ") — 2st
=2 %(s4+2t —2)s" — 5" — 2st.

4 p>0

When p > 0, we need the discussion from Ap, ,(A) to Ap,(A).

5



4.1 When s 1t (mod 2)

ep=1

All elements of Ap,(A) are arranged in the form of shifting elements of Ap,(A) whose
remainders modulo z are equal.

Assume that s < 2¢. See Table 3.

Since (s —t)y + (s —t)x = 0 (mod z), each value at (Y, X) is equivalent to the value
at (Y +s—t, X +s—t). In addition, by sy = tx (mod z), the elements of the first ¢ rows
in Apy(A) are shifted by (Y, X) — (Y +s—t, X +s—1t) (to the lower right direction) as
the elements of Ap,(A). However, as the column width of the element in the first (s — t)
rows is s, if it is transferred as it is, there will be a part that protrudes sideways, and such
a part is located below the lower left area of Ap,(A) (this position is reasonable because
sy = tx (mod z)).

Finally, all elements other than the elements in the first ¢ rows move directly to the
side of the area of Apy(A) in the upper right (this position is also reasonable because
sy = tx (mod z)).

From this arrangement, Ap,(A) also forms a complete residue system modulo z.

(5.0) = @s—1-1,0)

(s5—t—1) - (2s—i-Ls—t—1)

G—ts—1) T (2s-2—-1Ls—1) G-TLs—1

(s—t,2s -2t —1) e (s—12s-2-1)

(s—ts—1) - (25-2-1s—1)

Table 3: Ap,(x,y,z) when s # ¢ (mod 2)

Now, we shall show that each element has at least two different representations. For
the (s —t) x (s — t) area at the bottom left of Table 3, by

[(r—1)/2] r—1
ey — r—2j—1,2j
ty — sX = 7 Z ( 2 )s 7,

j=0
wehavefor 0<Y <s—t—land 0< X <s—t—1
D2 N
0z+Yy+ (X+s)x= Z (2_)37’_2]_11527 z+ (Y +1t)y+ Xx.
J

=0

For the (s—t) x (s—t) area at the top right of Table 3, by (4), we have for 0 <Y < s—t—1
and 0 < X <s—t—1

lr/2]
1 o
0z+ (Y +s)y+Xx= [t (27; B 1)37"‘2%23‘2 z+Yy+ (X +1)x.
j=1



For the middle area of Ap,;(A), by (5), we have for 0 <Y <s—1land 0 < X <s—1
0z+ (Y +s—t)y+ (X +s—t)x=(s+t)"'z+Yy+ Xx.
There are four candidates at

(s—t—1,2s—t—1), (s—1,2s—=2t—1),
(2s—2t—1,s—1), (2s—t—1,s—t—1)

to take the largest value in Ap,(A). Since tx > ty, the first one and the third one are
larger than the second one and the fourth one, respectively. Since (s —t)x > (s —1t)y, the
first one is bigger than the third one. Hence, by the first formula of Lemma 1

axyz)=6-t-1y+2s—t—1)x—z
(Bs =2t =2)(s+1)" +s(s—=1)"

= 5 (s —t%).

4.2 p>2

When p > 2, it continues until p < |t/(s —t)], the area of Ap,(A) moves to the area of
Ap,(A), which moves to the area of Ap;(A), and so on, in the correspondence relation
modulo (z). Table 4 shows the areas of the Ap,(A) (p = 0,1,2,3) for the case where
3 < |t/(s—t)] < 4. In Table 4, the area of Ap,(A) is marked as 0 (including 0, and
0p); that of Ap,(A) is marked as 1 (including 1. and 1,) with 1, and 1,; that of Ap,(A)
is marked as 2 (including 2. and 2f) with 2,, 2,, 2. and 24; that of Apg(A) is marked
as 3 with 3, 3, 3., 34, 3. and 3y. The areas having the same residue modulo (z) are
determined as

0, = 1, =2, = 3.,
0p = 1p =2, = 3y,
1. =2, = 3.,
1d:>2d:>3d7
2. = 3.,
2f:>3f,

and the main parts are as

0 (excluding 0, and 0,) = 1 (including 1, and 1),

1 (excluding 1. and 14) = 2 (including 2. and 2;),

2 (excluding 2. and 2;) = 3.
That is, the elements of the area of the lower left stair portions in App(A) correspond
to the elements of the area of the upper right stair portion in Ap, +1(A), and are aligned

from the upper right row to the lower left. The elements of the area of the upper right
stair portion in Ap,(A) correspond to the elements of the area of the lower left stair

7



portion in Ap,,,(A), respectively, and line up in the upper-right direction from the lowest
left column. The elements of the area of Ap,(A) in the center portion, except for the
(s —t) x (s —t) area in the lower left and the (s —t) x (s — t) area in the upper right,
correspond to the elements of the area of Ap,,,(A) in the lower right diagonal direction.

|
0 : Op 1a 2. 3e
I
[
1 : 14 2 3a
|
|
2 : 2 3a
I
|
0n 1, 2 3
117 2a 30
24 3p
3f

Table 4: Ap,(x,y,z) (p=0,1,2,3) when s #Zt (mod 2)

More generally and more precisely, for 1 <1 < p, each element of the I-th (s—t) x (s—1)
block from the left in the area of the lower left stair portions in Ap,(A) is expressed by

((=Ds=(=Dt+1,(p—1+1)s—(p=Dt+)
<i<s—t—1,0<j<s—t—1), (7)

— 1) X (s —t) block from the right in the

(
and for 1 <!’ < p, each element of the I’-th (s
(A) is expressed by

area of the upper right stair portions in Ap,,

(P U +Ds— @ =t+i, (' =1)s— (1" = 1)t +5)
0<i<s—t—1,0<j<s—t—1). (8)

Then by sy = tx (mod z), we have the congruent relation for p’ = p+1and ' = p'—l+1 =
p—1+2

(=Ls—(I-Dt+i)y+ ((p—1l+Ds—(p—Dt+j)x
=((-U+L)s—@ -U)t+i)y+ (' =1)s— (' —=1)t+j)x (mod z),
aswellasforp=p' +landl=p—0U'+1=p —1'+2.
For simplicity, denote by (Z,Y, X) the value of Zz + Yy + Xx. Each element of the

leftmost (s —t) x (s — t) area of Ap,(A) (p > 1) has exactly (p + 1) representations,
because

(0,0,ps = (p—1)t) = (s + (G — Dt jt — (j — Vs, (p — j)s — (p — j)t)
(j:1,2,...,p).



Note that ps < (p + 1)t since p < [t/(s —1)].
Each element of the second from the left (s —t) x (s —t) area of Ap,(A4) (p > 2) has
exactly (p + 1) representations, because

(0,s—t,(p—1)s—(p—2)t) = (s+,0,(p—2)s — (p— 3)t)
=Us+G-DLG-Dt=(G—2)s,(p—7—Ds—(p—Jj—1)t)
(j=1,2,....p—1).

Each element of the third from the left (s —¢) x (s — ) area of Ap,(A4) (p > 3) has
exactly (p + 1) representations, because

(0,2s —=2t,(p—2)s— (p—3)t) = (s+t,s —t,(p—3)s — (p — 4)t)

= (28+2t,0, (p—4)s — (p—5)t)

= (s + (G — LG =2t~ (G —3)s, (= — D)5 — (p— j — 2))
(G=1,2....p—2).

In general, each element of the I-th (1 <1 < |t/(s—t)]) from the left (s — ) x (s — 1)
area of Ap, (A) (p > 1) has exactly (p + 1) representations, because

0,(—=1)s—(1=Dt,(p—1+1)s—(p—1)t)

=(i(s+1t),(l—i—1)(s—t),(p—1l—i+1)s—(p—1—1)t)
(i=1,2,....1-1)

=(Us+ G -D6LG =1+ Dt =(G=Ds,(p—1—35+1)(s— 1))
G=1,2....p—1+1).

Similarly, each element of the I'-th (1 <1’ < |t/(s—t)]) from the top right (s —t) x
(s —t) area of Ap,(A) (p > ') has exactly (p + 1) representations, because

0,p=VU+1)s— (-0 -1)s—(I'—1))

=(i(s+t),(p—U'—i+1)s—(p—U—i)t,(I' —i—1)(s — 1))
(i=1,2...,0'—<1)

=(-Ds+jt, (0= =i+ (s =), ="+ 1t = (= 1)s)
(G=12....p=U+1).

Concerning the central portion of App(A), it is easy to see that each element is ex-
pressed by

(0,p(s —t) +4,p(s — t) + j) (9)
(0<i<s—t—-1,0<j<pt—(p—1)s—1;
s—t<i<pt—(p—1)s—1,0<j<s—t—1), (10)

and all elements have exactly (p + 1) representations, because
(0,p(s = 1), p(s = 1)) = (j(s + 1), (p =) (s =), (p — 5)(s — 1))

9



(1=1,2,...,p).

Finally, the candidates to take the largest value in Ap,(A) are clearly scattered in the
lower right corners:

(0,i(s—t)—1,(p+2-Ds—(p+1-0t—1) (I=1,2,...,p),
0,(p+1)(s—t)—1,s—=1), (0,s—1,(p+1)(s—1t)—1),
0,(p+2-1)s—(p+1-Ut—-11U(s—t)—1) ('=12,...,p).

By comparing these values, we can find that (0, s—t—1,(p+1)s—pt— 1) is the largest.
Hence, by the first formula of Lemma 1

gpx,y,z)=(s—t—1y+ ((p+1)s—pt—1)x —z
C(p+s—(+Dt=2)(s+t)" + (ps — (p— )t) (s — 1) (1)
2

In addition, Theorem 1 does not hold for p > [t/(s—1¢)]. As can be seen from
the example in Table 4, the elements of the central area of Ap,(A) corresponding to
the elements of the central area of Aps;(A) are not all left, and there will be elements
corresponding to another location. Due to the deviation, the place where the maximum
value is taken also changes from (0, s—t—1, (p+1)s—pt—1) in Ap,(A) for p > [t/(s —1)].
In the case of the example in Table 5, for p = 4, the elements in the area of the stair part
on both sides still regularly move to the opposite side, but in the main central part, some
surplus elements move to the lower left (3; = 4;) and some to the upper-right (3x = 4x).
In this case, in general, (0,2s — 2t — 1,(p + 1)s — pt — 1) takes the largest value. It is
as shown in Table 5. At p = 5, the place where the largest value is taken becomes more
complicated since the corresponding residue part is further displaced.

|

0 : 0y 1, 2. 3. 4 ’J
|
I

1 Il 2 34 4,
|

A
2 7 34 4

45

35 44

® @

Table 5: Ap,(x,y,z) (p =4) when s Zt (mod 2)

In the table, (») denotes the position of the largest element in Ap,(A). Note that the
area 3, (and so, 4;) does not exist if t/(s — ¢) is an integer.

4.3 When 21t

When p > 1, the situation is somewhat similar to that of the case where s # t (mod 2),
but the roles of z' = 2st and z = s* — t? are interchanged. Namely, the role of (s —¢) and

10



t is interchanged.
Table 6 shows the case where 3 < [(s —t)/t] < 4. The numbers 0, 1,2, 3 indicate the
area of Ap,(A) for p=0,1,2,3.

0 1 2 3

®
1 2 3
®
2 3
®
3
ﬁCD

1 2 3

2 3

3

Table 6: Ap,(x',y’,2z") (p =0,1,2,3) when 2{1¢

In Table 6, the position to take the largest value of each Ap,(A) is indicated by ®)
(p=0,1,2,3). Hence, by the first formula of Lemma 1

op(x.y 2d)=(s+t—-1y + ((p+ 1)t —-1)x' -2
=2"(s+ (p+2)t —2)s" + (pt — s)t" — 2st.

5 More variations

Almost the same results do not only hold for a 90 degree triangle, but also for a 60 degree
or 120 degree triangle ([14]).
22 — 2y + y? = 2% (60 degree) has the parameterization

(z,y,2) = (s* — 3t* + 2st, 4st, s> + 3t°)

or
z,y,2) = (s> — 2,25t — 2, 5% — st + t2).
Y

Y

Theorem 3. Let s and t be positive integers with s > t, ged(s,t) =1, s Zt (mod 2) and
31s. When s < 3t, for a nonnegative integer p with p < |(2t)/(s —t)], we have

gp(s% — 3t% + 2st, dst, s> + 3t?)

11



=(s—t—1)(s*+3t) + ((p+ 1)s — (p— 1)t — 1)(4st) — (s* — 3t* + 2st).
When s > 3t, for a nonnegative integer p with p < [(s —t)/(2t)]|, we have

9p(s* — 3t* + 2st, 4st, s* + 3t?)
=2t —1)(s*+3t) + (s + (2p+ 1)t — 1) (s* — 3t* + 2st) — 4st.

Theorem 4. Let s and t be positive integers with s > t, ged(s,t) = 1 and 3 1 (s + t).
When s < 2t, for a nonnegative integer p with p < [t/(s —t)|, we have

gp(s% — 12,25t — t? 8 — st +t7)
=(s—t—1)(s"—st+ )+ (s+p(s—t) —1)(2st — t*) — (s* — 7).
When s > 2t, for a nonnegative integer p with p < |(s —t)/t|, we have

go(s* — 2,25t — 12, 5% — st + 1?)
= (t—1)(s* — st +t*) 4+ (s +pt — 1)(s* —t*) — (25t — %) .

22 + zy + y? = 2% (120 degree) has the parameterization
(z,y,2) = (s* — 3t* — 2st, 4st, s> + 3t%)

or
(1,y,2) = (8% — %25t + 2,5 + st + 7).

Y

Theorem 5. Let s and t be positive integers with s > 3t, ged(s,t) = 1, s #t (mod 2)
and 31 s. When s < (34 2v/3)t, for a nonnegative integer p with p < [(2t)/(s — 3t)], we
have

gp(s? — 3t* — 2st, 4st, s* + 3t?)
= (s —3t—1)(4st) + (s —t +p(s — 3t) — 1)(s* + 3t?) — (s* — 3t — 2st).
When s > (34 2v/3)t, for a nonnegative integer p with p < | (s — 3t)/(2t)], we have

gp(s® — 3t* — 2st, 4st, s* + 3t?)
= (s+3t—1)(s> = 3t — 2st) + (2(p + 1)t — 1) (s* + 3t*) — 4st .

Theorem 6. Let s and t be positive integers with s > t, ged(s,t) =1, s #t (mod 2) and
31 (s—t). When s < (1++/3)t, for a nonnegative integer p with p < |t/(s —t)|, we have

gp(s* — 12,25t + 12, 8% + st + 17)
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=(s—t—1t2s+t)+ (p(s—t)+s—1)(s>+ st + ) — (s+t)(s—1).
When s > (1 ++/3)t, for a nonnegative integer p with p < |(s —t)/t], we have

gp(s* — 2,25t + 1%, 8% + st + 17)
=(s+2t—1)(s+1)(s—t)+ ((p+ 1)t —1)(s* + st + 1) — (25 + 1)

6 Final comments

Diophantine equations of the type 2 + y? = 2" (r > 2) seem to be more popular. Their
solutions can be also parameterized:

Lr/2] ,
_ 1)k r—2k 2k
v S0 ) e

k=0
Lr—1)/2] .
_ 1)k r—2k—1,2k+1
=3 (% i 1)s ,
2z =352+t ,

where s and ¢ are of opposite parity with ged(s,t) = 1.

However, the situation becomes much more complicated, and many detailed discussion
is needed. In addition, if the value r is different, the situation of the Apéry set is different,
so we cannot discuss about general r.
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