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1 Introduction

This paper gives a brief overview on complex algebro-geometric aspects of the inte-
grable system of the free rigid body dynamics on the basis of the author’s previous
papers [4,14,15,19] with Jean-Pierre Frangoise and Isao Naruki.

In the theory of completely integrable systems, complex algebraic geometry plays
important roles to explain the solvability of the problems, as found in textbooks of
the topics, e.g. [1,2]. Given the Lax equation which describes the integrable system,
the spectral curve and the eigenvector mapping are particularly useful tools along
the complex algebro-geometric studies. In suitable situations, the flow of the Lax
equation is mapped to a linear flow over the Jacobian variety of the spectral curve
through the eigenvector mapping.

The rotational motions of the heavy tops, i.e. rigid bodies under the constant
gravity, are a class of typical problems in analytical mechanics. From the viewpoint
of symplectic and Poisson geometries, the dynamical systems of heavy tops are
formulated as Hamiltonian systems on the cotangent bundle 7*SO(3) of the three-
dimensional rotation group, equipped with the canonical symplectic structure, and,
after the so-called Lie-Poisson reduction procedure, also as those on the dual space
(s0(3) x R?)" to the Lie algebra of the special Euclidean group, equipped with the
Lie-Poisson structure. By the work of Ziglin [22], it is known that, among heavy
tops, there are only four different cases where the dynamical system is completely
integrable in the sense of Liouville; Euler top, Lagrange top, Kowalevsky top, and
Goryachev-Chapligyn top.

Each of these systems allows four constants of motion given by polynomial func-
tions on R3 x R? and the flow of the integrable systems are contained in the common
level sets of the four constants of motion. For the simplicity, one can think of the
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common level sets from the viewpoint of complex algebraic/analytic geometry. Fur-
ther, the four integrable systems are also described by Lax equations, their spectral
curves, which are complex algebraic curves, and the eigenvector mappings. As one
can let the values of the constants of motion vary, the complex algebraic varieties
obtained as the complexification of the common level sets for the constants of mo-
tion form a complex fibration over certain appropriate base spaces. Similarly, the
family of the spectral curves also gives rise to a complex fibrations.

Despite various previous works on integrable heavy tops from the viewpoint
of complex algebraic geometry, the singularities of the above complex algebro-
geometric objects have not been studied intensively. In other words, the global
geometry, particularly described by the geometries around the singular fibres, of the
fibrations have not been clarified well.

In view of the above perspective over the complex algebraic geometry of inte-
grable heavy tops, the author of the present paper has been studied the complex
algebro-geometric aspects of the Euler top in the collaborations with I. Naruki and
J.-P. Francoise [4,14,15,19]. As a result of [4,15,19], the singular fibres and the
monodromy of the two elliptic fibrations arising from the family of complexified in-
tegral curves of the Euler top and from the family of the spectral curves of the Lax
(Manakov) equation are classified. Then, the two elliptic fibrations are related by a
4 : 1 meromorphic mapping. The monodromy of the elliptic fibration is concretely
determined and also connected to the Birkhoff normal forms of the Euler top around
the equilibrium points.

In [14], the relation between the eigenvector mapping of the Lax (Manakov)
equation of the Euler top and complex algebraic surfaces are studied and a class of
the Kummer surfaces are found to factor the eigenvector mapping.

The paper is organized as follows:

In Section 2, one give a brief overview on the generalities of completely integrable
systems in the sense of Liouville. Section 3 deals with the equation of motion for the
heavy tops and the four integrable cases are mentioned. In Section 4, one finds a
more detailed descriptions of the Euler top, focusing on the Lax (Manakov) equation,
its spectral curve, and the Birkhoff normal forms. A brief review is also given about
the Birkhoff normal forms around isolated equilibrium points of Hamiltonian systems
over symplectic manifolds. Then, the general integral formulas of the derivative of
the inverse of the Birkhoff normal forms are applied to the Euler top. On the
basis of [4,15,19], Section 5 is about the complex algebraic geometry of the elliptic
fibration associated to the family of the complexified integral curves of Hamilton’s
equation (the Euler equation) of the Euler top. It also concerns with the elliptic
fibrations consisting of the spectral curves. The classifications of the singular fibres
of the two fibrations and the 4 : 1 meromorphic mapping between the two elliptic
fibrations are given. Section 6 briefly deals with the eigenvector mapping for the
Lax (Manakov) equation of the Euler top and the relation to the Kummer surfaces
is mentioned. In Section 7, a few related studies are mentioned.



2 A quick review on generalities of completely in-
tegrable systems

We here briefly review the notion of completely integrable systems. We start with
the basic definition of Hamiltonian systems on symplectic manifolds. The relations
to Poisson manifolds and to the Lax equations are also mentioned from a general
point of view.

Hamiltonian systems on symplectic manifolds Let (V,w) be a symplectic
manifold with dimV = 2n, where w is a non-degenerate closed two-form, namely
WA~ Aw # 0, dw = 0. For a smooth function H € C*> (V), the Hamiltonian
N—_——

vectoz field Zy for the Hamiltonian A with respect to w is defined through iz, w =
—dH. The Poisson bracket {-,-} : C®(V) x C>®(V) — C>(V) is defined through
{Fg, Fl} = _EFO (Fl) = —Ww (EFO,EFI), where Fg,Fl € C> (V)

Proposition 2.1 The Poisson bracket {-,-} satisfies the following properties:
o {Fo,F1} = —{F1, Fo},
o Leibniz rule; {FoFy, Fy} = {Fy, Fo} Fi + {F1, F2} Fy,
o Jacobi identity; {{Fy, F1}, Fo} + {{Fs, Fo}, Fi} + {{F1, F2}, Fo} =0,
for arbitrary functions Fy, Fy, Fy € C(V). O

Remark 2.2 In the above arguments, the category of the manifolds, as well the
functions and the differential forms, can be of the class C¥ or complex analytic
instead of the class C*. This is also true in many of the subsequent arguments
except for Liouville-Arnol’d Theorem and the Birkhoff normal forms, which can be
extended to the C¥ category in a suitable manner, but may be more subtle in the
complex analytic category. U

Liouville complete integrability On a 2n-dimensional symplectic manifold (V, w),
a Hamiltonian system (V,w, H) is called completely integrable in the Liouville sense
if there exist n functionally independent functions Fi,..., F,_ 1, F,, = H on V satis-
fying {F;, F;} =0 for any 7,5 =1,...,n.

The following theorem shows the importance of the notion in a geometric sense.
We set f = (Fy,...,F,):V = R"

Theorem 2.3 (Liouville-Arnol’d) Around a regular point x € V' of f, for which
f(x) is a reqular value of f and f~' (f(x)) is connected compact manifold, there exist
a neighbourhood U(C R™) of f(z) and a diffeomorphism ¥ : f~1(U) — U x T" such
that O* (-1 dI; Adb;) = wlp-1@y, where (I1, ..., 1,;61,...,0,) are coordinates on
UxT" 0; +2x = 0;. Further, the flow of the Hamiltonian vector field =g on
Ux T f~1(U) is linear with respect to (0y,...,0,). O



Hamiltonian systems on Poisson manifolds The notion of the Hamiltonian
system can be generalized to Poisson manifolds from symplectic manifolds.

Let (N,{-,-}) be a Poisson manifold. Namely, there is given a Poisson bracket
{,-} : C®(N) x C*®(N) — C>(N) which is an R-linear mapping satisfying the
following conditions:

b {Fanl} = - {FlaFO}a
e Leibniz rule; {F()Fl, FQ} = {Fo,FQ}Fl + {Fl,FQ} FQ,
[ ] JaCObi 1dent1ty7 {{FQ, Fl} s FQ} + {{FQ, F()} s Fl} + {{F1> FQ} s F()} = 0,

for arbitrary Fy, Fi, Fo € C°(N).

For the Hamiltonian H € C* (N), the associated Hamiltonian vector field =g
with respect to {-,-} is defined through =y (Fy) = — {H, Fy}, where F, € C* (N)
is arbitrary. A function Fy € C* (V) is called a Casimir function if 25 = 0, i.e. if
{Fo, F1} =0 for any F; € C*(N).

Symplectic stratification A Poisson manifold (N, {-,-}) can be stratified into
the disjoint union of symplectic manifolds. Any two points of the Poisson manifold
N are defined to be equivalent if they are (piecewise) connected by the trajectories
of Hamiltonian vector fields. This equivalent relation gives rise to the stratification
of N into the disjoint union of smooth strata (manifolds) S equipped with the
Poisson bracket {-,-}¢ given by {Fyls, Fils}g := {Fo, F1}|s, where Fy, Fy € C* (N).
Since the Poisson bracket {-, -} |s on S is non-degenerate at each point, it defines a
symplectic form wg on S. This stratification is called the symplectic stratification of
the Poisson manifold (N, {-,-}).

The integral curve of the Hamiltonian system on the Poisson manifold (N, {-,-})
for a Hamiltonian H through a point in S coincides with the one for the Hamiltonian
system on the symplectic manifold (S, ws) for the Hamiltonian H|s.

Lax equation Completely integrable systems are typically described by Lax equa-
tions. We consider the following m x m-matrix-valued ordinary differential equation,

dM
TA = [My, Ny, (2.1)

called Lax equation with a (complex) parameter A\, which does not depend on the
time ¢.

d
As is easily checked, we have Qi (Tr (M ,\)Z> = 0 along the integral curve of the

Lax equation for all / € N. In other words, each of the eigenvalues of M) is a
constant of motion and we are led to think of the set of all the eigenvalues for each
parameter A\, which is realized as an affine algebraic curve

C : det (M, — uE,,) =0,

in C?, with (A, ) being the affine coordinates. This curve C' is called the spectral
curve associated to the Lax equation (2.1).
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The eigenspaces of M, are generically a complex line in C? parametrized by
(A, ) € C and hence give rise to a line bundle on the spectral curve C'. Thus, we
have a holomorphic mapping of the common level surface 7 to the Picard variety

of C
v+ T — Pic(C).

An (often incorrect) folklore One might expect that the real part of (a con-
nected component of) 7 is isomorphic to (a connected component of) Pic(C) and
the flow of the integrable system is linearized on Pic(C'). However, this expectation
is not true in many cases and the situation depends on the feature of each completely
integrable system.

3 Heavy rigid bodies and integrable cases

A heavy rigid body stands for a rigid body under gravity force around a fix point
and its rotational motion can be described by the Euler equation

dI’

— :FXVMH,
3;4 (3.1)
W :MXVFH+FXVMH,

where (M,T) € R? x R® and VH = (V) H,VrH) is the gradient vector field of
1

the Hamiltonian H(M,T') := §<M, I=1(M)) + (L,T) with respect to the standard
inner product on R3 x R3, given as the direct sum of the standard inner product
(-,-) on R3. Here, L = (Ly, Ly, L3) € R? is a constant vector given by the gravity
and the 3 x 3 positive-definite symmetric matrix | is the inertia tensor of the rigid
body, which can be assumed to be a diagonal matrix as | = diag(/[y, I5, I3) without
loss of generality. It is known that the Euler equation (3.1) is Hamilton’s equation
with respect to the Poisson structure on R? x R3:

{Fg,Fl} (M, F) = <M, VMF() X VMF1> -+ <F,VMFO X VFFl — VMFl X VFFO>

where Fy, F} are smooth functions on R? x R? which is nothing but the Lie-Poisson
bracket on the dual space to the semi-direct product Lie algebra so(3) x R = R3 x
R3. As the Poisson bracket allows two functionally independent Casimir functions
Ci(M,T) = (I',)T') and Cyo(M,TI") = (M,TI'), namely {C},-} = 0 and {Cy, -} = 0,
we have three functionally independent constants of motion C;, Cy, and H which
Poisson commute with each other. The Hamiltonian system (3.1) can be restricted
to a generic four-dimensional symplectic leaf of the Poisson space (R? x R3,{-,-}),
which is described as the intersection of the level sets of C; and 5. These common
level sets are known to be diffeomorphic to 7*S? with the canonical symplectic form
if C5 = 0 or with a modified (magnetic) symplectic forms if Cy # 0. The restricted
system on a four-dimensional symplectic leaf is completely integrable in the sense
of Liouville if it admits an additional constant of motion which is independent of
C1, O, H. It is known that this is the case only in the following four cases by the
result [22] of Ziglin:



Euler top: L = 0.

e Lagrange top: | = diag([y, I1, I3), L = (0,0, L3).

Kowalevsky top: | = diag(213,213, I3), L = (L,0,0).

Goryachev-Chapligyn top: | = diag(41s,413,13), L = (L1,0,0). (Integrable
only on C = constant and Cy = 0. )

For the details about these completely integrable cases of heavy tops, including
the precise form of the fourth constant K of motion, see e.g. [2]. Particularly, the
intersection of the level hypersurfaces of C'y, Cs, H, K includes the Lagrangian torus
of the integrable system.

It should be pointed out that the constants of motion of these completely in-
tegrable systems are polynomials in the variables (M, T") = (M, My, M3, 11, T, T'3)
and hence it is natural to complexify the whole settings from the viewpoint of com-
plex algebraic/analytic geometry. We regard (M,I') = (M, My, M5, 11,5, ['3) as
affine coordinates in C3 x C3, the constants .J;, .Jo, J3, L1, Lo, L3 as complex numbers.
The inner product (-,-,) and the Poisson bracket {-,-} are respectively considered
as complex quadratic forms on C? and on the space of all the holomorphic functions
on C3 x C3.

In this direction, the notion of algebraic complete integrability has been intro-
duced as a generalization of Liouville-Arnol’d Theorem (Theorem 2.3) into the com-
plex algebraic category, with the mapping f in Theorem 2.3 being a complex analytic
fibration by Abelian varieties. See [1] as well as [20] for the details on the algebraic
complete integrability. The notion of algebraic complete integrability is a central
idea in many studies on complex algebraic geometry around integrable systems.
Nevertheless, the (global) geometric properties of the complex analytic/algebraic
fibrations, as well as the singularities/singular fibres, remain unclear in many cases.
In what follows, we focus on the complex analytic/algebraic geometry around the
Euler top along the lines of the author’s researches in [4,14,15,19].

4 Integrable system of Euler top

We consider the Euler top, or the free rigid body, which physically describes the
rotational motion of a rigid body under no external force.
The system is essentially described by the Euler equation

d o
M =M x (7' (D)

where M = (My, My, M3)T € R? is the angular momentum.
It is known that the Euler equation has two first integrals, i. e. the Hamiltonian
1
H(M) = §<M, I71(M)) and the squared norm of the total angular momentum

1
K(M) = §(M, M). The restriction to the level surface K = k (const.) (= Sf/%) is a

completely integrable Hamiltonian system for the Hamiltonian H|x—; with respect



dM; A dM. dMy A dM. dMs; AdM
to the symplectic form w = ; N, 2 = ?)) M, 8 = ‘; Y L Further, the

integral curve of the Euler equation coincides with the intersection of the two quadric

H(M) = h,
K(M) =k,

level surfaces

up to the connected components. The intersection is in general the real part of a
complex smooth elliptic curve.

4.1 Lax (Manakov) equation and the spectral curve

(=3

Using the Lie-algebra isomorphism (R3 x) 5 M — M e 50(3), the Euler equation
can be written in terms of matrices as

%1\7: M.77(0D].  Meso()= (B x).

where the linear operator J : s50(3) 2 U +— JU + UJ € s0(3) is related to | by the
matrix J = diag(Jy, Jo, J3), Jo + J3 = 1, J3+ J; = I5, J; + Jo = I3. This means
that I—/l(ﬁ ) = J M for all M € R®. It is a well-known result by Manakov [11]
that the Euler equation is equivalent to the following Lax (Manakov) equation with
a (time-independent) complex parameter \ € C:

d —~ —_~ —~
= (M + )\JQ) - [M + A2, TN + /\J] . (4.1)

The eigenvalues of the matrices M+ AJ?, which are parametrized by A € C, are
constants of motion for the Lax equation, and hence for the Euler equation, since

the two equation are equivalent to each other. We think about the spectral curve
{()\,u) € C? | det (1\7+ A2 - ME3> - o} ,

where Ej is identity matrix. This algebraic curve is known to be a smooth elliptic

curve if Iy, I, I3, 7 are distinct

4.2 A brief review on Birkhoff normal forms

We quickly review the Birkhoff normal forms of Hamiltonian around an isolated
equilibrium point of a Hamiltonian system on a symplectic manifold. The Birkhoff
normal forms can be regarded as the generalization of Morse Lemma (cf. [13]) re-
specting the symplectic structure. However, the normal form has much larger vari-
eties than in the case of Morse Lemma.

Let (V,w) be a 2n-dimensional symplectic manifold. We consider the Hamilto-
nian system (V,w, H) for the Hamiltonian H and assume that zy € V is an isolated
elliptic equilibrium, i.e. Xpg(xo) = 0 and Xy (x) = 0 for @ # zo in a sufficiently
small neighbourhood of xy.

We assume that xg is an elliptic equilibrium point, i.e. the linearization matrix of
the Hamiltonian vector field Xy has only purely imaginary eigenvalues. If there are

7



suitable coordinates (p1,--- ,pn;q1,- - ,qn) around xy such that w = dei A dg;,
i=1

in which case (p1, - ,Pn; @1, ,qn) are called Darboux coordinates, and if the

Hamiltonian H is written by a (formal) power series H in n variables as

HZH(p?JrQ% pi+q,2@)’

2 772

then the function H is called Birkhoff normal form of H around x,.

In general, it is known that the eigenvalues of the linearization matrix for a
Hamiltonian vector field around an isolated equilibrium point consists of the follow-
ing tuples of complex numbers:
pairs of real numbers +a (o € R), pairs of purely imaginary numbers £3v/—1
(3 € R); quadruple of complex numbers +a + 8v/—1 (@, 8 € R), and 0.

According to the types of the eigenvalues, the Birkhoff normal form H is formal
convergent power series in different types of quadratic functions in the Darboux
coordinates.

Note that the Birkhoff normal forms can be considered also for the Hamiltonian
systems in the complex holomorphic category. In this case, there is no difference
among the non-zero eigenvalues of the linearization matrix of the Hamiltonian vector

field.

Remark 4.1 The convergence of local canonical transforms which put the Hamilto-
nian into the Birkhoff normal form indicates the complete integrability of the Hamil-
tonian system around the equilibrium point. There is an algorithms to obtain the
Birkhoff normal form in the framework of formal power series. See e.g. [12]. In gen-
eral, however, Birkhoff normal forms are know to be divergent by an earlier result
by C. L. Siegel [18].

For a completely integrable system, the existence of canonical transforms for the
Birkhoff normal forms are discussed by several authors. J. Vey [21] has proved the
convergence for analytic systems under the so-called non-degeneracy condition of
the equilibrium point." H. Ito [8] improved the result, replacing the non-degeneracy
condition by the non-resonance condition. H. Eliasson [3] proves the convergence
of such a canonical transformation in the C* category under the non-degeneracy
condition. N. T. Zung [23] gave a proof by using a geometric method around torus
actions.

Birkhoff normal forms are applied in many different ways. See e.g. [12]. Con-
cerning the generalized wvesions of free rigid body dynamics, the Birkhoff normal
forms are applied in the stability analysis. See e.g. [9, 10, 16, 17], as well as the
references therein.

O

IThis non-degeneracy is different from the non-degenerate critical point in the sense of Morse
Lemma. An isolated equilibrium point z( of a completely integrable Hamiltonian system (V,w, H)
on a symplectic manifold, with constants of motions Fy,...,F,_1,F,(= H), is called non-
degenerate if the linearization matrices of the Hamiltonian vector fields Xr,, ..., X, form a Cartan
subalgebra in the Lie algebra of the infinitesimal symplectic transformations sp(Ty,V, wy, )-

8



To return to the case of the Euler top, we can assume that all the systems below
are real analytic. We focus on the situation of two-dimensional symplectic manifold.
Under this assumption, the Birkhoff normal form is a convergent series. Let (V,w, H)
be an analytic Hamiltonian system on two-dimensional symplectic manifold.

Proposition 4.2 If xy € V is an elliptic equilibrium of (V,w, H), for which the
linearization matriz has only purely imaginary eigenvalues, then there is a coordinate
system (p,q) around xo and an invertible convergent power series H such that w =
dp Adq and
P +4q
).

=

Similarly, we have the following proposition.

Proposition 4.3 If xqg € V is a hyperbolic equilibrium of (V,w, H), then there is
a coordinate system (P, Q) around zo and an invertible convergent power series H
such that w = dP A dQ and

H=H(PQ).

g

Although the Birkhoff normal form is by definition a local object around the
equilibrium point, we can think over its relation to the global aspects of the Hamil-
tonian system, particularly from complex analytical point of view. In this direction,
the following formulae by period integrals are useful.

We take a one-form 7 around the isolated equilibrium xy which satisfies nANdH =
w. Then, we can describe the relation between the Birkhoff normal form around an
elliptic equilibrium and a period integral.

Theorem 4.4 By ®, we denote the inverse of the Birkhoff normal form H around
an elliptic equilibrium point, where H = 0. Then, we have

1
' (h) = —— n.
21 Jr=n
OJ
The integral path H = h stands for the integral curve of the Hamiltonian system.
For the hyperbolic equilibrium, we have a similar relations as follows:

Theorem 4.5 We denote by @ the inverse of the Birkhoff normal form H around

a hyperbolic equilibrium point, where H = 0. Then, we have

W)= 5= [n

0

The integral path « is taken from the homotopy class of the closed arc P =
VeeV=1 Q = \/ee V1 0 : 0 — 27 in the complexified integral curve, where (P, Q)
are the Darboux coordinates such that H = H(PQ) and ¢ = ®(h) = H(h).

9



4.3 Birkhoff normal forms for the Euler top

We calculate the derivative of the inverse for Birkhoff normal forms around the six
equilibria for the Euler top restricted to the sphere K = k.

We assume that I; < I, < I3. Then, the equilibria on p;- and p3-axes are elliptic,
while those on ps-axis are hyperbolic.

The derivative of inverse for Birkhoff normal form around the elliptic equilibria
on p;-axis can be written as

_i\/? 1 K((d_af)(b—c>> = S(&,b,c,d),
3 k,/(d—c)(a—b) (d—c)(b—a)
.1 1 . h o d i
where a = I_l’b == I_’d =7 Here, K(s) := | T the complete

2 3
elliptic integral of the first kind.

Similarly, the derivative of inverse for Birkhoff normal form around the elliptic
equilibria on ps-axis is expressed as

1 /2 1 — —
__\/j IC <(d C)(b a)) — S(C, b,a,d).
3tV k/(d—a)c—b) \(d—a)(b—c)
Now, around the hyperbolic equilibria on ps-axis, the derivative of inverse for
Birkhoff normal form is in the form as follows:
/—_1\/§ 1 ’C((d—b)(a—c)
3 k‘,/(d—c)(b—a) (d—C)(CL—b)
In what follows, we consider the analytic continuation of these functions S(a, b, ¢, d),
S(c,b,a,d), S(b,a,c,d) with respect to the complex parameters (a, b, ¢, d).
The complete elliptic integral K satisfies the following special Gaufl hypergeo-
metric differential equation:

! ! 1
s(L—=s)f"(s) + (1 =25)f'(s) = 7 f(s) = 0.
By the connection formula of the Gaufl hypergeometric differential equation, we

have the following formula.

Proposition 4.6 The analytic continuations of S(a,b,c,d), S(b,a,c,d), S(c,b,a,d)
satisfy

) — _/~1S(b,a,c,d).

S(a,b,c,d) 4+ S(b,a,c,d) = S(c,b,a,d).
Il

More details around the discussion in this subsection can be found in [4,19].

5 Two elliptic fibrations arising from Euler top

From now on, we complexify the settings for the simplicity. The integral curve of
Euler equation can be compactified in CP?: (z : y : 2z : w) by the projective curve

(5.1)

2+ P+ 2% +w? =0,
ax® + by? + cz* + dw?* = 0.

10



This curve is known to be a smooth elliptic curve if a,b,c,d are distinct. See [2]
or [15] for the details about this fact.

The family of curves (5.1) parameterized by a,b,c,d gives rise to an elliptic
fibration 7p : F' — CP*: (a : b: c: d) as follows:
The total space F is a smooth four-fold defined by (5.1) in CP* x CP? where
((r:y:z:w),(a:b:c:d)) denotes the pair of homogeneous coordinates. Then,
restricting the projection C3 x C* > ((z:y:z:w),(a:b:c:d))— (a:b:c:d) to
the manifold F, we have an elliptic fibration 7p : F' — CP?.

The singular locus of the fibration 7 : F — CP? is given by the divisor D : a =
b,a =c,a=d,b=c,b=d,c=d. Over the singular locus, the singular fibres are
classified as follows:

e If only two of a, b, ¢, d coincide, the fibre is of type I, (see Figure 1) in Kodaira’s
list of singular fibres of elliptic surfaces.

e If two of a, b, ¢, d coincide and the other two also coincide, the fibre is of type
I, (see Figure 1).

e [f three of a, b, ¢, d are equal without further coincidence, the fibre is a smooth
rational curve with multiplicity two.

o If a =b=c=d, the fibre is a quadric surface.

Figure 1: Singular fibres of types I and I

Iy i} Iy

The family of spectral curves is also parameterized by the parameters (a:b: c:
d) € CP®. It induces another elliptic fibration over CP*. This elliptic fibration is
bimeromorphic to the elliptic fibration in Weierstrafl normal form defined as follows:
We take the holomorphic line bundle G = Ogps(1) over CP? with the first Chern
number 1. Then, we consider the projectification P (G®* & G®% & Ogps) of the rank
three vector bundle G¥2 @ G®2 @ Ogps over CP?, where the structure sheaf Ogps
is identified with the trivial line bundle. In the total space of the CP*bundle
P(G®% @ G%?* @ Ogps ), we consider the hypersurface W defined by

yz=4(x—e))(x —e) (x —e3),
where (x : y : z) denotes the homogeneous fibre coordinates of the CP*-bundle. Here,
the parameters e, ey, e3 are the sections of the line bundle G%2 given by the homo-
geneous quadratic polynomials
e; = (a—0b)(c—d)+ (a—c)(b—d),
+(a—d)(b—c),
—(a—=d)(b—rc).



Restricting the canonical projection of the CP*-bundle to W, we naturally obtain
an elliptic fibration 7y : W — CP? in Weierstrafl normal form. This elliptic fibration
is flat and yet it allows singularity on the total space. Modifying both the total and
the base spaces, we have a smooth flat elliptic fibration, denoted by 7 : W — B ,
whose singular fibres are in Kodaira’s list of singular fibres of elliptic surfaces.

More precisely, the modification of the base space CP? is carried out as follows:

1. We blow up CP? with the centre at (1:1:1:1): B — CP?.

2. We consider the natural projection of B to the exceptional set F = CP*:
8 B — FE.

3. We blow up F at the four intersection points with thelocia =b=c¢,b=c=d,
c=d=a,d=a=b EF— FE.

4. We blow up B along the four curves corresponding to these four points: B —
B.

The singular fibres of 7 W — B are given as follows:

e The fibres over the generic points on the proper transforms of the six planes
a=b,a=c,a=d, b=c,b=d, c=d are of type Is.

e The fibres over the points on the proper transforms of the three lines a =
b,c=d;a=cb=d; a=d,b= c are of type 4.

e The fibres over the generic points on the exceptional divisors C, Cy, C3, and
Cy are of type Ij.

e The fibres over the points on the intersection of the exceptional divisors C
(respectively Cs, C3, and C,) and the proper transforms of the three lines
a=0bb=c c=a, (respectively b = ¢, c =d, d=b; c=d, d = a, a = ¢
d=a,a=0b,b=d) are of type I in Kodaira’s notation.

The two fibrations F' and W on CP? are related as follows:

Theorem 5.1 ( [15]) There is a 4 : 1 meromorphic mapping from 7p : F — CP?
onto wi; : W — B, which respects the fibration and which induces a 4 : 1 isogeny on
each reqular fibre. O

To close this section, we mention the monodromy of the elliptic fibration 7p.

The locus D : a = b,a = ¢,a = d,b = ¢,b = d,c = d form the Az plane
arrangement in CP® : (a : b : ¢ : d) as in Figure 2. Around each component of
D, we associate a generator of the fundamental group m; ((CIP3 \ Supp(D)) for the
complement of the support Supp(D) in CP? as is indicated in Figure 2. The six
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Figure 2: Singular locus D

A

a=1b

generators his, his, hig, hoz, hog, has Obeys the relations

hiahashiz = hozhizhia = highiahas,
hashaahos = haahoshes = hoshashsa,
hiahaahis = hoshishia = hishiahoy,
hashishiz = hiahizhsy = highashyg,
hiahss = hzshaz,
hihag haahos = hag haghoshas,
haszhiy = highos,
1 = highighazhzshashyy.
Now, we regard the derivative of the inverse for Birkhoff normal forms described

by S(¢,b,a,d), S(a,b,c,d) as a basis of the first cohomology group of regular fibres
of mr, which are complex one-dimensional tori.

Theorem 5.2 ( [4,19]) With respect to this basis, the monodromy of mp is given

by the correspondence
1 2 -1 2 1 0
}ah137h24H[ },h127h34H[ ]

01

h14,h23H[ 9 3 9 1

0

The same result holds in the case of my .
In [19], the monodromy of the derivatives for the Birkhoff normal forms are also
studied in the case of the simple pendulum.

6 Eigenvector mapping of Euler top

In the previous sections, we have considered the spectral curve for the Euler top.
This algebraic curve reflects the totality of the eigenvalues of the matrix M + \J?
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appearing in the Lax (Manakov) equation (4.1). For each point (A, p1) in the spectral

curve det (]\/4\ + AJ? — uE3) = 0, we can also consider the eigenvector v determined
by
(M + AJ? — pE3) v = 0.

As the eigenvector v is determined up to multiples in C*, it induces a rational

mapping
g:CxC' —... - CP?

of the product of the integral and the spectral curves. The following result shows a
relation between this eigenvector mapping and a Kummer surface.

Theorem 6.1 ( [14]) For generic parameters a,b,c,d, there exists a Kummer sur-
face® ¥ between C x C" and CP? such that the eigenvector mapping g factors as the
composition of two 2 : 1 rational mappings:

9

CxC" S N CP?
. /

g

In fact, the Kummer surface X is the desingularization of the double covering of
CP? branched along a singular sextic curve consisting of a smooth quadric curve
and a smooth quartic curve which are tangent at four points. The details about
the branch locus on ¥, as well as the geometry of elliptic fibrations of ¥, are found
in [14].

Further, we can observe the following degeneration of Kummer surfaces.

Theorem 6.2 When two of the parameters a, b, c coincide, the Kummer surface ¥
is degenerated to a sum of two rational surfaces. U

7 Further perspectives

In the above sections, complex algebro-geometric aspects of the Euler top are ex-
plained in view of the elliptic fibrations and Kummer surfaces.

A similar problem of an elliptic fibration associated to Lagrange top has been
studied recently in [7].

Kummer surfaces appear in other integrable systems of rigid bodies. As an ex-
ample, there is a Kummer surface appearing in the Clebsch top with the Weber’s
condition, which is a completely integrable system formulated as a Hamiltonian sys-
tem on the Poisson space (R* x R?, {-,-}) as in Section 2. See [5,6] and the references
therein for more details about the geometries around this integrable systems.

2The quotient of an Abelian surface C?/A, where A = Z* is a lattice in C2, with respect to the
involution given by the multiplication of —1 has 16 A;-singularities and the desingularization of
this singular surface, which is a K3 surface, is called a Kummer surface.
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