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ABSTRACT. Deep IIY classes, which were introduced in a previous
paper of the authors as a generalization of the work of Levin, were
so named because they exhib properties similar to those of the
notion of logical depth, due to Bennett. In this paper we show
that the two notions are in fact much more than just similar, but

very closely connected indeed.

1. INTRODUCTION

Bennettintroduced the notion of logical depth in [Ben95| as a mea-
sure of complexity, formulated in terms the amount of computation
time required to reproduce a given object. Whereas the Kolmogorov
complexity of a string ¢ € 2<“ measures the length of the shortest in-
put given to a fixed universal machine that reproduces o as its output,
logical depth measures the number of steps it takes to recover o from

this shortest input. Bennett further defined a sequence X € 2“ to be
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2 LOGICAL DEPTH AND DEEP I CLASSES

strongly deep if for every computable function ¢ the logical depth of
almost all of the initial segments X [n of X is greater than ¢(n).

Bennett established several fundamental facts about strongly deep
sequences, namely that the halting set K is strongly deep, that no com-
putable sequence and no Martin-Lof random sequence is strongly deep,
and that strong depth is closed upwards under truth-table reducibility
(a result he referred to as the slow growth law). Bennett further intro-
duced the notion of weak depth, where a sequence is weakly deep if it
is not truth-table reducible to a random sequence.

An analogue of deep sequences for I19 classes, i.e., effectively closed
subsets of 2, was developed by the present authors in [BP16]. The
authors isolated the notion of a deep II{ class as a generalized of work
of Levin [Lev13], who implicitly showed that the TI{ class of consistent
completions of Peano arithmetic is deep. The basic idea, made precise
in the next section, is that a IT? class P is deep if the probability of
computing some length n initial segment of some member of P via some
Turing functional equipped with a random oracle rapidly approaches
zero as n grows without bound. In [BP16], the authors proved a number
of results about deep I1Y classes, including an analogue of the slow
growth law for deep IIY classes in the Medvedev degrees, as well as
identifying a number of examples of deep 1Y classes based on properties
studied in computability theory and algorithmic information theory.

The aim of this study is to show that the relationship between
strongly deep sequences and deep I1{ classes is no mere analogy. In par-
ticular, we prove that every member of a deep I19 class is strongly deep,
from which it follows that we gain a significant number of newly identi-
fied examples of strongly deep sequences based on results from [BP16].

We further show that a strongly deep sequence need not be a member
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of a deep IIY class. Next, as every deep 1Y class is negligible, in the
sense that the probability of computing a member of such a class with
a Turing functional equipped with a random oracle is zero, in light of
the fact that all members of deep IIV classes are strongly deep, it is
reasonable to ask whether the collection of strongly deep sequences is
negligible. We answer this question in the affirmative, while further
showing that the collection of sequences that are deep with respect to
any fixed time bound is not negligible.

One takeaway we aim to emphasize in this study is the importance of
the slow growth law for the study of depth, akin to the role of random-
ness preservation in the study of algorithmic randomness. According
to the latter, every sequence that is truth-table reducible to a sequence
that is random with respect to a computable measure is itself random
with respect to a computable measure, which is precisely the dual of
the slow growth law for deep sequences. We anticipate that the slow
growth law will continue to be a useful tool in the study of notions of

depth.

2. BACKGROUND

2.1. Turing functionals. Recall that a Turing functional ® :C 2% —
2% can be defined in terms of a c.e. set Sg of pairs of strings (o, 7) such
that if (o,7),(0’,7") € Sg and ¢ < o', then 7 < 7/ or 7/ < 7. For
each o € 2<% we define 7 to be the maximal string in {7 : (o’ =<
o)(o’,7) € Ss} in the order given by <. To obtain a map defined
on 2¥ from the set Sy, for each X € 2¥, we let ®X be the maximal
y € 2<¥ U2¥ in the order given by < such that ®XI" is a prefix of y for

all n.
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2.2. Semimeasures. A discrete semimeasure is a function m : 2<% —
[0, 1] satisfying Y cp<o m(o) < 1. Similarly, a continuous semimeasure
is a function P : 2<¥ — [0, 1] satisfying (i) P(@) < 1 and (ii) P(o) >
P(00)+ P(o1) for all o € 2<¥. Given a continuous semimeasure P and
some S C 2<¥ we set P(S) =) _sP(0).

A discrete semimeasure m is computable if its output values m(o)
are computable uniformly in the input ¢ € 2<“ (and similarly for
continuous semimeasures). Here we will also consider lower semicom-
putable semimeasures (both discrete and continuous), where a function
f 2% — [0,1] is lower semicomputable if each value f(o) is the
limit of a computable, nondecreasing sequence of rationals, uniformly
in o€ 2.

An important development due to Levin [LZ70] was the identification
of universal semimeasures: for discrete semimeasures, m is universal if
for every lower semicomputable measure mg there is some constant c
such that mg(o) < ¢-m(o). Similarly, a continuous semimeasure M is
universal if for every lower semicomputable measure P there is some
constant ¢ such that P(o) < ¢- M (o). Hereafter, m and M will denote

fixed universal discrete and continuous semimeasures, respectively.

2.3. Initial segment complexity. Recall that the prefix-free Kol-
mogorov complexity of a string 7 € 2<¢ is defined by setting K(7) =
min{|o|: U(o)| = 7}, where U is a fixed universal prefix-free machine
(i.e., recall that a machine M is prefix-free if for o,p € 2<¥ if M(o)]
and o < p, then M(p)T). Moreover, we can define time-bounded ver-
sions of Kolmogorov complexity. A function t : w — w is called a time
bound if t is total and non-decreasing. Then for a fixed computable
time bound ¢, the t-time-bounded complexity of 7 € 2<¢ is defined by
setting K'(7) = min{|o|: U(o)} =7 in < ¢(|7]) steps}.
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Note that by Levin’s coding theorem, K (o) = —logm(o) + O(1)
for all o € 2<¥. A similar relationship holds for computable discrete
semimeasures and time-bounded Kolmogorov complexity. First, we
define a time-bounded version of m as follows. As m is lower semi-
computable, for each s € w, we have an approximation m; of m (i.e.,
for each o € 2<%, my(0) is the s-th rational number in computable se-
quence that converges to m(o)). Then given a computable time bound
t, we set m’(0) = my(|,(), which is clearly a computable semimeasure.
We will make use of the following lemma from [BDM23] (where for func-
tions f, g, f <* g means that there is some ¢ such that f(n) < c-g(n)

for all n € w).

Lemma 1 ([BDM23]).

(i) For every computable discrete semimeasure m, there is some
computable time bound t such that m <* m'.
(ii) For every computable time bound t, 25" s a computable dis-
crete semimeasure.
(iii) For every computable time bound t, there is some computable

time bound t' such that 275" <* m").

In addition, we need the following theorem (see, e.g. [JLL94, Theo-
rem 4.3(2)]).

Theorem 2. For every computable time bound t, there is a computable

time bound t' such that mt <* 9K

Note that by combining Lemma 1(iii) and Theorem 2, we obtain a
resource-bounded analogue of Levin’s coding theorem.
In the case of continuous semimeasures, we directly define KA(co) :=

—logM(o) to be the a priori complexity of o € 2<¥. Just as we
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defined m! for any computable time bound ¢, we can similarly define
M¢, which is a computable continuous semimeasure. Moreover, we can
establish the analogue of Lemma 1(i): For every computable continuous
semimeasure P, there is some computable time bound ¢ such that P <*
M. We will also define KA" := M for any given computable time
bound ¢.

Lastly, we define monotone complexity in terms of monotone ma-
chines, where a monotone machine M : 2<% — 2<% satisfies the prop-
erty that for o,7 € dom(M), if 0 < 7, then either M(0) < M(7)
or M(r) < M(o). Given a universal monotone machine U, we set
Km(1) = min{|7|: U(c)} = 7}. Given a computable time bound, we

can also define Km' in the obvious way.

2.4. Randomness and depth notions. Given a computable mea-
sure ;1 on 2¢ (i.e., a measure on 2¥ where the values p([o]) are com-
putable uniformly in ¢ € 2<¥), recall that a p-Martin-Lof test is a
uniformly Y sequence (U;);e,, such that p(U;) < 27 Recall further
that a sequence X € 2¢ passes the test (U;)icw if X & (), Ui and X
is p-Martin-Lof random if it passes all py-Martin-Lof tests. In the case
that p is the Lebesgue measure on 2¢ (which we denote by A), we will
refer to A-Martin-Lof random sequences simply as Martin-Lof random
sequences.

Next, X € 2¥ is strongly deep if for every computable time bound ¢,
we have K'(X |n) — K(X|n) — oo. A slightly stronger notion is given
by order-depth, where X € 2“ is order-deep if there is a computable
order function ¢ : w — w such that K*(X[n) — K(X[n) > g(n) for
almost every n € w. Here we use the term ‘order function’, or simply

‘order’ to mean a non-decreasing and unbounded function. When A
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is such a function, A7 (k) denotes the smallest n such that h(n) > k.
Note that A~! is computable when A is.

In the rest of the paper we will sometimes use an equivalent charac-
terization of order-depth, given by the following lemma, whose proof

we will omit here.

Lemma 3. For X € 2, the following are equivalent.
(i) X is order-deep
(ii) For some computable increasing function h, for any computable
time bound t and almost alln, K*(X[h(n))—K(Xh(n)) >" n.

(iii) For some computable increasing function h, for any computable

m(X[h(n)) >X 9on.

time bound t and almost all n, (X [h(n))

One of the key properties of strong depth is the slow growth law,
given in terms of truth-table reductions. Recall that a tt-functional is
a Turing functional that is total on all oracles; equivalently, there is a

computable function f such that for all X € 2%, [®XI/(M)]| > p,

Theorem 4 (Slow Growth Law [Ben95]). For XY € 2 if X is
strongly deep and X <, Y, then Y 1is strongly deep.

The slow growth law also holds for order-depth.

Bennett proved that no computable sequence and no Martin-Lof
random sequence is strongly deep. Hereafter, we will refer to sequences
that are not strongly deep as being shallow. Bennett further showed
that the halting set (/ = {e : ¢.(e)l} (where (¢e)ecw is a standard
enumeration of the partial computable functions) is strongly deep.

Bennett defined a weaker notion of depth: a sequence X € 2“ is
weakly deep if X is not tt-reducible to a Martin-Lof random. By the

slow growth law and the fact that no Martin-Lof random sequences are
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strongly deep, it follows that every strongly deep sequence is weakly
deep; as shown by Bennett [Ben95], the converse does not hold. Note
that it is a folklore result that a sequence is not truth-table reducible to
a Martin-Lof random sequence if and only if it is not random with re-
spect to a computable measure, thereby providing an alternative char-

acterization of weak depth.

2.5. Deep I1! classes and negligiblity. As noted in the introduction,
the authors in [BP16] introduced the notion of a deep II{ class as the
abstraction of a phenomenon first isolated by Levin in [Lev13] Given
a H(l) class P, recall that there is a canonical co-c.e. tree T C 2<% such
that P = [T, i.e., P is the collection of all infinite paths through T’
more specifically, this tree T is the set of all initial segments of mem-
bers of P. For n € w, let T}, be the set of all strings in T" of length n.
We say that a IV class P is deep if there is some order g such that
M(T},) < 2790 Equivalently, P is deep is there is some order h such
that M(Th) < 27"

An analogue of the slow growth law holds for deep IIY classes in a
suitable degree structure, namely the strong degrees (also referred to
as the Medvedev degrees). Given II{ classes P and Q, we say that P
is strongly reducible to Q, written P <, Q, if there is some Turing
functional ® such that for every Y € Q, there is some X € P such that
X = ®(Y); equivalently, we have ®(Q) = P. As noted in [BP16], we
can assume here that ® is a ft-functional, a fact that will be useful in

this study. Then we have:

Theorem 5 (Slow Growth Law for I1{ classes, [BP16]). For I1{ classes
P,Q C2¥ if Pis deep and P <, Q, then Q is deep.
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Depth for ITY classes implies a property that holds more broadly for
subsets of 2, namely the property of being negligible. First, observe
that a lower semicomputable semimeasure P can be trimmed back to a
measure P < P (see [BHPS14] details). In particular, we can trim back
the universal lower semicomputable semimeasure M to get a measure
M. One key result concerning M is that for a measurable set A C 2,
M(A) =0 if and only if \({X : (Y € A) Y <7 X}) = 0; that is, from
the point of view of Lebesgue measure, only relatively few sequences can
compute of member of A. Following Levin (see for example [Lev84]),
we call such sets A negligible. As we can equivalently consider the
collection of random sequences that compute a member of A, we can
recast negligibility in terms of probabilistic computation: a collection A
is negligible if the probability of probabilistically computing a member
of A is zero. Note that every deep IIY class is thus negligible; in fact,
we can interpret the property of depth for a I1? class P as the property
that the probability of computing the first n bits of a member of P
converges to 0 effectively in n € w. As shown in [BP16], not every

negligible I1Y class is deep.

3. MEMBERS OF DEEP IIY CLASSES

When deep I1Y classes were defined in [BP16], the authors referred to
the notion as a type of depth in analogy with Bennett’s original notion
of logical depth (as, for instance, an analogue of the slow growth law
for deep II{ classes was established in [BP16]). We now show that the
connection between these two depth notions is much closer than merely
satisfying an analogy, as we prove that the members of deep I1{ classes
are strongly deep; in fact, we prove the stronger result that all such

members are order-deep.
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Theorem 6. Every member of a deep 1Y class P is order-deep.

Proof. Let T be the canonical co-c.e. tree associated to the I19 class P.
Let h be a computable order such that
> M(o) <27
€T (n)
for all n.
Let t be a computable time bound. By virtue of the inequalities
M >* m >* m’, the above inequality implies
> mi(o) <27,
T€Th(n)
Since m' is computable and T is co-c.e., one can effectively compute a
sequence s,, such that
> mi(o)<2™
€T () [sn]

Let now p be the computable discrete semimeasure defined by p(7) =
2" - m'(7) if 7 belongs to Th[s,] for some n > 0, and p(r) = 0
otherwise. That p is computable is clear from the definition (and the
computability of the sequence s,,), and that it is a semimeasure follows
from

dpm)=>" > 2nmi(r)<> 22 <L
T n>0 7E€T}, () [5n] n>0

Now, if X is a member of P, that is, X is a path through T', then

for each n > 0, we have X [h(n) € T}, and thus

p(XTh(n)) = 2" - m'(X[h(n)).
As m >* p (because p is a discrete semi-measure), we have

m(X |h(n)) >* 2" - m"(X|h(n))
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By Lemma 3, we can conclude that X is order-deep. Il

3.1. Additional examples of deep sequences. Theorem 6 also al-
lows us to derive a number of examples of deep sequences. In [BP16]
it was shown that the following collections of sequences form deep 19

classes:

(1) the collection of consistent completions of Peano arithmetic;

(2) the collection of («, ¢)-shift-complex sequences for computable
a € (0,1) and ¢ € w, where a sequence X € 2“ is («, ¢)-shift-
complex if K(7) > a|r| — ¢ for every substring 7 of X;

(3) the collection of DNC, functions with
f:w — wis a DNC, function if f is total function such that

f(n) # ¢n(n) and f(n) < q(n) for all n € w;

(4) the collection of codes of infinite sequences of finite sets (Fg, Fi, . ..

new q(n = 00, where

of strings of maximal complexity, i.e., there are computable
functions ¢, f,d : w — w such that for all n € w, (i) |F,| = f(n),
(ii) |o| = €(n) for o € F,, and (iii) K(o) > ¢(n) — d(n) for
o € F,; and

(5) the collection of codes of K-compression functions with con-
stant ¢, where ¢ : 2<¥ — w is a K-compression function with
constant ¢ if (i) g(o) < K(o) + ¢ for all 0 € 2<% and (ii)
S e 2790 < 1.

As an immediate consequence of Theorem 6 and the above results

from [BP16], we have:

Corollary 7. Every sequence in the following collections is strongly

deep:

(1) the collection of consistent completions of Peano arithmetic;
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(2) the collection of shift-complex sequences (i.e., the sequences that
are (o, ¢)-shift complex for some computable o € (0,1) and ¢ €

w);
(3) the collection of codes of DNC, functions with

— 5o

new q(n ’

(4) the collection of codes of infinite sequences of finite sets of
strings of maximal complexity; and

(5) the collection of codes of K-compression functions (i.e., K-

compression functions with constant ¢ for some ¢ € w).

We can obtain further examples of members of deep IT! classes using

a version of the slow growth law for members of deep II{ classes.

Lemma 8. If X is a member of a deep T1{ class and X <, Y, then'Y

is a member of a deep I1V class.

Proof. Let P be a I class contain X, and let ® be a total Turing
functional satisfying ®(Y) = X. Then by the slow growth law for deep
19 classes, @~ !(P) is a deep I class that contains Y, which must be

strongly deep by Theorem 6. U

Theorem 9.

(i) The halting set ' = {e € w: ¢.(€)l} is a member of a deep 1Y
class.

(ii) For every X € 2¢, X' = {e: ¢X(e)l} is a member of a deep 119
class.

iii) Every non-trivial index set is a member of a deep 119 class.
(i) Y p 119

Proof. (i) There is a DNC, function f such that f <, ' (see [Nie09,
Remark 1.8.30]). Since the collection of DNCs, functions forms a deep
I19 class, the result follows from Lemma 8.

(i) Since @ <, X’ for every X € 2¢ and (' is a member of a deep II¢
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class by part (i), the result follows from Lemma 8.
(iii). By Rice’s theorem, every non-trivial index set C' satisfies (/ <; C
or ! <, C, and so the result follows again from part (i) and Lemma 8.

g

3.2. Separating depth notions. In light of Theorem 6, it is natural
to ask whether every order-deep sequence is a member of a deep ITV
class. We show that this does not hold by establishing several propo-
sitions of independent interest.

Recall that a sequence X is complex if there is some computable or-
der g such that K (X [n) > g(n). Asshown explicitly in [HP17], one can
equivalently define a sequence to be complex in terms of a priori com-
plexity, i.e., X is complex if and only if there is some computable order
h such that KA(X [n) > h(n). We use this second characterization to

derive the following:
Proposition 10. Every member of a deep I1Y class is complexz.

Proof. Let P be a deep IIY class with associated co-c.e. tree T. Then
there is some computable order h : w — w such that M(T},) < 27",
Given X € P, since X |n € T, we have M(X [n) < M(T,,) < 27",
Taking the negative logarithm yields KA(X [n) > h(n), from which the

conclusion follows. O

Next, we have:

Proposition 11. No sequence that is Turing equivalent to an incom-

plete c.e. set is a member of a deep 11 class.

Proof. Suppose that X is a member of a deep IIY class and is Turing
equivalent to some incomplete c.e. set Y. By Proposition 10, X is

complex. It follows from work of Kjos-Hanssen, Merkle, and Stephan
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[KHMS11] that X has DNC degree. But then Y is an incomplete c.e.
set of DNC degree, which contradicts Arslanov’s completeness criterion

(see, e.g., [Nie09, Theorem 4.1.11]). O

Theorem 12. There is an order-deep sequence that is not complex

hence is not a member of any deep I1Y class).
1

Proof. In [JLL94], Juedes, Lathrop, and Lutz introduced the notion of
weakly useful sequence (we do not recall the definition of this notion
here and refer the reader to their paper) and showed that (i) every
weakly useful sequence is order-deep and (ii) every high degree con-
tains a weakly useful sequence. Our theorem then follows: Let X be
high, incomplete, and weakly useful (hence order-deep). By the same

reasoning in the proof of Proposition 11, X is not complex. Il

We note another consequence of Proposition 11, namely that the
leftmost path of every deep II{ class is Turing complete. Indeed, the
leftmost path of a IIY class has c.e. degree and thus must be Turing
complete by Proposition 11.

Having separated order-depth from being a member of a deep II9
class, we can use a similar line of reasoning to further separate order-
depth from Bennett’s original notion of depth. We need one auxiliary

result.

Theorem 13 (Moser, Stephan [MS17]). Every order-deep sequence is
either high or of DNC degree.

Theorem 14. There is a strongly deep sequence that is not order-deep.

Proof. Downey, MacInerney, and Ng [DMN17] constructed a low, deep
sequence A of c.e. degree. As A can neither be high nor of DNC degree
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(as it is incomplete), it follows from Theorem 13 that A is not order-

deep. U

We have seen by Theorem 6 that members of deep II{ classes are
order-deep, and by Proposition 10 that they are complex. We end this
section by showing that these two properties alone are not enough to

characterize members of deep I1{ classes.

Theorem 15. There exists a sequence X which is complex, order-deep,

and not a member of any deep 119 class.

We will need the following auxiliary lemma of independent interest.
Recall that the join Y & Z of two sequences Y and Z is the sequence
obtained by interleaving their bits: Y & Z = Y (0)Z(0)Y(1)Z(1)....
Similarly, for two strings ¢ and 7 of the same length we can define

0 @ 7 in the same way.

Lemma 16. If a sequence Y is not a member of any deep 119 class,
then for almost every Z (in the sense of Lebesque measure), Y & Z is

not a member of any deep I1{ class.

Proof. We prove this lemma by contrapositive. Suppose that Y is such
that for positive measure many sequences Z, Y @ Z is a member of a
deep 1Y class. If this is so, as there are only countably many deep I1{
classes, this means that there is a fixed deep IIY class C such that with
probability > § over Z (with § a positive rational), we have that Y & Z
belongs to C. Consider the II{ class D consisting of sequences A such
that for any n, there are at least ¢ - 2" strings 7 such that (A[n) ® 7
is in the canonical tree T of C. By definition, Y belongs to D. We
claim that D is deep, which will prove the lemma. Since C is deep,

there is a computable order h such that M(T5,) < 1/h(n) for all n.
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Let P be the continuous semimeasure defined on strings of even length
by P(c @ 7) = M(o)\(7). If S is the canonical co-c.e. tree of D, then
by definition of D, we have

P(Ty,) > M(S,) - 0.

By universality of M, we also have P(T5,) <* M(Ts,) < 1/h(n).
Putting these two inequalities together, it follows that

which shows D is a deep 11 class. U

Proof of Theorem 15. Having proven Lemma 16, take now Y a se-
quence that is order-deep and not a member of any deep IIY class
(whose existence was established in Theorem 12). Pick Z at random
and form the sequence X =Y & Z. With probability 1 over Z:
e X is complex. Indeed K(X|[2n) >* K(Z[n) >* n by the
Levin-Schnorr theorem.

e X is not a member of any deep IV class by Lemma 16.

Moreover, regardless of the value of Z, X tt-computes Y which is
order-deep, hence by the slow growth law for order-deep sequences, X is
itself order-deep. These three properties tell us that with probability 1
over Z, X =Y @& Z is as desired.

OJ

4. STRONG DEPTH IS NEGLIGIBLE

While we know that deep ITY classes must all be negligible, we have
established (Theorems 6 and 12) that the collection of strongly deep
sequences forms a strict superclass of the collection of members of all

deep TIY classes. It is therefore natural to ask whether the collection of
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strongly deep sequences is negligible, which we answer in the affirma-

tive.
Theorem 17. The class of strongly deep sequences is negligible.

Proof. For the sake of contradiction, assume there exists a functional

® such that

MX : @¥isdeep } > 0.9

(where we choose this latter value without loss of generality by the

Lebegue Density Theorem). Let p be a computable semimeasure such

that liminf, I;(%) < 0. The existence of such a p follows from the
existence of Solovay functions (see [BDNM15]), which are functions
f >T K such that liminf, f(n) — K(n) < co. Setting p(n) = 2/~
with f a Solovay function and ¢ large enough gives us the properties
of p we need.

We now define a computable discrete semimeasure as follows. For
every n € w, cffectively find a family of clopen sets {C, : |o] = n}

such that ®X = o for all X € C, and > toj=n A(C5) > 0.9. Then, set
for all o of length n:

It is clear that ¢ is computable. Moveover, ¢ is a discrete semimeasure,

S a@) =3 S AC)pm) =) S M) < Yop) < 1.
oe2<w nE€w |o|=n n€w 0E2<w: |o|=n new

m(Y[n)

e — 00. For all

For any Y that is strongly deep, we must have

(n,d), define

Bl={o : |o|=n and m(c) >d-q(0)}
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By our hypothesis on the functional ®, this means that for every con-

stant d, for almost all n, A({X : ®¥|n € B}) > 0.9.
Now, consider the quantity »_ ¢ s A(C5). On the one hand,

q(o)

ANCy) = e by definition of
a%;d (Co) 2 o) (by q)
< m(o) (by definition of B%)
oceBY d- p(n>
1
< m(o
~d-pln) 2= )
m(n) - O(1) . . .
< using the identit m(c) =" m(n
< 50 (using y > m(o) (n))

lo|l=n

On the other hand, for almost all n:

Z MCy) > M{X : ®¥ne B%})—-0.1 (because \( U C,) > 0.9)

ceBg lo|=n

>09-0.1

> 0.8

Putting the two together, we have established that for all d, for

almost all n, 1;’((: > d/O(1), i.e., lim, 1;’((:)) = co. This contradicts the

choice of p. O

Note, by contrast, that the collection of weakly deep sequences is not
negligible. Indeed, as shown by Muchnik et al. [MSU98]|, no 1-generic
sequence is Martin-Lof random with respect to a computable measure,

and thus every 1-generic is weakly deep. Moreover, as shown by Kautz
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[Kau91], every 2-random sequence computes a 1-generic, and hence the
collection of 1-generics is not negligible.

As the collection of strongly deep sequences is negligible, it is worth
asking whether the collection of sequences that are strongly deep with
respect to one fixed computable time bound is negligible. We first
introduce some notation. For a computable time bound ¢ and ¢ € w,
let Di(n) = {X € 2¥: KY(XIn) — K(X[n) > c}, which is clopen

uniformly in n, hence () -, Di(n) is a IIY class. In addition, we set

n>m

D = Upnew Npsm Di(n). Then we have:

Theorem 18. Let t be a computable time bound and ¢ € w. Then
D! is not negligible and hence does not consist entirely of strongly deep

sequences.

Proof. Suppose on the contrary that DY is negligible for some com-

putable time bound ¢ and ¢ € w. Then for each m € w, ,,5,, Di(n) is
a negligible I19 class. As shown in [BP16, Theorem 5.2], no weakly 2-
random sequence can compute a member of a negligible IT! class, hence
De(n)

(recall that X € 2¢ is weakly 2-random if X is not contained in any

no weakly 2-random sequence can compute a member of ﬂan
I1Y of Lebesgue measure zero). It follows that no weakly 2-random se-
quence can compute a member of D!. However, there is some weakly
2-random sequence that computes a sequence of high Turing degree
[Kau91], and as shown by Juedes, Lathrop, and Lutz [JLL94|, every
high degree contains a strongly deep sequence. In particular, every
high degree contains an element of D!, and thus there is some weakly
2-random sequence that computes a member of D!, a contradiction.

Note further that under the assumption that D! consists entirely of
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strongly deep sequences, then by Theorem 17, it would follow that D!

is negligible, which we have shown cannot hold. U
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