On the classification and representations of positive definite ternary
quadratic forms

Yifan Luo and Haigang Zhou

School of Mathematical Sciences, Tongji University, Shanghai, China, 200092

1 Introduction

This article is a report of author’s talk at the conference “Research on automorphic forms” , which was held
at RIMS, Kyoto university between 22rd to 26th, January, 2024. The author’s talk was based on our preprint
[14], where authors study the classification and representations of positive definite ternary quadratic forms
of level 4N.

Let f be a ternary quadratic form with integer coefficients, given by the equation

f(z,y,2) = ax® + by® + c2® + ryz + sxz + tay.

Unless otherwise stated, we assume that f is primitive and positive definite. We will also denote f by
(a,b,c,r,s,t). Recall that the matrix associated to f is

20 't s
M=M=t 2b r
s r 2
Define the discriminant of f to be
det(M
d=dy = y = dabc + rst — ar® — bs® — ct?.

The level of f is the smallest positive integer N such that N M 7 ! is even, that is, has integral entries, and
even integers on the main diagonal. Let the number of ways to represent integer n by ternary quadratic
form f be Ry(n) :=#{X € Z3 | f(X) = 1 X'M;X = n}.

Classifications and representations are two main topics in the theory of quadratic forms. Regarding
the classifications of ternary quadratic forms, two significant equivalent relations exist, namely equivalence
class and semi-equivalence class. The set of semi-equivalence class is called genus. Instead of relying on
the more familiar Hasse invariants, the classification theory is based on a set of invariants introduced by
M. Eichler [5]. G. Shimura [15] classified quadratic forms over an algebraic number field by reformulating
FEichler’s approach in a more natural style. Extensive tables of positive definite ternary quadratic forms,
categorized by discriminant, have been compiled. The tables compiled by H. Brandt and O. Intrau [3]
comprehensively document all reduced ternary forms with discriminant d < 1000. J. Lehman [11] grouped
positive definite ternary quadratic forms differently by level. He gave some correspondences between classes
of ternary quadratic forms having the same level with different discriminants and provided a practical
method for finding representatives of all classes of ternary forms with a given level. However, the method



for determining whether two ternary quadratic forms are semi-equivalent is still cumbersome. In this paper,
for squarefree interger N, we group primitive positive definite ternary quadratic forms of level 4N more
explicitly, which only depends on level, discriminant, and the place where f is anisotropic, as follows.

In the following, we always assume that N is a product of s distinct odd primes. Let N4 (respectively,
Nevenor N,.) denote one of divisors of N with odd number of (respectively, even number of, or exactly r
many ) prime factors. We use Gy g yodaa (vesp. Gan, g2neven) for the genus of primitive positive definite
ternary quadratic forms of level 4N, discriminant d, and these forms are anisotropic only in the p-adic field
where p | N° (vesp.p | 2NeVen).

Theorem 1.1. Let N be a product of s distinct odd primes. Then for all primitive positive definite
ternary quadratic forms of level 4N, there are 22°*! genera. These are Gan,n2 N, Nott, GoNaNz /N, N,
Ganan2/N, 2Neen and Gyn 1682 /N, Noid, Where Nt (respectively, N*™ or N, ) runs over all divisors of
N that contain an odd number of (respectively, an even number of, or exactly v many) prime factors.

The representation problem is the questions if an integer n is represented by an integral quadratic form
in s variables and in how many ways n is represented by such an integral quadratic form. The literature
on quadratic forms is extensive and highly developed. Here we only focus on the case of ternary quadratic
forms. Legendre gave the necessary and sufficient condition of when n is represented by a sum of three
squares. Gauss went further, giving an explicit formula of the number of ways to represented n by sum of
three squares, which is involved with the class number of binary quadratic forms. However, there are only
a few ternary quadratic forms which have representation formulas like that of sum of three squares. Siegel
provided a significant quantitative outcome in this regard by presenting rgen(g)(n), a weighted average of
representations through forms in the genus of a quadratic form (), as an infinite product of local factors.
There are many literature on representation of ternary quadratic forms based on Siegel-Weil formula and
modular forms. At the end of his book [9], B. Jones gave a specific version formula for positive-definite ternary
quadratic forms. This was a significant advancement in making the theory more concrete and applicable
to specific cases. However, it still requires the computation of local densities. Recently, X. Guo, Y. Peng,

L. Gao and H. Qin [3][6] gave some explicit formulas for the average number of representations over the genus
of ternary quadratic form of type f = 22 + py? + ¢z2, where p and ¢ are odd primes. B. Kane, D. Kim and
S. Varadharajan [10] computed explicitly the Siegel-Weil average rgen()(n) of a genus for ternary quadratic

forms corresponding to stable lattices.

Orders of quaternion algebras have a close relation with ternary quadratic forms. For the detail of the
relation between ternary forms and orders of quaternion algebras, we refer to the book of J. Voight [16].
In 1987, B. Gross [7] showed that, for definite quaternion algebra ramified at prime p, the weighted sum of
theta series corresponding to maximal orders is Eisenstein series of weight 3/2 whose Fourier coefficients are
modified Hurwitz class number. In another words, the modified Hurwitz class number equals a weighted
sum of the number of elements of trace 0 and norm n in an maximal order O, where O, ranges over the
right orders of a set of representatives for left ideal classes of a maximal order O in a quaternion algebra of
discriminant p. In 2019, H. Boylan, N. Skoruppa and the second author [2] recovered the formula obtained
by Gross, in the more general case of squarefree N, using the theory of Jacobi forms. More precisely,
they showed that the Jacobi Eisenstein series whose Fourier coefficients are modified Hurwitz class number
HW)(4n — r?) agrees with a weighted sum of theta series corresponding to a set of representatives for the
conjugacy classes of O. Recently, Y. Li, N. Skoruppa and the second author [13] extended it to more general
cases. More specifically, for all Eichler orders with a same squarefree level in a definite quaternion algebra
over the field of rational numbers, they proved that a weighted sum of Jacobi theta series associated with
these orders is a Jacobi Eisenstein series which has Fourier coefficients H(M:N2) (4 — 2).

For any pair of relatively prime positive squarefree integers (N7, N2) and any negative discriminant —D,



Hurwitz class numbers H (D) can be modified as follows:

~D/f3 2pfp—p—1_<#f2vm> oy
H(N17N2)(D) = H(D/f12\71,N2) H (1 - <¢>> H ,
p|N2

p|N1 p p-1
(1.1)

where fn, n, is the largest positive integer containing only prime factors of N; Ny whose square divides D
such that —D/ f12vl, N, is still a negative discriminant. The products run through all primes p dividing Ny
and Nj, respectively. We use f,, for the exact p-power dividing fu, n,. In particular, when f, = 1, the

—D/f2
above fraction containing f, becomes 1 + (ifﬂl) Here (;) is the Kronecker symbol, and for integer

m, Kronecker symbol
1 if m==£1 (mod?8),

(%): ~1 if m=+3 (modS8),
0 otherwise.
Set 1
(N1,N2) - -
I 0)=-5 [[a-» [T+,
p|Ny p|N2

and H(N1N2) (D) = 0 for every positive integer D = 1,2 (mod 4).

Consider the bijections between Eichler orders and ternary quadratic forms and associate the results of
Y. Li et al.[13] and their modified Hurwitz class number HN:N2) (D) we derive more explicit formula of for
the average number of representations over the genus of definite positive ternary quadratic form of level 4NV.

Theorem 1.2. For any squarefree poisitive integer N and any divisors N°% and N of N with an odd
respectively even number of prime factors, and for any nonnegative integer n, one has

Z Rf(n) _ 2—5—1H(N°dd,N/N°dd) (4N, n)
F€G N N2 /N, Nodd | AUt(f)|
Z Ry(n) _ 2—5—2H(N"dd,2N/N"dd)(4N n)
FE€G N aN2 N, Nodd | Aut(f)|
Z ff (n) — g—s—2 (2N N/N"") (4N, n)
t b
FEG N aN2 /N, 2Neven | Aut()]
and
3 Ry(n) _ g5 LN N/N" (.

| Aut(f)]

f€G4N, 16N2 /N,.,Nodd

Here as above Ry(n) denotes the number of representations of n by the form f, we use Aut(f) for the
number of automorphs of f. The sums are over a complete set of equivalent classes in the given genus
classes, respectively.

Remark 1.3. The conditions hold for N¢¥*® = 1 and N, = 1. When N = 1, all positive definite ternary
quadratic forms of level 4 are only in one genus which has one class, and the sum of three squares is their
representative element

ra(n) = 12HY (4p).



If the class number of the genus of a positive definite ternary quadratic forms f of level 4N is one, we
can give the explicit formula of R¢(n). In the table 2 in section 3, we list 73 formulas of R¢(n).

Li et al. [13] also gave a simple formula for the type number of Eichler orders with squarefree level by
modified Hurwitz class number. Based on the type number formula, we can give the formula of the class
number of ternary quadratic forms of level 4N.

Theorem 1.4. Let |C(4N)| denote the number of classes of primitive positive definite ternary quadratic
forms of level 4AN. Then we have

N 5 1/-4\ 1(/-3\ 1 N\*\ 1
AN =2 [+ 2 oo (22 2 (Z22) 42 (1o (2 - H(4d) + H(8d
cumi== | 5+5-1(F) G(N)+2< <3>>+4§<3<>+ (8a)
d#1
In the table 3 in section 3, we give a list of |C(4N)|, the number of classes of primitive positive definite
ternary quadratic forms of level 4N for N < 1000.

2 Some applications

In this section, we will give three applications of our main results. Construct a basis of Eisenstein space of
modular forms of weight 3/2, and give new proofs of Berkovich and Jagy’s genus identity and Du’s identity.

2.1 Modular forms of weight 3/2

Let &(4N, %, X:) be the Eisenstein series space of modular forms of weight 3/2, level 4N and character x;,
which is the orthogonal complement of the subspace of cusp forms of weight 3/2, level 4N and the character
X1 with respect to Petersson inner product. Pei [17] gave an explicit basis of the Eisenstein space & (4N, %, Xi)-

Denote the generating functions of average representation number of ternary quadratic forms over each
genus as following:

- Ry(n) >
— s+1§: E: f n_z Nedd N/N n
9G4N,N2,Nodd (Z) =2 |Aut(f)| qg = H( / )(4n)q ’ (21)
n=0 \f€G,n N2 yodd n=0
> R (n) > odd odd
— s+2§: }: f n_z Nedd 2aN/N n
6)GALNAN?J\]MI({ (Z) =2 | Allt(f)| q = H( / )(4n)q ’ (22)
n=0 \ f€G,y 4n2 nodd n=0
and
> R(n) >
— s+2§: }: f n_z 2NV" N/N n
€G4N,4N2,2Ne"9" (Z) =2 |Aut(f)| q = H( / )(4n)q . (23)
n=0 \ fEG, N 4n2 2noven n=0

It is well-known that these functions are in the space of Eisenstein series of weight 3/2, &(4N, 2,id).

)92
Theorem 2.1. Let I denote the set of all positive divisor of 2N except 1, d € I . Set
Oaonja(z) =y  HOEND (4n)q". (2.4)
n=0

L
n

Let 1 be the divisor of N, and x; denote the primitive characters such that x;(n) = (L) for (n,4l) = 1. Then
the set {042n/a(12)}1 is a basis of space of Eisenstein series of weight 3/2 with character x;, €(4N, 3, x1).



2.2 Berkovich and Jagy’s genus identity

Berkovich and Jagy [1] established the following interesting identity connecting the weighted sum of the
representation numbers and the sum of three squares r3(n):

r3(p*n) — pra(n) = 48 Z Bym) 96 Z %, (2.5)

g, , [Aut(f)] feTOns

where a sum over forms in a genus should be understood to be the finite sum resulting from taking a single
representative from each equivalence class of forms.

We now give a new proof of the identity (2.5). By the level and discriminant of ternary quadratic forms,
it becomes evident that T'G ;, (resp. T'G>,p) coincides Gy, 2, (vesp. Gap16p2,p)- In terms of the results of
Theorem 1.2, we have

> o Ry) 1y g,
sera,, [Aut(f)] fecgpzyp | Aut(f)| L dn); (2.6)
and . o 1
E : A = ) — — gl
1€1Gs,, 1 A0l faz Aw(n) —al ) (2.7)

For a squarefree integer M and an odd prime p with (M, p) = 1 and a negative discriminant — D, one [2]
has

H(M)l)(pQD) _ pH(M,l)(D) — H(pM’l)(D). (2.8)
So we have
H@D (4p%n) — pHED (4n) = HD (4n) (2.9)
and
H®Y (16n) — 2H® Y (4n) = HZPD (4n). (2.10)

Furthermore, from the above equation we can get

H®Y (4n) — 2B (n) = HD (4n). (2.11)

Combining the eqatuions (2.6), (2.7), (2.9), (2.11) and r3(n) = 12HZY (4n), we obtain the identity (2.5).
In fact, combining Theorem 1.2 and the equality of the modified Hurwitz class number HN1:N2(D), we
can derive more identities similar to (2.5).

2.3 Du’s equality

In 2016, Du [4] gave an interesting equality as follows. For squarefree D with odd number of prime factors,
let B(D) be the unique quaternion algebra over Q of discriminant D, and

V(D) = {z € B(D)|tr(xz) = 0}.

For a positive interger N prime to D, let Lp(N) = O(N) NV (D), where O(N) is an Eichler order in B of

conductor N, and
Ly (m)
Lqi€gen(L) | Aut(La)]
DN = Tgen(L)(m) = 1 .
| Aut(Ly)]
Li€gen(L)




Now let D be a square-free positive integer with even number of prime factors, p # ¢ be two different primes
not dividing D, and N be a positive integer prime to Dpg. Then

2 g+1 2 p+1

—mer,N(m) + q_—erp,Nq(m) = —ETDq,N(m) M

TDg,Np(M) (2.12)

for every positive integer m.
Now we give a new proof of the equality (2.12). In terms of the results of Theorem 1.2,

HPrNG (4m)  2HPPN) (4m) — HPPLN) (4m)
roena) = TN ©) T (14 HPRN(0)

In terms of the definition (1.1 ), we have

HWPND (4m) = 2HPN) (4m) — HPEN) (4m).
The left hand of the equality (2.12)

2 (m) + g+1 (m) —HDPaN) (4m) HPra:N) (49m)
r m r m) = = .
— 1 bpN q—1 Prha (g — )HDr.N)(0) ~  HDra.N)(0)

Similarly, the right hand of the equality (2.12)

2 +1 HPra:N) (49m,
———rpg(m) + 2 (4m)
p—1 D

—1 72N (M) = TRy

3 Examples and tables

In this section we will give some examples of representation of ternary quadratic forms. If the class number
of a genus is one, we can give an exact formula of representation number of n by the ternary quadratic
forms. For squarefree integers N, there are 73 genera of ternary quadratic forms of level 4NV with one class.
Let O C Qn be an Eichler order. Its type number equals 1 if its level (N, F') is one of the following: (2,1),
(3,1), (5,1), (7,1), (13,1), (30,1), (42,1), (70,1), (78,1), (2,3), (2,5), (2,7), (2,11), (2,15), (2,23), (3,2), (3,5),
(3,11), (5,2), (7,3)[12, p.94], and we get 73 genera with one class. We give the explicit formulas for the
representation number of ternary quadratic forms as follows.

Table 1: Genera with one class

Genus Ny dy Ry(n)

Gaa2 4 4 R(1,1,1,0,00) (n) = 12H®V (4n)
Gi2,9.3 4-3 32 R(11300-1)(n) = 6H ) (4n)
Gi2,33 4-3 3 Ri11,00-1)(n) = 6H 1) (12n)
G12,144,3 4-3 16 - 32 R(34.4,—4,0,0(n) = 6H 1) (n)
G12,48,3 4.3 16-3 R(1,4,4,—4,0,0)(n) = 6HG(3n)
G20,25,5 4.5 52 Ri222,-1,-1,—1)(n) = 3H®Y (4n)
G20,5,5 4-5 5 Ri1211,1)(n) = 3H®1(20n)
G20,400,5 4-5 16 - 52 R(377,-6,—2,—2)(n) = 3H® (n)
G20,80,5 4.5 16-5 R(3.33.222)(n) =3H® (5n)
Gag.49,7 4-7 72 R(1,27,0,0,-1)(n) = 2H™V (4n)



Gag7.7
Gag,784,7
Gas 12,7
G52,169,13
Gs2,13,13
G'52,2704,13
G52,208,13
G60,900,30
G'60,300,30
G'60,180,30
G'60,60,30
Gga,1764,42
G4 588,42
Gg4,252,42
G'ga,84,42
G'140,4900,70
G'140,980,70
G140,700,70
G'140,140,70
G'156,6084,78
G'156,2028,78
G156,468,78
G156,156,78
G12,36,2
G12,12,2
G'20,100,2
G20,20,2
G28,196,2
G2g,28,2
G44,484,2
Gaa,44,2
G60,900,2
G60,300,2
G'60,180,2
G'60,60,2
Go2,2116,2
Go92,92,2
G12,36,3
G12,12,3
G60,225,3
G60,75,3
Ge0,45,3
Geo,15,3
G'60,3600,3
G'60,1200,3
G60,720,3
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R(1,1,2,0,—1,0) (n) = 2H(7’1) (28TL)
Ria.8.0,—a,0)(n) =2HTV (n)
R(1,4,8,—4,0,0)(n) = 2H™D(7n)
Re255,-3,-1,—1)(n) = HI3D (4n)
R(12,2,-1,0,-1)(n) = HI3D(52n)
R(7,8,15,s,2,4) (n) = H(lg’l)(")
R(337.229 (n) = HI31(13n)
2R(3,10,10,—10,0,0)(N) = 3HG0D (4n)
2R(1,10,10,—10,0,0)(N) = 3HE0 (12n)
2R (2,2.15,0,0,—2)(n) = 3HB%1) (20n)
2R(2,2,5,0,0,—2)(n) = 3H®"1) (60n)
R(1,21,21,0,0,0(n) = H(42’1)(4n)
R3.7,7.0,00)(n) = H421 (12n)
R3,37.000(n) = H12(28n)
R1,1,21,0,0,0(n) = H(2 1)(8411)
2R(2,18.35,0,0,—2)(n) = HT% (4n)

2R (6,6,7,0,0,—2)(n) = HT"V) (20n)
2R 5,6,6,—2,0,0)(n) = H(:D(28n)
2R(1 2,18,—2,0,0)(n) = HTY (140n)
2R (6,13,21,0,—6,0)(n) = H®Y (4n)
2R(2,7.39,0,0,—2)(n) = H™D (12n)
2R(1,6,21,~6,0,0)(n) = H® (52n)
2R(2,33,7,0,—2,0)(n) = H(™:1(156n)
R(32300,-2)(n) =3H (2:3) (4n)
R(1,2,2,-2,0,0)(n) = 3H*3) (12n)
R(1,5,5,0,0,0)(n) = 2H®) (4n)
R(1,1,5,0,0,0)(n) = 2H®% (20n)

2R (355, 4,—2,—2)(n) = 3H*7) (4n)
2R(2,2.3,2,2,2)(n )_3H27)§ 8n)

Ri26,11,0,0,-2)(n) = H® (4n)
R(1,2,6,-2,0,0)(n) = H®) (44n)
2R(5,6.9,6,0,0)(n) = HZ) (4n)
2R(2,3,15,0,0,—2)(n) = H®15)(12n)
2R(1,6,9,—6,0,0)(n) = H*19(20n)
2R (2,3,3,0,0,—2)(n) = H>'9)(60n)
2R(5,10,14,10,2,4)(n) = HZ) (4n)
2R(2,3,5,-2,0,-2)(n) = H®?®(92n)

R(1,33,0,00)(n) = 2H®? (4n)
R(1.1,3,0,0,0)(n) = 2H®2) (12n)
R(1,4,15,0,0,-1)(n) = H5) (4n)
R(2.2,50,0,—1)(n) = H®5 (12n)
R(22:3,0,0,—1)(n) = H®% (20n)
R(1,1,40,-1,0)(n) = H3)(60n)
R1,15,16,0,—4,0)(n) = HB3)(n)
R(588,—4,0,0)(n) = H®®)(3n)
R(3.8,8,—4,0,0)(n) = HB3 (5n)



For the class number larger than one, we give one example.
= 32 genera in the set of all primitive positive definite ternary quadratic forms of level 140. The
class number of primitive positive definite ternary quadratic forms of level 140 is |C(140)| = 76. We give 32

22><2+1

Ge0,240,3
G132,1089,3
G132,363,3
G132,99,3
G132,33,3
G132,17424,3
G132,5808,3
G132,1584,3
G132,528,3
G'20,100,5

G20,20,5

Ggaaa1,7
Gga 7,7

G8a,63,7
Gga,21,7

G's4,7056,7
Gga,2352,7
G84,1008,7
G'84,336,7

4-3.-5 16-3-5 R(1,4,16,—4,0,0)(n) = H35) (15n)
4.3-11 32.112 2R(6,7.10,7,3,6)(n) = H®D (4n)
43 11 3 112 2R(2773)171)( ) (3 11)(127?,)
4-3-11 32.11 2R(2,3,5,—3,1,0)(n) = HEM) (44n)
4-3-11 3-11 2R(125,1,1,1)(n) = HG11)(132n)
4-3-11 16 - 32 . 112 2R(7,19,39,—18,—6,—2) (TL) = H(3’11)(n)
4-3-11 16-3-11>  2Rs 1317248 (n) = HEM(3n)
4-3-11 16-3%-11  2R(5517,-2,-2,—2)(n) = H31D(11n)
4-3.11 16-3-11 2R(47,7,—6,0,—1y(n) = HE M) (33n)
4-5 457 R(2,35.0,0,-2)(n) = 2H®?) (4n)

4-5 4-5 R(112731_21070) (n) = 2H(5 2) (2OTL)
4-3.7 32.7? 2R(28.8 —5,-1,—1)(n) = H™ (4n)
4-3.7 3.7 2R(3,3,5,—2,~ 2,—1)( n) = H3) (12n)
4.3.7 3.7 2R(9,2,5,2,2,1)(n) = H(™3)(28n)
4-3-7 3-7 2R(1 2,3,—1,—1,0) (TL) = H(7’3) (84TL)
4-3-7  16-3-7%  2R(s1103284)(n) = H™(n)
4-3-7 16-3-7°  2R(51212,-4,—4,—ay(n) = HT (3n)
4.3.7 16-3%2-7 2R(58,8,4,4,0)(n) = HT3) (Tn)
437 1637 2R(3311222)( ) (73)(217?,)

formulas of the weighted sums of representation of ternary quadratic forms on each genus.

Table 2: Representation of ternary quadratic forms of level 140

Genus dy R¢(n)

Gia012055 5272 3R(3,3,35,0,0,—1)(n) + 2R3 12.12,-11,—2,-2) (1) + 3R(5.7,10,0,—5,0) () = 3H® (4n)
Gia0,12257 D2+ T° R(1,9.35,00,-1)(n) + 2R4,9.11,0.1,2)(n) = HT5) (4n)

G140,245,5 5.7 3R(1,7,9,0,-1,0)(n) + 2R(4,4,41,1,1)(n) + 3R(12,35,0,0,-1)(n) = 3H®7)(20n)
G140,245,7 5.7 R(337.00,-1)(n) + 2R3553,22)(n) = HT 5)(20”)

G140,175,5 52.7 3R(1,5,10,-5,0,0)(n) + 2R(4,4.4.3.3.3)(n) + 3R(1,5.9.0,-1,0)(n) = 3H®7)(28n)
G140,175,7 52.7 R3.3500,-1)(n) + 2R(2,2,12,-1,-1,-1)(n) = H(T?)(28n)

G140,35,5 5-7 3R(1,3,3,-1,00)(n) + 2R(1.1,12,1,1,1)(n) + 3R(1,2.5.0,0,—1)(n) = 3H®7 (140n)
G140,35,7 5.7 R(1,1,0,0,-1,0)(n )+2R(1,3,4,3,1,1)( n) = H(75)(140n)

Giao0002  4-5%-7*  2R(5.14.21,-14,0,0)(n) + 2R(7.10,20,—10,0,0) (1) = H*3% (4n)

Gra040005 4-5%-T° 4R (312350,0,—2)(n) + 2R(5.7,35,0,0,0) (1) + 2R(7,10,20,—10,0,0) (1) = H®19 (4n)
Giaoao00,7  4-52-7%  R(13535000) () + 4R4,9,35,0,0,—2)(n) + 4R(11,11,15,10,10,8) (n) = H (710 (4n)
Grao,000,70 4-52-7*  2R(218350,0,-2)(n) = H(®, 1)(4”)

G140,980,2 4-5.7? 2R (2,7.18,0,—2,0)(n) + 2R(1,14,21,-14,0,0) (n) = H*35 (20n)

G140,980,5 4-5.7? 4R(4,7,9,0,—2,0)(n) + 2R(1,7.35,0,0,0) (n) + 2R(2.4,35,0,0,—2)(n) = H®1D(20n)
G140,980,7 4-5.72 R(57,7,000)(n) + 4R (3,519, —4,—2,—2) (1) + 4R (3.7.12,0,—2,0)(n) = H10(20n)
Gia0,98070 4-5-72 2R 6,6,7,0,0,—2)(n) = H™0D(20n)

G140,700,2 4-5%.7 2R (2,5.18,0,-2,0)(n) + 2R (2,3.25.0.0,_2)(n) = H*3% (28n)

Let level 4N = 4 -5 -7 = 140, there are



G'140,700,5 4-5%.7 4R(4,59,0,—2,0)(n) + 2R(1,5.35,0,0,0) (1) + 2R(1,10,20,—10,0,0)(n) = H®:11)(28n)
G140,700,7 4-52.7 R(5,5,7,0,0,0)(n) +4R(3,512,0,-2,0)(n) + 4R2 8 13.6,2,2)(n) = H(T19(28n)
Gis070070 4-5%-7 2R (5,6,6,—2,0,0)(n) = H(, 1) (28n)

Gia0,1402  4-5-7 2R(1,6,6,—2,0,0)(n) +2R(23700 _2)(n) = HZ35(140n)

G140,140,5 4-5-7 4R(1,3,12, 2,0,0)(n) + 2R (157,000 (1) + 2R(2.4,5.0,0,—2)(n) = H®14 (140n)
G140,140,7 4.5-7 R(1,1,35,0,00) (1) + 4R (1,40,-2,0,0)(n) + 4R(3,4,4,—2,—2, —2)(n) = H10(140n)
Gi40,140,0 4-5-7 2R(1,2,18,—2,0,0)(n) = HT"Y (140n)

G140,19600,5 1652 7% 3R(7.90.40,20,0,0) (1) + 2R3 47,47, —16,—2,-2)(n) + 3R(12,12,35,0,0,4)(n) = 3H® (n)
Gr40,10600,7 1652 7% R4 3536,0,—4,0)(n) + 2R(11,15,39,—10,—6,—10) (1) = H™5) (n)

Gra0,30205 16-5-7*  3R47,36,0,—4,0)(n) + 2R 11,11,11,6,—6,-6) (1) + 3R (4,8 35,0,0,—4)(n) = 3H®(5n)
Gia03920,7 1657 Rr12,12,-4,00)(n) + 2R(3.19,19,10,2,2)(n) = H™ (5n)

Gra0,28005 16527 3R(1.20.40,—20,0,0) () + 2R(9 9.9,—2,—2,—2)(n) + 3R(45.36,0,—a,0)(n) = 3H®D(Tn)
Grao2800,7  16:5%-7  R512,12,-4,0,0) (") +2R(5.8,18,—4,—4,—4)(n) = H(™) (n)

G140,560,5 16-5-7 3R4,5.8,0,—4,0)(n) + 2113(4,4,13,4,4,4)( n) + 3R 1 12, 12 —1,0,0)(n) = 3H®D(35n)
G140,560,7 16-5-7 R(1,4,36,-4,0,0)(n) + 2R 59 2,0,—4)(n) = H(TS )(35n)

Table 3: Class number of primitive positive definite ternary
quadratic forms of level 4N

IN [CAN) [ 4N [CAM[ ] 4N |C@EN)]
4 1 (| 340 108 || 668 98
12 8 | 348 140 || 692 86
20 8 || 356 54 || 708 200
28 10 || 364 124 || 716 96
44 14 || 372 124 || 724 86
52 12 || 380 148 || 732 224
60 48 || 388 50 || 740 212
68 16 || 404 60 || 748 212
76 18 || 412 62 || 764 110
84 52 || 420 384 || 772 82
92 22 || 428 60 || 780 600
116 22 || 436 52 || 788 88
124 26 || 444 164 || 796 106
132 68 || 452 56 || 804 224
140 76 || 460 156 || 812 236
148 22 || 476 180 || 820 216
156 80 || 492 160 || 836 244
164 30 || 508 68 || 844 96
172 28 || 516 164 || 852 248
188 38 || 524 80 || 860 276
204 92 || 532 152 || 868 232
212 32 || 548 66 || 876 244
220 100 || 556 74 || 884 236
298 88 || 564 176 || 892 114
236 44 || 572 200 || 908 116
244 36 || 580 172 || 916 106




260 96 || 596 76 || 924 680
268 38 || 604 80 || 932 102
276 112 || 620 200 || 940 252
284 50 || 628 76 || 948 264
292 40 || 636 216 || 956 132
308 112 || 644 200 || 964 110
316 48 || 652 74 || 988 264
332 54 || 660 496 || 996 268
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