ON THE SUPERSINGULAR LOCUS OF SHIMURA VARIETIES
FOR QUATERNIONIC UNITARY GROUPS
(ANNOUNCEMENT)
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ABSTRACT. In this article, we announce mainly the results of [24]. We study
the supersingular locus of a Shimura variety attached to a unitary similitude
group of a skew-Hermitian form over a totally indefinite quaternion algebra
over a totally real number field, that is, a PEL-Shimura variety of type C. It
is unexpected that the corresponding principally polarized Opg-varieties may
not exist, which is different from the case of Siegel modular varieties. We give
necessary and sufficient conditions for the existence of such objects. Under
such a condition we show that the superspecial locus in the fiber at p of the
associated Shimura variety is non-empty. We also give an explicit formula for
the number of irreducible components of the supersingular locus when p is odd
and unramified in the quaternion algebra. Using the methods of this article,
we obtain explicit results on bad reduction of Shimura curves.

1. THE SUPERSINGULAR LOCUS OF SIEGEL MODULAR VARIETIES

Let p be a rational prime number and N > 3 a positive integer with (p, N) =
1. We write Fp for an algebraic closure of the field I, of order p. Let A, n
denote the moduli scheme over Z, of principally polarized abelian varieties of
dimension g > 1 with a level N-structure, and let A,y = Ayn ® Fp denote
the geometric special fiber. We recall that an abelian variety A over Fp is said
to be superspecial (resp. supersingular) if it is isomorphic (resp. isogenous) to
a product of supersingular elliptic curves over F,. Let Ay C Ay C Ay
be the superspecial (resp. supersingular) locus of A, n, that is, the subspace
parameterizing the superspecial (resp. supersingular) abelian varieties in Ay y.
Then A7’y is the unique O-dimensional Ekedahl-Oort stratum, and A3y is the
unique closed Newton stratum of Ay v [26]. An explicit formula for the cardinality
of A7’y was given by Ekedahl [7], using Hashimoto-Ibukiyama’s mass formula [10,
Proposition 9]. In [17], Li and Oort investigated the geometry of the supersingular
locus, and in particular they derived a formula relating the number of irreducible
components to the class number of a genus of quaternion Hermitian lattices. An
explicit formula for the class number was given in [29].
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Theorem 1 ([7, 10, 17, 29]). We write ((s) for the Riemann zeta function and
GSpy, for the symplectic similitude group of degree 2g. Further we put
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(1) The cardinality of the superspecial locus A;I?N is equal to

g
Clg, V) - T + (1)),
i=1
(2) The supersingular locus A3y is equi-dimensional of dimension |g%/4] and
the number of its irreducible components is equal to C(g, N) - \, where X,
15 given by
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521(P4i72 -1) if g = 2c is even.
2. SIMURA VARIETIES FOR QUATERNIONIC UNITARY GROUPS

The aim of this announcement is to study the supersingular locus of a PEL
Shimura variety of type C and, in particular, generalize Theorem 1.

Let F' be a totally real field of degree d with ring of integers Op, and Opg
a maximal Op-order in a totally indefinite quaternion algebra B over F' which
is stable under a positive involution % of B. Let b — b denote the canonical
involution of B. There is an element v € B* such that

(2.1) v+5=0, and b* =~ by!
for all b € B.
Definition 2 ([14, 15]). An integral PEL datum of type C is a septuple ¥ =
(B,x,0p,V, 1, A, hy) where
(i) (B,x*,0p) is as above;
(ii) (V,4) is a Q-valued skew-Hermitian (B, *)-module, that is, V' is a finite
free left B-module and ¢ : V x V — Q is a non-degenerate QQ-bilinear
pairing such that

(22) 1/’(9@) = _ZZ’(%Q) and w(aﬂf,y) = 7/’(%@*9)
foralla € B and x,y € V;
(iii) A is an Op-lattice in V;
(iv) ho : C — Endpgyr(Ve) is an R-algebra homomorphism such that

P(ho(i)x, ho(i)y) = ¥(z,y) forall z,y € Vg,

and that the symmetric form (z,y) = ¥ (ho(i)z,y) is positive definite on
Vk.
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A datum & is said to be principal if A is self-dual with respect to ¢ in the sense
that

A=A ={z eV |z A CZ}

Note that for each positive integer m there exists a unique Q-valued skew-
Hermitian (B, *)-module (V%) of rank m up to isomorphism.

Let 2 = (B, *,0p,V,1, A, hy) be an integral PEL datum of type C. The map
ho endows Vg with a complex structure, and hence it gives a decomposition
Ve = V10 g V91 of complex subspaces. Here, V10 (resp. V% 1) denotes the
subspace where ho(z) acts by z (resp. Z). Let char p(b) € Op[T] be the reduced
characteristic polynomial of b € Op, and let char (b) := Nrg/gchar p(b) € Z[T| be
the reduced characteristic polynomial from B to Q. As in [32, Section 2.3], the
characteristic polynomial of b € Op on V=10 is given by

(2.3) char (b | V1Y) = char (b)™ € Z[T].

For a commutative Q-algebra R, we write Vg = V ®g R. Further we write
Endps,r(Vr) for the ring of B ®q R-linear endomorphisms of V. We define a
Q-group G = GUq(V,¢) by

G(R) = {g € Endpgyr(Vr) | c(g) € R*
s.t. zb(gas,gy) = C(Q)f/)(ﬂ«“ay), V$7y € VR}

The group G is connected and reductive. Further it satisfies the Hasse principle,
that is, the local-to-global map H*(Q, G) — [[,«., H'(Q,, G) is injective, where
Q, denotes the completion of Q at a place v ([14, Section 7]).

We define a homomorphism 7 : Resc/r Gpc — Gr by restricting hg to C*.
Composing hc with the map C* — C* x C* where z — (z,1) then gives uy, :
C* — G(C). Morcover, there is an isomorphism Endpg,c(Ve) ~ Mats, (C)?,
inducing an embedding of G(C) into GLy,,(C)?. Up to conjugation in G(C), the
cocharacter puy, is expressed as

(2.4) pn(2) = ((diag(z™,1™), ..., (diag(2™,1™)) € G(C) C GLy,,(C)".

Let X be the G(R)-conjugacy class of h. Then the pair (G, X) is a Shimura
datum [5, (2.1.1)]. The reflex field of (G, X) is Q [22, Section 7].

Let A; denote the finite adele ring of Q. For any compact open subgroup
K C G(Ay), the Shimura variety associated to (G, X) of level K is defined by

Sh(G, X)e = G(Q\X x G(A)/K.

This is a quasi-projective normal complex algebraic variety. Further, it admits

the canonical model Shx(G, X') defined over the reflex field Q.
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3. MODULI SPACES

For an abelian scheme A over a base scheme S, let Endg(A) denote the ring of
endomorphisms of A.

Definition 3. Let (B, x,0p) be as in the previous section.

(1) An Op-abelian scheme over a base scheme S is a pair (A, ¢), where A is an
abelian scheme over S and ¢ is a monomorphism of rings ¢ : Op — Endg(A).

(2) A (principally) polarized Og-abelian scheme is a triple (A, A, ¢), where (A, ¢)
is an Op-abelian scheme and \ : A — A" is a (principal) polarization such that
Ao (b)) =u(b) o \.

(3) We say that an Opg-abelian scheme (A, ) over a Z,)-scheme S satisfies
the determinant condition if we have the equality of characteristic polynomials of
degree 2dm:

char (4(b) | Lie(A)) = char (b | V™10) € Og[T] for all b€ Op.

Note that the determinant condition implies the S-scheme A has relative di-
mension 2dm.

In the Hilbert-Siegel case (B = Maty(F), O = Mats(Op), and * = t), it is
known that there always exists a principally polarized O pg-abelian variety (A, A, ¢)
over C (for example, using Morita equivalence, one may take a product of m-
copies of a d-dimensional principally polarized Op-abelian variety). However, for
a general triple (B, %, Op), the existence of such abelian varieties is not always
true. Our first result gives a necessary and sufficient condition for the existence
of principally polarized Og-abelian varieties.

Theorem 4. Let (B,*,0p) be as above and m be a positive integer. Then the
following statements are equivalent:

(a) There exists a complex principally polarized O p-abelian variety of dimen-
sion 2dm.

(b) For a (unique) Q-valued skew-Hermitian (B, *)-module (V1) of rank m,
there ezists a self-dual Op-lattice A in (V).

(c) Either m is even, or for any finite place v of F ramified in B one has
ordy, () is odd. Here, Il, denotes a uniformizer of the completion B, =
B ®p F, atv, and ordy, () denotes the 11,-adic valuation.

(d) There exists a principally polarized O g-abelian variety of dimension 2dm
over an algebraically closed field k of characteristic p which satisfies the
determinant condition.

Under these conditions, a self-dual Opg-lattice A as in Statement (b) is unique up

to isomorphism.
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Note that the determinant condition in Statement (d) can not be omitted.
Indeed, there is a datum (B, x, Op) where B is an indefinite quaternion Q-algebra
and p divides the discriminant of B/Q such that

e there exists a principally polarized Og-abelian surface over k;
e a principally polarized Og-abelian surface over C does not exist;

see Theorem 7.

Hereafter we impose the conditions in Theorem 4 on (B, *,Op) and m. We
fix a principal integral PEL datum 2 = (B, *,0p, V.4, A, hg) of type C, a prime
number p, and an integer N > 3 with p{ N. The lattice A gives a model over Z of
the Q-group G, denoted again by G. We define a compact open subgroup KP(N)
of G(A%) as the kernel of the reduction mod N map G(ip) — G(zp/sz) =
G(Z/NZ). We set K, = G(Z,) and K =K, -KP(N) C G(Af). Let Mg = Mk(2)
be the contravariant functor from the category of locally Noetherian schemes over
Zyy to the category of sets which takes a connected scheme S over Z, to the set
of isomorphism classes of tuples (A, A, ¢, 77) where

e (A, )\, 1) is a principally polarized Op-abelian scheme over S as in Defini-
tion 3 which satisfies the determinant condition.

o 7 is a m (.5, §)-invariant KP(N)-orbit of Op ® ZP-linear isomorphisms 7 :
A Zr TP (As) which preserve the pairings

WiARZP x ARZP —ZP and (| )y : TP(As) x TP(As) — ZP(1)

up to a scalar in (273)*. Here, 5 is a geometric point of .S, A; is the fiber of
A over 5, TP(A;) is its prime-to-p Tate module, and (, ), is the alternating
pairing induced by A.
Two tuples (A, \,¢,7) and (A", X', /,7') are said to be isomorphic if there exists
an Op-linear isomorphism of abelian schemes f : A = A’ such that A = ffoXo f
and 7 = fon.

By [14] and [15, Ch.2], the functor My is represented by a quasi-projective
scheme (denoted again by) My over Z(,. We remark that Mg is isomorphic
to the moduli problem of prime-to-p isogeny classes of abelian schemes with a
Z(,)-polarization which was studied in [14], under the assumption that A is self-
dual ([15, Prop. 1.4.3.4]). Since the Q-group G satisfies the Hasse Principle, the
generic fiber Mk ®z,, Q is isomorphic to the canonical model Shk(G, X) (rather
than a finite union of them).

4. THE SUPERSPECIAL AND SUPERSINGULAR LOCUS

We write My = Mg Rz, Fp for the geometric special fiber of Mk. It is known

that the ordinary locus of My is non-empty if and only if either m is even or
5



every place v of F lying over p is unramified in B (see [31, Proposition 2.2]). Here
we consider the opposite extreme case. We write

MR C M C Mg

for the superspecial and supersingular locus: the largest reduced closed sub-
schemes such that

M (
ME(

)
)

Theorem 5. The superspecial locus My is non-empty.

{(A, N, 1,7) € Mk(F,) | A is superspecial },
{(A, N, 1,7) € Mk(F,) | A is supersingular}.

F,
F,

Note that there is no assumption on p in Theorem 5. A main step of the proof
is to construct a principally polarized Dieudonné Op ® Z,-module satisfying the
determinant condition. This requires the equivalent conditions in Theorem 4.

To describe our next result, we assume that p is unramified in B. Then
K, = G(Z,) C G(Q,) is a hyperspecial parahoric subgroup and My is a smooth
algebraic variety over k. In this case, an exact formula for the cardinality of the
superspecial locus My was given in [30, Theorem 1.3], using Shimura’s mass
formula [23]. However, in [30] it is implicitly assumed that there exists a self-
dual Op-lattice A (Theorem 4) and that the superspecial locus M} is non-empty
(Theorem 5).

In [9], Hamacher gave a formula for the dimension of Newton strata on the
reduction of PEL Shimura varieties (of type A or C) with hyperspecial level at p.
In the moduli scheme My of type C, the unique closed Newton stratum (called
the basic locus) is precisely the supersingular locus M§: It is equi-dimensional
of dimension

m(m + 1)

(4.1) dim M =" <L,ﬂ,/2jT +(fo = 21f0/2]) - |_m2/4J> ,

vlp

where v runs over the places of I’ over p and f, is the inertia degree of v.

We give an explicit formula for the number of irreducible components of M¥.
Let D, « denote the unique quaternion Q-algebra ramified precisely at {p, oo},
and D the unique quaternion F-algebra such that B ®g D, =~ Maty(D). Let
A’ be the discriminant of D over F. For a finite place v of F, let ¢, := p/* be the
cardinality of the residue field of v.

Theorem 6. Assume that p > 2 is unramified in B. Then the number of irre-
ducible components of the supersingular locus M} is equal to

. fo \™ (DD o
IG(Z/NZ)] H(Lﬁ/%) S 1;[1Cp(1 25) ]_A[A

vlp J
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where Cp(s) is the Dedekind zeta function of F, and for v | A,

H(qf) +(=1)") if m is odd, or v{p and ordy, (7) is odd;
i=1
)\U - m/2
H(qff—Q —1)  otherwise.
=1

Theorem 6, together with Equation (4.1) and [30, Theorem 1.3], generalizes
Theorem 1 to good reduction of an arbitrary type C family of Shimura varieties.

Here we give a sketch of the proof of Theorem 6. Let L be the field of fractions
of the ring W (F,) of Witt vectors over F,. The absolute Frobenius endmorphism
is denoted by . One can associate an affine Deligne-Lusztig variety X, (b) with
an element b € G(L) and the cocharacter py, as in (2.4). This is a locally closed
subscheme of the Witt vector partial affine flag variety Grg,, ([1, 34]). We choose
an element b such that b is basic ([13, Section 5]) and that X, (b) is non-empty.
Further we define a Q,-group J;, by

Jo(R) = {g € G(L &g, R) | g~ "bo(g) = b}

for any commutative Q,-algebra R. Then J,(Q,) naturally acts on X,,(b)(F,) by
left multiplication. We write Irr(X, (b)) for the set of irreducible components of
X,.(b). By the work of Nie [19] and Zhou-Zhu [33], the set of orbits of Irr(X (b))
under the action of J,(Q,) is in natural bijection with the “Mirkovic-Vilonen
basis” of a certain weight space of a representation of the dual group of Gg,. We
first compute the dimension of this weight space and obtain a formula for the
number of J,(Q,)-orbits of Irr(X,(b)):

f,U m
42 NN =TT ()

Next we describe the supersingular locus via the p-adic uniformization theorem
of Rapoport and Zink. Take a point © € Mk(F,), and let (A, A, ¢) denote the

principally polarized Og-abelian variety over F, corresponding to x. We write
End%(A) :== Endp,(A) ® Q, and define a Q-group I by

I(R) = {g € (End}(A) ®¢ R)* | 3c(g) € R* s.t. ¢ - g =id®c(g)}
for any commutative Q-algebra R. Here, g — ¢’ is the Rosati involution induced

by A. Then the Q-group [ is an inner form of Gg, and such that I(R) is compact
modulo center. Further, there are natural identifications

{GQe if € # p;

43 Iy, =
(4:3) S I A



By Theorem 5, the supersingular locus Mj? is non-empty. Further, the super-
singular locus is precisely the basic locus ([26, Definition 8.2 and Example 8.3]).
Moreover, the group Gg satisfies the Hasse principle. Hence the p-adic uni-
formization theorem applies to the supersingular locus: There is an isomorphism
of perfect schemes

(4.4) L(QN\X,u(b) x G(A)/KF(N) = M,

where /\/lff’pfn denotes the perfection of M ([21, Theorem 6.30], [27, Corollary
7.2.16], [11, Proposition 5.2.2]). This step is the place where the assumption
p > 2 is used.

Then we relate the the number of irreducible components of the supersingular
locus to the mass of I with respect to an open compact subgroup U of I(Ay).
Here, the mass of I with respect to U is defined as a weighted cardinality of the
double coset space I(Q)\I(A;)/U:

1
Mass(I,U) = E .
9 Ji 1
ger@niapw H@Ng~'Ug|

For each irreducible component Y of X, (b), let J,(Y") denote the stabilizer of Y in
Jp(Qp). The result of He-Zhou-Zhu [11] shows that J,(Y") is a parahoric subgroup
of J,(Qp) having maximum volume. We fix identifications G(A%}) = I(A%) and
Jh(Q,) = I1(Q,) as in (4.3), and we regard J(Y)G(ZP) as a subgroup of I(Ay).
The action of J,(Q,) on the set Irr(X,(b)) induces a bijection

11 Jo(Qp)/ Jo(Y) = Trr(X,,(b)).

[Y]€T6(Qp)\Irr (X (D))

This bijection together with the isomorphism in (4.4) induces a bijection
(4.5) I1 QNI (Ay)/ o (Y)KP(N) = Trr(M).
(Y€ Jp(Qp)\Irr(X . (b))
The assumption N > 3 implies I(Q) N (¢~ J,(Y)KP(N)g) =1 for any g € I(Ay)
(cf. [18, Lemma, p. 207]). Hence we have that
[T@QNI(Af)/Jo(Y)KP(N))|
(4.6) = Mass(Z, Jy(Y)K"(N))
= Mass(I, J,(Y)G(ZP)) - |G(Z/NZ)|.

Finally, we use the arithmetic mass formula of Gan, Hanke, J.-K. Yu for quater-

nionic unitary groups [8, Section 9] and compute

( 1)dm(m+1 m

HcFl—zy [T

v| A’

(4.7) Mass(1, J,(Y)G(Z")) =



Here, A, for a place v | A’ is the reciprocal of a volume of a certain parahoric
subgroup of a quaternionic unitary group over Q, when v | £. The theorem follows
from (4.2), (4.5), (4.6), and (4.7).

We note that our method also applies to the basic locus of a GU(r, s) Shimura
variety (of type A) attached to an imaginary quadratic field [25].

5. BAD REDUCTION OF SHIMURA CURVES

In this section we discuss the case where m = 1 and d = 1 (that is, F' = Q),
and p is allowed to be ramified in B. Thus, we restrict the datum (B, *,Op)
to the case where B is an indefinite quaternion Q-algebra. We write A for the
discriminant of B over Q. Let M (resp. M) denote the moduli scheme over
Zyy of principally polarized Op-abelian surfaces (A, A,¢) (resp. with level N-
structure) satisfying the determinant condition. Further, we relax the condition
on the moduli scheme M by removing the determinant condition, and write M for
the coarse moduli scheme over Z, of principally polarized Op-abelian surfaces.

Note that we have Mg = Mg.

We call a positive involution * principal if there exists an element v € B*
that satisfies (2.1) and 7 = —A. In this case, every Og-abelian surface (A4,:)
with the determinant condition admits a unique Og-linear principal polarization
A ([6, Proposition 4.3] and [2, Proposition 3.3]). The geometry of M in this case
has been studied and is well-understood; see [20, 3]. In particular, the Cherenik-
Drinfeld theorem [6, Section 4] states that the formal completion of M ® W (TF,)
along the special fiber at p | A admits a p-adic unformization by one-dimensional
Deligne’s formal scheme " = ﬁ@W(Fp).

From now on, we no longer assume that % is principal. We set

S = {primes ¢ : £ | A, ordy,(7) is even},

where II, denotes a uniformizer of B ©g Q. Note that the set S depends only on
(B, *,0p) but not the choice of 7. Denote by M =M ®Fp, My = Mg ®Fp,
and M := M ®Fp the geometric special fibers. Using the methods of this article,
we obtain the following explicit results.

Theorem 7. Assume that m =1 and d = 1.

(1) The following statements are equivalent:
(a) The generic fiber Mg is non-empty.
(b) The special fiber M is non-empty.
(c) The set S is empty.
(d) The involution x is principal.
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(2) Assume that the conditions in (1) hold and that p | A. Then the special
fiber Mg has

a@/ND)— - I -1
£/(A/p)
irreducible components.
(3) The moduli scheme M is non-empty if and only if S C {p}.
(4) When S = {p}, the moduli scheme M is contained in the special fiber
M ® F,. Moreover, the geometric special fiber M is finite and we have
the mass formula

(1) Mass(M(E,) = 3 m :1—12 IT -

(AN 0)]eM(Fp) 2(A/p)

Remark 8. A triple (B, *,0Op) satisfying S = {p} can be obtained as follows:
Take a prime ¢ # p such that p is inert or ramified in K = Q(v/—¢). Let B be
the indefinite quaternion Q-algebra ramified exactly at {p,#}. Then there exists
an embedding K — B of Q-algebras, and hence an element v € B* such that
7? = —(. Define a positive involution % on B by b — b* = vby~!. Further, choose
a maximal order Op of B containing . Then the triple (B, x, Op) satisfies the
desired property.

Acknowledgments. Part of the present work was carried over during the au-
thors” stay at the Korea Institute for Advanced Study. They thank Professor
Youn-Seo Choi for his kind hospitality and the institute for excellent working
conditions. Terakado is partially supported by JSPS KAKENHI Grant Number
23K19014. Xue is partially supported by the National Natural Science Founda-
tion of China grant No. 12271410 and No. 12331002. Yu is partially supported
by the NSTC grant 112-2115-M-001-010 and the Academia Sinica Investigator
Grant AS-TA-112-MO1.

REFERENCES

[1] B. Bhatt and P. Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math.
209 (2017), 329-423.

[2] J.-F. Boutot and H. Carayol, Uniformisation p-adique des courbes de Shimura: les théorémes
de Cherednik et de Drinfeld, Astérisque 196-197 (1991), 45-158.

[3] H. Carayol, Sur la mauvaise réduction des courbes de Shimura, Compos. Math. 59 (1986),
no. 2, 151-230.

[4] P. Deligne, Travaux de Shimura, Sém. Bourbaki Exp. 389 (1970/71), Lecture Notes in
Math., vol. 244, Springer-Verlag (1971), 123-165.

[5] P. Deligne, Variété de Shimura: Interprétation modulaire, et techniques de construction de
modéles canoniques, Automorphic forms, representations and L-functions. Proc. Sympos.
Pure Math., 33, Part 2 (1979), 247-289.

10



[6] V. G. Drinfeld, Coverings of p-adic symmetric regions, Funct. Anal. and Appl. 10 (1976),
107-115.

[7] T. Ekedahl, On supersingular curves and supersingular abelian varieties. Math. Scand. 60
(1987), 151-178.

[8] W. T. Gan, J. P. Hanke, and J.-K. Yu, On an exact mass formula of Shimura. Duke Math.
J. 107 (2001), 103-133.

[9] P. Hamacher, The geometry of Newton strata in the reduction modulo p of Shimura varieties
of PEL type, Duke Math. J. 164 (2015), no. 15, 2809-2895.

[10] K. Hashimoto and T. Ibukiyama, On class numbers of positive definite binary quaternion
hermitian forms, J. Fac. Sci. Univ. Tokyo 27 (1980), 549-601.

[11] X. He, R. Zhou, and Y. Zhu, Stabilizers of irreducible components of affine Deligne-Lusztig
varieties, arXiv:2109.02594.

[12] T. Katsura and F. Oort, Families of supersingular abelian surfaces, Compos. Math. 62
(1987), 107-167.

[13] R. E. Kottwitz, Isocrystals with additional structure, Compos. Math. 56 (1985), 201-220.

[14] R. E. Kottwitz, Points on some Shimura varieties over finite fields. J. Amer. Math. Soc. 5
(1992), 373-444.

[15] K.-W. Lan, Arithmetic compactification of PEL type Shimura varieties, London Mathe-
matical Society Monographs Series 36, Princeton University Press, Princeton, NJ (2013).

[16] K.-W. Lan, Compactifications of PEL-type Shimura varieties in ramified characteristics,
Forum Math. Sigma 4 (2016), el, 98 pp.

[17] K.-Z. Li and F. Oort, Moduli of supersingular abelian varieties, Lecture Notes in Math.,
vol. 1680, Springer-Verlag (1998).

[18] D. Mumford, Abelian Varieties, Oxford University Press (1974).

[19] S. Nie, Irreducible components of affine Deligne-Lusztig varieties, Camb. J. Math. 10
(2022), 433-510.

[20] A. P. Ogg, Mauvaise réduction des courbes de Shimura. Séminaire de théorie des nombres,
Paris 1983-84, Progr. Math., 59, Birkhéuser Boston (1985), 199-217.

[21] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, Ann. Math. Studies 141,
Princeton Univ. Press (1996).

[22] G. Shimura, Moduli of Abelian Varieties and Number Theory, Algebraic groups and dis-
continuous subgroups, Proc. Sym. Pure Math. 9 (1966), 306-332.

[23] G. Shimura, Some exact formulas for quaternion unitary groups. J. Reine Angew.
Math. 509 (1999), 67-102. Math. Ann. 382 (2022), 69-102.

[24] Y. Terakado, J. Xue, and C.-F. Yu, On the supersingular locus of Shimura varieties for
quaternionic unitary groups, arXiv:2311.18354.

[25] Y. Terakado and C.-F. Yu, Mass formulas and the basic locus of uitary Shimura varieties,
arXiv:2210.04054.

[26] E. Viehmann and T. Wedhorn, Ekedahl-Oort and Newton strata for Shimura varieties of
PEL type. Math. Ann. 356 (2013), no. 4, 1493-1550.

[27] L. Xiao and X. Zhu, Cycles on Shimura varieties via geometric Satake, arXiv:1707.05700.

[28] C.-F. Yu, On the slope stratification of certain Shimura varieties. Math. Z. 251 (2005), no.
4, 859-873.

[29] C.-F. Yu, The supersingular loci and mass formulas on Siegel modular varieties. Doc. Math.
11 (2006), 449— 468.

[30] C.-F. Yu, An exact geometric mass formula. Int. Math. Res. Not., rnn113 (2008).

11



[31] C.-F. Yu, On existence and density of the ordinary locus of certain Shimura varieties.
Proceedings of the 6th International Congress of Chinese Mathematicians, ALM 36, 361
379 (2017).

[32] C.-F. Yu, On reduction of the moduli schemes of abelian varieties with definite quaternion
multiplications, Ann. Inst. Fourier (Grenoble) 71 (2021), no. 2, 539-613.

[33] R. Zhou and Y. Zhu, Twisted orbital integrals and irreducible components of affine Deligne-
Lusztig varieties, Camb. J. Math. 8 (2020), no. 1, 149-241.

[34] X. Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of
Math. 185 (2017), 403-492.

(TERAKADO) SCHOOL OF SYSTEM DESIGN AND TECHNOLOGY, TOKYO DENKI UNIVER-
SITY, 5 SENJU ASAHI-CHO, ADACHI-KU, TOKYO, JAPAN, 120-8551
Email address: yterakado@mail.dendai.ac. jp

(XUE) COLLABORATIVE INNOVATION CENTER OF MATHEMATICS, SCHOOL OF MATHE-
MATICS AND STATISTICS, WUHAN UNIVERSITY, LUOJIASHAN, WUHAN, HUBEI, P.R. CHINA,
430072

Email address: xue_j@whu.edu.cn

(XUE) HUBEI KEY LABORATORY OF COMPUTATIONAL SCIENCE (WUHAN UNIVERSITY),
WuHAN, HuBEl, P.R. CHINA, 430072

(YU) INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, ASTRONOMY MATHEMATICS BUILD-
ING, NoO. 1, SEC. 4, ROOSEVELT RD., TAIPEI, TAIWAN, 106319
Email address: chiafu@math.sinica.edu.tw

(Yu) NATIONAL CENTER FOR THEORETICAL SCIENCES, COSMOLOGY BUILDING, NoO. 1,
SEC. 4, ROOSEVELT RD., TAIPEI, TAIWAN, 106319

12



