AROUND THE MANTOVAN FORMULA

WANSU KIM

Since we obtained the Hodge-type Mantovan formula in joint work with Hamacher [9],
there have been many new developments. Axiom A in [9], which was known in some
special cases, has been verified by Gleason-Lim—Xu [3]. The theory of integral models
of global and local Shimura varieties has been reshaped in terms of Scholze’s theory of
p-adic shtukas [28], and integral models have been constructed in greater generalities than
before (cf. [23], [18], [1], [24]).

In the most recent joint work with Hamacher [10, §2], we constructed central leaves
and Igusa covers for any Witt vector local shtuka over a perfect base (as well as their
function field analogues). The construction can be applied to the perfect special fibre of
an abelian-type Shimura variety provided that there is a “Witt vector G¢-shtuka” on it.
Combining this with recent developments on integral models of global and local Shimura
varieties, it seems that all the ingredients for the abelian-type Mantovan formula are in
place. In this article, we attempt (perhaps unsuccessfully) to describe “upgrade patches”
to [9] from recent developments.

After discussing the modular curve case in §1, we review the Hodge-type Mantovan
formula [9] (with “upgrade patches”) in §2. We then sketch some of the new developments
in the abelian-type case in §3.
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1. WARM-UP: ALMOST PRODUCT STRUCTURE FOR MODULAR CURVES

Let p be a prime, and fix another integer N coprime to p. (We assume N > 3 for
simplicity.) For any v > 0 let Y(Np") denote the (open)' modular curve over SpecZ,
with full level Np™ structure in the sense of Drinfeld. We set

Y(NPT)@p = Y(NPT) XSpeCZp Spec@p and V(Npr) = (Y(NPT) ><Spech SpeCFp)reda

which are (disconnected) geometric generic and reduced special fibres at p.

The bad reduction of Y(Np™) indicates that ordinary and supersingular loci in Y(Np")
behave quite differently. We will now describe explicitly the limit as r — oo of the
formal completion Y(Npr)//\v“\hor)b for b € {ord, ss} (with Y(Np")® denoting the ordinary
or supersingular locus).

Let us set up some notation. Let Zp denote the p-completed maximal unramified
extension of Z,, with Qp = Frac(zp). We define chc to be the p-adic completion of
Zp [Mpe], and write @%yc = chc[p] Let & denote the unlversal elliptic curve over Y(N),

and for any (formal) scheme S over Y(N) we let s denote the pullback of € over S. We
may even write € for €g if there is no risk of confusion.

1.1. Perfect Igusa curves on the ordinary locus. The following definition of ordinary
Igusa variety is due to Caraiani—Scholze [1, §4.3]. (The definition below is a slight variant
of it, following [9, §6.1].)

Definition 1.1. We define Jg3¢ := Isomy Ny, Npord (Mpe X Qp/Zy, E[p™]), and let Igd =
Jgd Xt 7, SpecF,. We call I the (perfect) ordinary Igusa variety.

To explain the terminology, Igord turns out to be the perfection of the limit of the
ordinary part of the Igusa curves in the sense of Harris—Taylor and Mantovan; cf. [,
Prop 4.3.8]. In particular, Igord is the perfection of a pro-finite étale cover of Y(N)°'¢, and
Jg%? is its canonical p-adic lift.

We will now construct a pro-finite étale covering of formal schemes

(1) (I0R Xspez, SPELY®) x Surj(Z3,, Zp)—=lm Y(NDP™)7g (e o s

which is a torsor under the action of Aut(ppe~ x Qp/Zy) = Ly x Z, . Here, Surj(Z%, L)
is the formal scheme attached to the profinite set of surjective maps Z% — L. Indeed,

we interpret Spf Zp as the moduli of infinite Drinfeld level structures on py~, so a point
of Spf Z, x Surj(Z%, Z) defines an infinite Drinfeld level on E[p™]. Conversely, if E is

an ordinary elliptic curve over a Zp—scheme S where p is locally nilpotent equipped with
an infinite Drinfeld level structure o: ZQ — @ E[p'], then there is an isomorphism

ord

B: Hpe X Qp/Z, — E[p™], defining an S-point of Jgy, (Indeed, o mod p" defines a
splitting of connected- étale sequence of E[p"] and forces E[p"]* to be constant.) Now,

o restricted to E[p™] <— pp~ defines a point of Spf Zp, and we also have a surjection

o

@

z2 a lm Elp’] — T,E[p=]® ﬁ Zyp. As Aut(pp~ X Qp/Z,) acts simply transitively on
the choices of (3, we obtain the claim.
'In this note, we will not consider the questions related to the compactifications of Shimura varieties, so

we will ignore compactified modular curves as well.
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1.2. Supersingular (0-dimensional) Igusa variety. Let us briefly discuss the su-
persingular Igqusa variety, which turns out to be 0-dimensional. We pick a point in
x € Y(N)* and let &, denote the corresponding supersingular elliptic curve over Fp.
Write D == End(E,) ® Q and Op = End(Ey), which are respectively the quaternion
division algebra over Q ramified only at {p, co} and its maximal order. Then the following
description is well known?:

(2) Y(N)™ = D*\(D &g A®)* /(1 + N&p)*,

where the chosen point x corresponds to the trivial double coset on the right hand side.
Write Xy == Ex[p*], which is independent of the choice of x € Y(N)* up to isomorph-

ism. We define the (perfect) supersingular Igusa variety as follows

(3) [g(Np™)™ = Isomy s (XF, EPZ s ),

which is a right torsor over Y(N)* for the action of Aut(Xy) = ﬁs,p, where 0p ;, is the

p-adic completion of &p. One can even make it more explicit as follows:

(4) Tg(Np®)* = D*X\(D g A®)* /(1 + NOB)*,

where DX is the closure of DX in (D ®g A>®)*. Finally, let Jg(Np>)® denote its lift over
Spf Z,. It should be warned that this 0-dimensional Igusa variety Ig(Np*)* has nothing
to do with the Igusa curve on the ordinary locus.

1.3. Interpretation as the almost product structure. For b € {ord, ss}, set Xy, =
€, [p>] for some (equivalently, any) x € Y(N)®. For example, we may set X,q =
Hpo X Qp/Zy. Let RZ" denote the (special) formal scheme over Spf Zp parametrising
deformations of Xy up to quasi-isogeny; see Rapoport—Zink [26, Def 2.15] for the precise
definition. As X, is 1-dimensional, RZ® turns out to be a countable disjoint union of the
universal deformation space of Xy. (The set of connected components is identified with
7, via the degree of quasi-isogeny if b = ss, and Z x Z via the degree of the connected and
étale parts of quasi-isogeny if b = ord.) Let RZLJ denote the finite cover of RZ® given by

the Drinfeld level p™ structure, and write RZ2 = @r RZP (where the limit is as a formal
scheme). Then we have a natural Hecke GLy(Qj,)-action on RZY.

The formal schemes RZ®, RZY and Jg¥ admits a natural (right) action of the “self
quasi-isogeny group” Qisg(Xy,), constructed by Caraiani-Scholze [1, §4.2], which can be
represented by a formal group scheme over Spf Zp with perfect special fibre. See loc. cit.
for further details, where Qisg(Xyp) is denoted by Aut(Xy) instead. We now interpret
the proceeding discussions as the following GL2(Q,,) -equivariant isomorphism, called the
“almost product structure”:

(5) (RZS, x50, 0% ) / Qisg(3)—=lim YIND") g e

1.3.1. Almost product structure: supersingular locus. We have Qisg(Xg) = D7, a constant
locally profinite group, where Dy, is the p-adic completion of D as in §1.2. The profinite
open subgroup ﬁl;,p corresponds to the automorphism group of X, and the Frobenius
isogeny corresponds to a uniformiser in Dy,. This tells us how to extend the (right) &3 -
action on the deformation space to the Dj-action on RZ*. The natural right action of
D} on JgY is via the right multiplication on (4).

2The Shimura curve case was obtained by Carayol [2, §11], and the same proof should work.
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Now, fix a “base point” x € Y(N)* and identify Y(N)% with the neutral component of
RZ®. Then one can deduce (5) for b = ss from (2).

1.3.2. Almost product structure: ordinary locus. In the ordinary case, the main difference

is the structure of Qisg(Xoa) (¢f. [, Rmk 4.2.12]); namely, we have Qisg(Xoa) = (Q) )2 X

Hpeo, where [lpe = @p Upw. Then the deformation space of X,,q with “infinite Drinfeld
level structure” turns out to be

Spf Z%°[qP

00

—1] % Surj(Z?D,Zp),

where q is the Serre-Tate local coordinate in the sense of [11, §3.1], and the p-power
root of q comes from iterating the pullback by the canonical lift of Frobenius (c¢f. [14,
Lemma 4.1.2]). In particular, the Serre-Tate local coordinate gives a canonical identific-

0o

ation of the neutral component Spf Z%yc [qP = — 1] with the neutral component (1) geve

of Qisg(Xord)Zgyc, with the canonical lift corresponding to the identity section.

Now, fixing a “base point” x € Y(N)¢ and repeating the construction in 1.3.1 using
(1), we deduce (5) for b = ord.

1.3.3. Remark on the generalisation to the Siegel case. The above discussion can be dir-
ectly extended for Harris—Taylor Shimura varieties [12]. But for the Siegel case, some of
the features do not generalise: we do not have nice integral models with arbitrary level at
p so we only generalise the perfectoid generic fibre of (5), and the relevant Rapoport—Zink
spaces and Igusa varieties are much less explicit.

2. HODGE-TYPE CASE: REVIEW AND RECENT PROGRESS

The main result of joint work with Hamacher [9] is to extend the construction of in-
tegral local Shimura varieties (or Rapoport-Zink spaces) and Igusa varieties in the tamely
ramified Hodge-type setting, as well as the almost product structure of Newton strata.
We also deduce the Mantovan formula expressing the cohomology of Hodge-type Shimura
varieties in terms of local Shimura varieties and Igusa varieties. The unramified PEL case
is due to Mantovan [20, 21], built upon the work of Harris—Taylor [12] and Oort [22]. For
the Hodge-type case, we use the Siegel case as input.

The construction of Hodge-type Rapoport—Zink spaces and Igusa varieties in [9] involves
the auxiliary choice of an integral model of Shimura variety, whose construction (by Kisin—
Pappas [17]) also involves auxiliary choices. In this section, we first review the main result
of [9] and try to describe “upgrade patches” via recent developments.

2.1. Review of Kisin—Pappas integral models and Witt vector shtukas. Fix a
prime p > 2, and let (G,®) be a Hodge-type Shimura datum such that Gg, splits over a
tame extension and we have p 1 |11 (G9)|. Let E := E(G, D) denote the reflex field, and we
fix a place v|p of E. The prototypical non-PEL Hodge-type example is the GSpin Shimura
datum attached to a rational quadratic space (V, q) with signature (n, 2) that splits over a
tame extension of Q,. Then we get a Shimura datum by setting G := GSpin(V, q) and ©
to be the space of oriented negative definite 2-planes in Vg. (Here, we have E(G, D) = Q.)

Let §/Z, denote the Bruhat-Tits integral model of Gq, corresponding to the full
stabiliser of some facet of the Bruhat-Tits building, and set K, := §(Z,). Then for any
small enough open compact subgroup KP C G(AP>) (with K := KPK,,), Kisin-Pappas [17]
constructed a normal integral model .k over O (y) of Shx = Shx(G,®) with number of
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natural properties. The construction of .#x involves auxiliary choices, while it is believed
to be independent of them. (We will discuss further at §2.3.)

As a consequence of (the auxiliary choice made for) the construction, one gets a finite
unramified morphism . — 5”]{,7 O o) (inducing a closed immersion on the generic fibre),
where .7, /Zp) is the integral canonical model of the Siegel modular variety with K’ hy-
perspecial at p. In particular, we get a “universal abelian scheme” @7 over .%x, equipped
with a (group-theoretically produced) family of absolute Hodge tensors (ty) over Shx. To
say a word about tensors, the choice of S — Yé,ﬁEm also induces a closed immersion
§ < GSpyy C Glyg over Z, where g = dim g, @, and (ty) comes from the choice of
tensors (s«) C (Z%g)@’ whose pointwise stabiliser is G.

Furthermore, the absolute Hodge cycle (ty) has “good reduction” in the following
sense. We have Frobenius-invariant tensors (t3) of the (contravariant) Dieudonné module

]D)(MKI?%&) (where ?pkerf is the perfection of the geometric special fibre of .#x) which

are “pointwise compatible” with the étale components (t&') via the crystalline comparison
isomorphism; that is, given x € #k(R) for a mixed characteristic complete dvr R with
residue field Fp, the crystalline comparison isomorphism takes the fibre of (t2) at the
special point of x to the fibre of (t&) at the generic point of x. This property was
obtained in [9, Cor 4.11] and [16, Prop 1.3.12, 1.3.7] by different methods.

We can group-theoretically package the good reduction of tensors as follows. Let LG
and LG respectively denote the Witt vector positive loop group and the Witt vector
loop group attached to G, in the sense of [32, §1.1.1]. By Witt vector G-shtuka® over a
perfect scheme S we mean a right L™ G-torsor P over S equipped with an isomorphism of
LG-torsors ¢@: 0*LP = LP, where o is the Frobenius and £P =P x-"9 LG.

Proposition 2.1. We have a Witt vector G-shtuka P = (P, @) over ?pKerf, where
o 2 D
f.P — ISOHI <[Zpg7 (so()]w(?ierf), [D(%K|?Ilzerf), (t“)]>
and @ is induced by the crystalline Frobenius on D( x| pert).
K

Proof. This can be read off from the proof of Cor 4.12 in [J]; indeed, P is an L™ G-torsor
as it trivialises over the perfection of the complete local ring of .’ at each closed point
(cf. [17, §3.2]), and @ is well defined by Frobenius-invariance of (t2). O

Note that the pair (LP, @) naturally gives rise to an “F-isocrystal with G-structure”,

so we get the Newton stratification ?i of Zx indexed by the neutral acceptable set
b € B(Gg,, 1); cf. [9, Cor 4.12] , [16, Cor 1.3.13].

2.2. Hodge-type almost product structure. We fix an Fp—point x of a Newton
stratum 7E, and set Xy = i [p®]." We next define Qisgg (Xy), RZ® and Jgg,, and
show the following isomorphism of formal schemes over Spf Z,, depending on x (called the

3A Witt vector G-shtuka coincides with the p-adic case of local G-shtuka [10, Def 2.2(1)], but we use this
terminology to avoid potential confusions with other notions of local shtukas.
4To be pedantic we should require some analogue of complete slope divisibility for the Witt vector G-
shtuka P, but let us ignore this subtle point. (Indeed, the construction of Igusa varieties Igg, in [J]
required complete slope divisibility, but such a condition is removed in the later collaboration [10, §2] as
we explain in §3.2.)
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level-K almost product structure):

(6) (RZ® xgpr7, Io%0)/ Qisga (Xo) —=(F) 75 -

Here, RZ" is a certain Hodge-type Rapoport-Zink space, Jgg, is the p-adic lift of a
Hodge-type Igusa variety, and Qisgg(Xyp) is the group of tensor-preserving self quasi-
isogeny group of [Xy, (t ).

In the unramified PEL case (such as in the Siegel case), the isomorphism (6) was ob-
tained in Caraiani-Scholze [1], built upon Rapoport—Zink [26], Mantovan [20] and Scholze—
Weinstein [27]. The strategy of [9], which was inspired by Howard—Pappas [13], is to “pull
back” the Siegel case of (6) to obtain the general Hodge-type case.

Let ?{(b, denote the Newton stratum in ?{(, where ?E maps to. We write Xy, for the
underlying quasi-polarised p-divisible group of Xy,, and Qisg s/ (Xyp-) for the group of quasi-
polarised self quasi-isogenies. Finally, let RZ® and 39%, denote the Siegel Rapoport—Zink
space and the lift of [gusa varieties thus obtained.

Firstly, a formal closed subgroup scheme Qisgg(Xyp) C Qisgg/(X{) whose points are
self quasi-isogenies preserving (tgx) was constructed by the author [15] (which has a gap,
corrected by D’Addezio—van Hoften [3, §4]). As in the PEL case, we have Qisgg(Xp) =
Jo(Qp) x Qisgg (Xy) for some lift of perfect formal group Qisgg (Xy), and the structure

of Qisgg (Xy) as well as its action on the formal neighbourhood of a closed point in ?E
is analysed in [15].

Next, in Def 5.9 (resp., Def/Lem 6.1) in [9] we defined RZ® (resp., Jgk,) as the closed
union of connected components of RZ?" x S Sk (resp., jgﬁllp X 7., Jx) cut out by the
condition that the tensors (t2) are preserved by the quasi-isogeny rigidification (resp.,
Igusa level structure); indeed, to show that the condition on tensors cuts out a closed
union of connected components, we use a slight generalisation of Katz’ result on “parallel
transport by Frobenius” for morphisms of constant F-crystals over perfect schemes; see
[9, Prop A.1] for the details.

Since .k does not admit a nice moduli interpretation as the PEL case, it is non-trivial
to show that Qisgg(Xp) acts on RZ® and Jgp, via restriction of Qisgg:(Xp)-action on
RZ® and jgﬁl,p. The action of Qisg®(Xyp) on RZ® and Jg2, can be deduced from its

action on the formal neighbourhood of ?E at each closed point studied in [15], but
the action of the “component group” Ju,(Qp) is subtle, which roughly asserts that any
tensor-preserving quasi-isogeny of p-divisible group [Xp, (t )] --» [Y, (u3)] gives rise to
a closed point y € ?E with [V, (ug)] = (@ y[p™], (te )]s ¢f Axiom A in [9, §1]. When
[9] was written this property was known only in some special cases, but it is now proven
in complete generality by Gleason—Lim—Xu [%]. Finally, the almost product structure (6)
can be deduced from the Siegel case via considering the “almost product structure” on

the formal completion (?E)/y\ at each closed point [15, §5.2].

Set 8% ¢ = (%) 5 Xspa i, Spa C and RZE = RZ"™ x5 SpaC, where C :=E,.
Let SEO,C denote the preimage of SE,C in the perfectoid limit l’glchK (Shk: Xgpec SPEC C)*,
and RZ})’QC the perfectoid limit of the coverings {RZE]’D,C}K{,CKP with KJ-level structure.
And lastly, set ’Jggo’c = Y&nchKp jg%/id X Spa Fe Spa C. Then 8})’070 RZ})’O,C and Jg}:o)c

are perfectoid spaces equipped with a natural action of G(A*), G(Qp) x Qisg (Xp)c and
6



Qisgs (Xp)c, respectively. (Note that Qisgg(Xy)c is a perfectoid group; that is, a group
object in the category of perfectoid spaces over C.)
Now from (6) we get a following G(A*)-equivariant isomorphism

(7) (RZEO,C X Spa C ’Jgfo’c) /QngG(Xb)CiSEO,C;

which we call the infinite level almost product structure. (Compare with (5).)

2.3. Remark on canonicity and p-adic shtukas. Our construction of RZ® a priori
depends on the auxiliary choice of the integral model .#x, whose construction a priori
depends on yet another auxiliary choice of a carefully chosen embedding into some Siegel
modular variety. There have been important progresses on making these constructions
canonical via Scholze’s theory of p-adic shtukas [23], which we briefly introduce.

Regarding %k, Pappas—Rapoport [23, §4.2] defined the notion of canonical integral
models of Shimura varieties defined in terms of the family of G-shtukas when K, is
parahoric. This definition is extended to the case when K, is quasi-parahoric in a recent
preprint by P. Daniels—P. van hoften-D. Kim—M. Zhang; cf. [1, Def 4.1.2]. Furthermore,
one can show that the Kisin—Pappas integral model in §2.1 is canonical, and the special
fibre of the G-shtuka recovers the Witt vector G-shtuka P in Prop 2.1. (This claim can be
extracted from the statement and the proof of [1, Th 4.1.12]. Note that p-adic G-shtukas in
characteristic p coincide with Witt vector G-shtukas by [23, Th 1.1.3].) Furthermore, the
main result of [1] shows that canonical integral models exist for any Hodge-type Shimura
varieties with any level that is quasi-parahoric at p (even allowing p = 2). One may
consider removing the assumptions on G for the Hodge-type almost product structure
(i.e., (6) and (7)), but we will discuss this in the abelian-type setting in §3.

Regarding RZ®, it can be read off from Prop 1.3.1 and Th 1.3.3 in [23] that RZ®
coincides with the integral local Shimura variety (constructed purely locally in [24] as the
moduli of p-adic G-shtukas).

Lastly, the construction of Jgy, implies

(8) Igﬁv = 3921’ xSprp SpeCFp = ISOHl(p(ZxQ),

where P is defined in Prop 2.1 and the rightmost term is the isom-sheaf of Witt vector
G-shtukas. In the unramified PEL case, the analogue of (8) for Jgg, ¢ (in terms of p-
adic G-shtukas on C) and the almost product structure (7) are incorporated in the “fibre
product formula” of Caraiani—Scholze [1, §4.3] and the theory of Igusa stacks of M. Zhang
[31]. The Hodge-type generalisation is expected to be available soon; cf. [5].

2.4. Cohomological consequence: Mantovan formula. From now on, fix a prime
¢ # p as well as an isomorphism C = Q,. The (suitably defined) compact support
cohomology RFC(RZ})’O,C,@A admits a natural smooth action of G(Qp) X Ju(Qp) x We,,
induced by the action of G(Qp) x Qisgg(Xp)c and the Weil descent datum on RZq ¢ [9,
Lem 5.14].

Definition 2.2. For a locally profinite group H, let Groth(H) denote the Grothendieck
group of admissible H-representations. Given T € Groth(Jy(Qp)) we set

2d
Manty, , (1) =) (—1)} Ext; 257} (RT(RZY, ¢, @), ) (—d) € Groth(G(Q,) x We,),

i=1

7



where d := (2p, u) is the dimension of Shy.”

As RZEO,C is the infinite-level local Shimura variety, Manty , is expected to “encode”
the local Langlands correspondence and Jacquet-Langlands correspondence. The precise
conjecture due to Kottwitz and Harris-Viehmann can be found in [25].

Let .%: denote the automorphic Q,-local system on .%, and we pull it back to jgﬁp.
(For example, one may choose .%; = Q,.) Note that RI.(Ig%,.%;) = ligKp RT.(Igt,, %)
is a bounded complex of smooth G(AP*®) x J,(Qp)-representations with admissible co-
homology, where Ig?, is the special fibre of Jgg,.

We extend Manty, , to Groth(G(AP®) x Ju(Qp)) — Groth(G(A®) x Wg ). We also
abusively let RFC(IgEO, Z¢) € Groth(G(AP*) x Jp(Qp)) denote the alternating sum of the
cohomology. We are now ready to state the Hodge-type Mantovan formula.

Theorem 2.3. Suppose that the Hodge-type Shimura variety Shx is proper® in addition
to the assumptions in §2.1. Then the following equality holds

RTe(Sho,c, Ze) = > Manty, (RI(Ig, Z))

bEB(GQp,LL)
in Groth(G(A*) x We, ), where the sum is over the index of the Newton stratification.

This formula offers an extremely useful global tool for local results; indeed, one can
study RT.(Ig2,.%;) via trace formula techniques, and use it to deduce interesting con-
sequences on Manty, ,,; ¢f. Harris-Taylor [12] and Shin [30].

Let us discuss a heuristic behind the proof. By excision, one is reduced to showing

(9)  RI(8% ¢, %) = RHomy, (g, (RFe(RZY, ¢, Qp), RTe(Ig3,, Z)) (—d)[—2d].

(Note that the RHS defines Manty, ,-term in the Grothendieck group.) We want to in-
terpret it as the “Kiinneth formula” for the infinite-level almost product structure (7),
which asserts that RZ})’O’C X Spa C 39207C — 8, ¢ is a torsor under the action of a perfect-
oid group Qisgg(Xyp)c. Employing “topological heuristics”, one can regard Jg;C (resp.,
Qisgg (Xp ) c-torsor) as “deformation-retracting” to Ig2 (resp., to a Ju(Qp )-torsor). This
heuristic was made precise for jg})’o,c via formal nearby cycles [I, Lem 4.4.3], which seems
plausible to generalise for perfectoid Qisgg (X )-torsors.

Unfortunately, we failed to turn it into a proof then, so we had to work with auxiliary
integral models at arbitrary deeper levels at p in [9, §7]. The main obstacle was that the
cohomological tools that we had then (cf. [9, §2]) require the presence of special formal
integral models. Fast forwarding to the present time, we now have tools to directly handle
the “infinite-level cohomology” thanks to Fargues—Scholze [7]. Furthermore, the theory
of Igusa stacks by M. Zhang [31] (at least in the unramified PEL case) has beautifully
transformed the almost product structure (7) (and the aforementioned heuristic) so that
the Fargues—Scholze machinery can be applied directly. This already has an application
to the mod € analogue of the Mantovan formula [11, §3], and it would not be so surprising
if the £-adic Mantovan formula could be obtained similarly.” Note that we are expected to

5The admissibility of Manty, ,,(T) follows as RZ2 satisfies the conditions for [25, Prop 6.1].
6Tn the proof, the only role of properness is the nearby cycle spectral sequence for Shimura varieties with
automorphic coefficient sheaves. However, many non-compact Shimura varieties admits the nearby cycle
spectral sequence with automorphic coefficient sheaves (¢f. [19]), so in [9] we assumed “Axiom B” instead
of properness. See [9, Rmk 7.9] for further discussions.
"Note that one cannot trivially deduce the {-adic case from the torsion case, as the projective limit does
not preserve smoothness of the group action.
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have the Hodge-type generalisation of the theory of Igusa stacks and the mod £ analogue
of the Mantovan formula in the forthcoming work of P. Daniels, P. van Hoften, D. Kim
and M. Zhang [5].

3. ABELIAN-TYPE CASE: SKETCH

Many interesting proper Shimura varieties are of abelian type but not of Hodge type
(eg., non-PEL Shimura curves, type C examples). To give a GSpin example, choose a
totally real number field F # Q, and an F-quadratic space (V, q) with signature (n,2) at
one infinite place and positive definite elsewhere. Then G = Resg,q GSpin(V, q) admits a,
proper Shimura variety that is of abelian type, but not of Hodge type. This gives enough
reason to desire for the abelian-type Mantovan formula.

In this section, we sketch (very roughly) the ingredients needed to generalise the Hodge-
type almost product structure in [9] to the abelian-type case.

3.1. Canonical integral models. Let us begin with an extremely brief review of recent
progresses on integral models of abelian-type Shimura varieties (c¢f. [18], [0]). Fix a prime
p > 2. Let (G,®) be an abelian-type Shimura datum, and G/Z, a parahoric integral
model with K, := §(Z,). Let G¢ denote the quotient of G by the maximal Q-anisotropic
R-split central torus. (Note that G = G€ in the Hodge-type case.) Then G determines
the parahoric integral model G¢ of G¢ (resp. G4 of G®), which are obtained as a suitable
quotient of G.

Finally, suppose that there exists a canonical integral model %k of Shx = Shx (G, D)
for K = KPK,, in the sense of [23, Conj 4.2.2] and [/, Def 4.1.2]. In particular, we get a

—perf
Witt vector G¢ -shtuka P on the perfected geometric special fibre . pKe (resp. G*d-shtuka

—ad, f . . . . . .
P on .Fas ). This assumption is known to be satisfied in the following cases:

(1) (G,®) is of Hodge type; cf. P. Daniels—P. van Hoften—D. Kim—M. Zhang [, Th I].
(2) p > 2 and G™ is essentially tame®; cf. Daniels—Youcis [6] built upon Kisin—Zhou
[18, §5] and [1, Th I]. Note that essential tameness is automatic if p > 5. (See
§5.3, esp. Rmk 5.3.1, in [23].)
Let us elaborate the latter case further. In this case, Kisin—Zhou [I58] extended the
construction of Kisin—Pappas integral models as follows. Choose a Hodge-type Shimura
datum (G’,®’) ad-isomorphic to (G,®) satisfying a list of properties in [18, Prop 5.2.6].
Applying [18, Th 5.2.12]), we get an integral model of Shk for any small enough K = KPK,,,
as well as integral models %k and yggd for the Hodge-type and adjoint Shimura varieties
(with suitable parahoric levels at p), equipped with the following finite maps

(10) y]élﬂy]?gd%y](

corresponding to (G/,®’) — (G, D) <« (G,D), such that the map on the “geomet-
ric components” . — fsff factors through . 5. Furthermore, Daniels—Youcis [(]
showed that these integral models are canonical in the sense of Pappas—Rapoport [23,

Conj 4.2.2].

3.2. Central leaves and Igusa covers. Let } be an affine smooth scheme over Z,, with
connected fibres. Let Q be a Witt vector H -shtuka on a perfect E,-S(jheme S, and fix
x € S(Fp). In recent joint work with Hamacher [10, §2.14ff], we showed that the central
leaf €/* — the locus where the geometric fibre of Q is isomorphic to Q, — is locally closed

8The essential tameness condition is called acceptability of (G, D) in [18].
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in S, and the “Igusa cover” Isom,,(Q,,Q) is pro-finite étale over ¥/*. (This extends the
classical results when Q comes from a completely slope divisible p-divisible group over

—perf =
S.) Applying this construction to P over . i and an Fy-point x, we get a (canonical)
central leaf €° and the (perfect) Iqusa variety Igh, over it. We define an adjoint central

leaf €°24 C 7pKerf as a central leaf for the pull back of P**; or equivalently, the preimage

—ad,per . :
of a central leaf in .7 a1 . We have the following comparison between €° and €44,

Proposition 3.1. If the centre Zge of G¢ is a torus then we have €°*4 = €°. In general,
€2 s a finite (open and closed) disjoint union of central leaves.

Note that the centre of a split GSpin,,,, for n > 0 is a torus if n is odd; otherwise, the
maximal central torus is of index 2 in the centre. So for GSpin Shimura varieties, adjoint
central leaves may differ from canonical central leaves.

Prop 3.1 was announced in Shen—Zhang [29, §5.4.5] in the good reduction case. The
alternative proof in [10, Prop 2.20] uses the good reduction hypothesis only for construct-
ing P, hence the latter approach actually works and proves Prop 3.1. Note that the proof
also describes the set of central leaves appearing in ¢°2.

3.3. Almost product structure: sketch of the idea. Pappas—Rapoport [21] gave a
canonical (and local) construction of abelian-type integral local Shimura varieties RZ® as
normal special formal schemes. Now repeating the proof of Th 1.3.3 in [23] one should be
able to deduce the abelian-type Rapoport-Zink uniformisation, which enjoy some natural
functorial properties between ad-isomorphic Shimura varieties. Likewise, the functorial-
ity for canonical integral models and p-adic shtukas on them should imply the similar
functoriality for Igusa varieties.

Applying this functoriality to the diagram (10) with Prop 3.1 in mind, one should
be able to descend the Hodge-type almost product structure for .7, (¢f. (6), (7)) to
the adjoint-type Shimura variety y]g;id, and in turn “lift” it to the abelian-type Shimura
variety .#k. In the last step, one should take care of the gap between €®? and %°
if Zge is not a torus, but this can be explicitly controlled. Finally, one can deduce the
abelian-type Mantovan formula following the proof in the Hodge-type case [9, §7].

It should be noted that a more novel alternative approach to the abelian-type almost
product structure and Mantovan’s formula via Igusa stacks will be available in some
near future as an application of the Hodge-type case in the forthcoming work [5]. The
Igusa stack technique is expected to have more powerful applications, such as the mod ¢
analogue of the Mantovan formula and torsion vanishing results. On the other hand, the
idea outlined in this section is a straightforward extension of the proof in the Hodge-type
case in the joint work with Hamacher [J], necessitating only a few new elements and
circumventing extensive foundational efforts. The sketchy idea outlined in this section
shall be written up in details in the near future.
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