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Abstract

It was shown by Visser that Peano Arithmetic has the property that
any two bi-interpretable extensions of it (in the same language) are equiv-
alent. Enayat proposed to refer to this property of a theory as tightness.
He proved that PA and other theories such as ZF enjoy even stronger vari-
ants of this property, and he asked whether PA has a proper subtheory
that is tight.

We report on work in progress with Piotr Gruza and Mateusz Lelyk
that shows, among other things, that there are tight proper subtheories of
PA and that tightness can be separated from one of its stronger variants
called neatness.

Introduction. In this note we report on an ongoing project [GKL] concerned
with the behaviour of subtheories of first-order arithmetic with respect to some
properties of axiomatic theories defined in terms of interpretability.

We assume that the reader has at least an intuitive understanding of what
an interpretation of a theory V in a theory U is. We will write g : U > V to
indicate that g is such an interpretation. Since we are concerned with theories
of arithmetic, which always have a pairing function, we may assume that all
our interpretations are one-dimensional, i.e. an element of the universe of the
interpreted theory V' is always interpreted as an element of the universe of the
interpreting theory U, not as a k-tuple for some k > 2. On the other hand, we
allow interpretations to be relative, in the sense that the universe of V-objects
can be a definable proper subset of the universe of U-objects. In principle, we do
not require absolute identity, i.e. identity between V-objects can be interpreted
as an equivalence relation on U-objects other than identity, but in practice all
the interpretations that matter for us below will have absolute identity.

We also assume some basic familiarity with Peano Arithmetic (PA) and its
subtheories, especially with the theories I¥,, and BY,,. All relevant background
material on this topic can be found in [Kay91].

Two theories U and V are bi-interpretable if there exist interpretations
g: UV and h: V > U such that h o g is U-provably isomorphic to the iden-
tity interpretation of U in U and g o h is V-provably isomorphic to the identity
interpretation of V in V' (composition of interpretations and the identity inter-
pretation are defined in a natural way). In [Vis06], Visser proved the following
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result about PA:

If U,V are bi-interpretable theories extending PA
formulated in the language of PA, then U = V. (1)

In fact, [Vis06] contains a stronger result:

If U,V are theories extending PA formulated in the language of PA,
and U is a retract of V, then U E V. (2)

Here U is a retract of V in the sense of interpretability if there exist inter-
pretations g: U > V and h: V > U witnessing “one half” of the definition of
bi-interpretability: ho g is U-provably isomorphic to the identity interpretation
onU.

Enayat [Enal6] proposed to say that a theory T is tight if it has a property
analogous to (1), that is any two bi-interpretable extensions of T' formulated in
the language of T' are equivalent; and to say that T is neat if it has a property
analogous to (2). Note that both tightness and neatness are preserved upwards
w.r.t. logical strength for theories in the same language. There are also stronger,
“semantical” versions of tightness and neatness, called semantical tightness and
solidity respectively [FH21, Enal6], in which the antecedents are stated in terms
of interpretations between models of T" and the consequents are stated in terms
of definable isomorphism rather than implication or elementary equivalence.
However, in this text we focus on the syntactically defined properties.

Prior work. In [Enal6], Enayat showed that not only PA, but also other im-
portant schematically axiomatized theories such as ZF and second-order arith-
metic are neat, and a fortiori tight. However, it has turned out that natural
proper fragments of those theories tend not to be tight. More specifically, the
following theories (and some others not mentioned here) are known not to be
tight:

e ZFC~ (ZFC without Power Set and with Collection instead of Replace-
ment), as well as Zermelo set theory Z [FH21].

e the fragment II}-CA of second-order arithmetic, for any n € N [FW23].

e I3, for any n € N. In fact, the II,, fragment of true arithmetic and any
I1,,-axiomatized subtheory of ZFC, for any n € N [EL24].

Let us sketch how to prove the non-tightness of I1¥,,. Let U be true arith-
metic, i.e. U = Th(N). Let V be the theory of the model K defined as follows:
take an arithmetically definable completion of PA + - Con(PA), let H be its
Henkin model (which is definable in N, by the arithmetized completeness theo-
rem, cf. [Kay91, Chapter 13.2]), and let K consist of the ¥,, 1 1-definable elements
of H (namely, those a € H such that {a} is ¥, 11-definable without parameters
in H). See Figure 1.

It is known that K is a 3, 41-elementary substructure of H: thus, it satisfies
I3, which is a I, 12-axiomatized theory. We also know that K # N, because
K satisfies = Con(PA).



Figure 1: Construction of the model K witnessing the non-tightness of I3,,. The
solid horizontal lines represent K, which is a pointwise >, 1-definable substruc-
ture of the Henkin structure H. The dashed horizontal lines represent the rest
of H.

However, the theories of N and K, i.e. U and V, are bi-interpretable. On
the level of models, N can interpret K by formalizing the construction of H
and K described above (here it matters that H was definable in N), while K
can interpret N as a particular definable cut: a number a is not standard if
every element has a 3,11 definition with Gédel number below a. Moreover, one
can check that following one interpretation and then the other, in whichever
order, leads to a model definably isomorphic to the one we started in. The
isomorphism between N and its copy in K is given by mapping m € N to the
m-th smallest element of K. We let the reader figure out the details of the
isomorphism between K and its copy defined inside the standard cut of K.

Putting it all together, Th(N) and Th(K) are bi-interpretable theories ex-
tending I¥,, which are not equivalent, so I3, is not tight.

Main theorem. The non-tightness results mentioned above give additional
force to the observation, made already by Enayat in [Enal6], that proofs of
tightness-like properties for a theory like PA and ZF use the ‘full power’ of
the theory. Enayat asked whether any of those theories has a neat proper
subtheory!. Another natural question is whether tightness can be separated
from its apparently stronger cousins: for example, is there a theory that is tight
but not neat?

We are now able to answer both of these questions in the affirmative for the
case of PA. Namely, in [GKL] we prove among other things the following.

Theorem 1. For every n € N there exists:
(a) a neat c.e. subtheory T, of PA that contains I3, but not BX, 41,

(b) a tight but not neat c.e. subtheory Sny1 of PA that contains BX, 1 but
not 13, 41.

Below, we sketch the proof of (b) for n = 0. To keep things reasonably
straightforward, we focus on a simplified version where we do not pay attention
to making S; c.e. and contained in PA. At the end of the sketch, we briefly
explain how to get rid of these simplifications. Afterwards, we comment on
some ideas that go into the proof of (a).

A tight but not neat theory. In the proof of non-tightness of I3,,, we used
a pointwise ¥, 11-definable model K, which is a typical model of I¥,, but not

'In [Enal6], the question is stated for the semantic variant of neatness, solidity. Our answer
discussed below works in that setting as well. Also, to rule out trivial examples, one should
probably require the proper subtheory to have at least some minimal amount of strength.
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Figure 2: Construction of the model I of the tight but not neat theory Sj.
The solid horizontal line represents I, which is an initial segment of the Henkin
structure H. The dashed horizontal line represents the rest of H.

BY,11. We now take advantage of the fact that a suitably chosen proper cut
in a model of a sufficiently strong theory satisfies BX,,11 but not I3, 11.

Consider the model I defined as follows: once more, begin with an arith-
metically definable completion of PA + —Con(PA), and let H be its Henkin
model. Now, however, instead of taking exactly the ¥, ;;-definable elements of
H (which will never form an initial segment of H), let a be the smallest incon-
sistency proof for PA in H, and let I be the initial segment of H generated by
the standard iterations of the exponential function on a, that is by 2%, 22" ...
See Figure 2.

As mentioned, we know on general grounds that I satisfies BX;, and it
satisfies the axiom exp (totality of the exponential function) by our choice of L.
We also know that it does not satisfy I¥;: the standard cut, which is a proper
cut of I, is ¥i-definable in I, because it consists of exactly those ¢ for which
there exists a number that is the result of iterating the exponential function ¢
times starting with a.

There are interpretations between N and I very similar to those between N
and K: the interpretation of I in N is based on formalizing the construction of
H and I, and we have just seen that N can be interpreted in I as a definable
cut. Once again, mapping m € N to the m-th smallest element of T gives an
N-definable isomorphism between N and its copy in 1.

As might be expected, it is also true that I is isomorphic to its copy defined
inside the standard cut of I. However, perhaps contrary to what might be
expected, the isomorphism cannot be defined in I. In fact, there is no definable
injection from I into a proper initial segment of I, because of the following result.

Theorem. [Kay95] For each n, the theory BY,, + exp + —I%,, proves the cardi-
nality scheme: “for each number ¢, there is no definable injective multifunction
with the universe as domain and with range bounded by £”.

We can now define (our simplified version of) S; as the following theory:
{I¥;1 = ¢ :p e Th(N)}U{=IX; — ¢ : ¢ € Th(D)}.

Note that this makes sense, because I, is finitely axiomatizable for each n > 1.
Clearly, S; is a subtheory of Th(N) containing B¥; but not I¥;. We have to
show that S; is tight, but also that it is not neat.

We begin with the latter. As our pair of theories witnessing the failure
of neatness, we take U = Th(N) and V' = Th(I). Both of these theories are
extensions of Sy. Also, Th(N) is a retract of Th(I): we have already mentioned
that the isomorphism between N and its copy in [ is definable in N; clearly then,
Th(N) knows that this is an isomorphism. However, Th(N) & Th(I); in fact,
Th(N) and Th(I) are distinct consistent complete theories, so they are mutually
contradictory. Thus, S7 is not neat.



On the other hand, if there were two theories U,V witnessing the non-
tightness of S7, then we could assume w.l.o.g. that they are complete. The
theory S; has only two complete extensions, namely Th(N) and Th(I), so
w.lo.g. U = Th(N) and V = Th(I). But this would imply in particular that
Th(I) is a retract of Th(N) — which can be ruled out by a slightly more careful
version of the cardinality scheme argument described above! So, S; is tight.

To make S; computably axiomatized, and a subtheory of PA, one essentially
“replaces Th(N) by PA” in the definitions above. This also requires replacing
Th(I) by a computably axiomatized subtheory that captures enough of the situa-
tion for the arguments to work. Then one still has to check that PA is sufficiently
strong for the construction of the Henkin model H to go through. This involves
another change: we can no longer insist H satisfying PA 4+ = Con(PA), because
PA does not know that this theory is consistent. We can use I%; + = Con(I%;)
instead.

Generalizing the proof so as to obtain S,4; for all n > 0 involves mostly
routine tricks.

Other results. In the construction of the neat theory containing I3, but not
BY,, 11 needed for Theorem 1 part (a), we go back to the model K used in the
proof of non-tightness of I¥,,, but with a crucial change. The standard model
N is replaced by its expansion (N, Th(N)), where Th(N) is the interpretation of
a new unary relation symbol that we refer to as a truth predicate. We want the
“new version” of K to be a structure in the original language of PA, but at the
same time we want Th(K) to be bi-interpretable with Th(N). To this end, we
employ a X1 -flexible formula, which is a 31 formula that consistently with PA
can be equivalent to any other ¥; formula. We ensure that in K, the elements of
the standard cut that satisfy the flexible formula are exactly the Gédel numbers
of sentences true in N.
Our theory is then roughly

{BSut1 = ¢ ¢ € Th(N)} U{~BS,s1 — ¢ : % € Th(K)},

where of course K is the new version. To turn this into the theory 7;, which is
c.e. and (properly) contained in PA, we “replace Th((N, Th(N))) by CT[PA]”
— where CT[PA] is a well-known axiomatic theory of truth that extends PA by
adding a unary relation symbol Tr and saying that it satisfies the usual inductive
conditions for a truth predicate. Naturally, this leads to some further changes
downstream.

Part (a) of our theorem can be improved by making 7;, “even more distant
from PA” in various ways: for example, we can demand that T,, be unable to
interpret PA. This requires a more involved construction.

We find it interesting that the proof of Theorem 1 employs a relatively large
set of tools from the proof theory and model theory of arithmetic: e.g. arith-
metized completeness, the cardinality scheme, pointwise definable models, ax-
iomatic truth theories, flexible formulas. It also seems interesting that our
constructions of peculiar, necessarily non—finitely-axiomatizable tight theories
rely on a method originally used to prove non-tightness of finitely axiomatized
theories.

The paper [GKL] will also contain other results, for example additional sep-
arations between tightness-like properties.



References

[EL24]

[Enalé6)

[FH21]

[FW23]

[GKL]

[Kay91]

[Kay95]

[Vis06]

Ali Enayat and Mateusz Lelyk. Categoricity-like properties in the first-
order realm, 2024. Preprint.

Ali Enayat. Variations on a Visserian theme. In A tribute to Albert
Visser, volume 30 of Tributes, pages 99-110. Coll. Publ., [London],
2016.

Alfredo Roque Freire and Joel David Hamkins. Bi-interpretation in
weak set theories. J. Symb. Log., 86(2):609-634, 2021.

Alfredo Roque Freire and Kameryn J. Williams. Non-tightness in class
theory and second-order arithmetic. J. Symb. Log., 2023. FirstView.
DOI: 10.1017/js1.2023.38.

Piotr Gruza, Leszek Aleksander Kolodziejezyk, and Mateusz Letyk.
Tightness and solidity in fragments of Peano Arithmetic [working title].
In preparation.

Richard Kaye. Models of Peano Arithmetic. Oxford University Press,
1991.

Richard Kaye. The theory of x-like models of arithmetic. Notre Dame
J. Formal Logic, 36(4):547-559, 1995.

Albert Visser. Categories of theories and interpretations. In Logic in
Tehran, volume 26 of Lect. Notes Log., pages 284-341. Assoc. Symbol.
Logic, La Jolla, CA, 2006.



