FROM EXCEPTIONAL SETS
TO NON-FREE SECTIONS

SHO TANIMOTO

ABSTRACT. This is a report of the author’s talk at RIMS workshop Algebraic Number
Theory and Related Topics 2023 which was held at RIMS Kyoto University during
December 11th—-15th 2023. We discuss recent results on exceptional sets in Manin’s
conjecture as well as their applications to moduli spaces of sections of Fano fibrations.
This paper is an English translation of the author’s extended abstract [Tan23].

1. INTRODUCTION

One of goals of algebraic geometry is to understand algebraic varieties, i.e., geometric
objects defined by finitely many polynomial equations in several variables. In this broad
subject, there is an area called as diophantine geometry which studies rational points
on algebraic varieties, i.e., points whose coordinates are rational numbers. For example,
one of the biggest achievement in diophantine geometry is the Fermat’s last theorem
which is proved by Andrew Wiles. This states that when n > 3, the equation " +y" = 1
has only trivial rational solutions.

There are various types of problems in diophantine geometry, but the author often
considers the distribution of rational points on algebraic varieties in the situation that
there are infinitely many rational points. For example, we consider density of the set
of rational points in various topologies or we count the number of rational points of
bounded height and consider the asymptotic formula for such a counting function when
the height of rational points grows.

Manin’s conjecture is a conjecture on this asymptotic formula. We consider a class
of Fano varieties which generalizes low degree hypersurfaces in the projective spaces,
and we study the asymptotic formula for the counting function of rational points on
a Fano variety. When you count rational points, it is possible that rational points
are accumulating along subvarieties. Thus it is important to consider exceptional sets
and remove the contribution from an exceptional set when you count rational points
on a Fano variety so that the asymptotic formula reflects the global geometry of the
underlying variety. With Brian Lehmann and others, the author has been studying
birational geometry of exceptional sets in Manin’s conjecture using tools from higher
dimensional algebraic geometry such as the minimal model program which has been
initiated by Shigefumi Mori in 1980’s.

Moreover Manin’s conjecture is also considered over the global function fields such
as F,(t). Through the function field version of Manin’s conjecture, we have applied
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the study of exceptional sets in Manin’s conjecture to moduli spaces of curves on Fano
varieties. In this note, we discuss these recent developments on birational geometry of
Manin’s conjecture as well as their applications to the study of moduli spaces of curves
on Fano varieties.
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2. MANIN’S CONJECTURE

In this section, we consider Manin’s conjecture over number fields.

2.1. Height functions. In Manin’s conjecture, we consider the “size” of rational
points and count the number of rational points of bounded size. A concept of size
of rational points is provided by the notion of height functions which measures geo-
metric and arithmetic complexities of rational points. Here is an example of height
functions for projective spaces:

Example 2.1. Let Py be the projective space defined over Q. In this case, the naive
height function H : P*"(Q) — R is a real-valued function on the set of rational points
given by
H(zo: -+ x,) = max{|zo|, -, |zal},
where (zg : -+- : x,) € P"(Q) with x; € Z and ged(z;) = 1. Note that for any 7" > 0,
the set
{p e P"(Q)[H(p) <T},

is a finite set.
In general for a given number field F', a projective variety X defined over F', and

L = (L,{]l-|l}) be an adelically metrized Cartier divisor on X, we associate a height
function

Hﬁ : X(F) —>R20,
to a triple (F, X, £). Moreover when L is ample, the set
{z e X(F)[H,(z) < T}

is a finite set. This is called as Northcott property.
Thus for any subset @Q C X (F'), we define the counting function as

N(Q7£7T) = #{SL’ €Q | Hﬁ(x) < T}
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Manin’s conjecture predicts the asymptotic formula for N(Q, £, T) as T" — oo for an
appropriate choice of ). For more details of height functions we recommend to consult
[CLT10] and [HS00].

2.2. Geometric invariants in Manin’s conjecture. The asymptotic formula in
Manin’s conjecture is expressed in terms of certain birational invariants. In this section
we introduce them. We assume that our ground field F' is a field of characteristic 0.

Definition 2.2. Let X be a smooth projective variety defined over F' and L be a big and
nef Q-Cartier divisor on X. (If some readers are not familiar with these terminology,
then they can simply assume that L is ample.) Then the Fujita invariant or the a-
invariant is defined as

a(X, L) :=min{t € R|tL + Kx € Bff (X)},

where Ky is the canonical divisor on X and ﬁl(X ) is the cone of pseudo-effective
divisors on X. By [BDPP13|, having a(X,L) > 0 is equivalent to say that X is
geometrically uniruled. When L is not big, we formally set a(X, L) = oco.
When X is singular, we take a smooth resolution (3 : X — X and define the Fujita
invariant by
a(X,L) = a(X,B°L).
This is well-defined due to birational invariance of a(X, L). ([HTT15, Proposition 2.7])

Fujita invariants have been studied by Takao Fujita under the name of Kodaira en-
ergy. ([Fuj92, Fuj96, Fuj97]) This has been quite useful in the context of classification
theory of polarized projective varieties. Next we define one more invariant from bira-
tional geometry:

Definition 2.3. Let X be a geometrically uniruled smooth projective variety defined
over F' and L be a big and nef Q-Cartier divisor on X. We define the b-invariant as

b(F, X, L) =codimension of the minimal supported face
of Bff' (X) containing a(X, L)L + K.

When X is singular, we take a smooth resolution /3 : X — X and define the b-invariant
by
b(F, X, L) :=b(F,X,3L).

Again this does not depend on a choice of resolutions by [HTT15, Proposition 2.10].

These Fujita invariants and b-invariants play roles in the study of cylinders. (See
[CPPZ20] for interested readers.) For Fano varieties, it is easy to compute these invari-
ants:

Example 2.4. Let X be a smooth projective variety defined over F'. We say X is Fano
if —Kx is ample. For a smooth hypersurface of degree d in P”, it is Fano if and only if
d <n.
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Let X be a Fano variety defined over F' and L = —Kx. Then we have
a(X,L)=1, b(F,X,L)=pX),
where p(X) is the Picard number of X.

2.3. Thin sets. Next we define the notion of thin sets which plays a central role in
Manin’s conjecture:

Definition 2.5. Let F' be a field of characteristic 0 and let X be a variety defined over
F. Suppose that V' C X is a proper closed subset. Then V(F) C X(F) is called as a
type I thin set. Next let f:Y — X be a dominant and generically finite morphism of
degree > 2 from a variety Y. Then f(Y(F)) C X(F) is called as a type II thin set. A
thin set is any subset of a finite union of type I and II thin sets on X.

Note that this notion is not meaningful when F' is algebraically closed because any
subset of X (F') is a thin set. However, the following theorem shows that this notion
makes sense over number fields:

Theorem 2.6 (Hilbert). Let F' be a number field. Then P™(F') is not thin.

By the above theorem, for any F-rational variety X, the set X (F') is not thin. In
general, for any geometrically rationally connected variety X it is expected that X (F')
is not thin as soon as there is a F-rational point. Indeed this follows from Colliot-
Thélene’s conjecture on Brauer-Manin obstructions for weak approximation.

2.4. Manin’s conjecture. In this section, we introduce Manin’s conjecture. The fol-
lowing conjecture has been formulated through a series of work [FMT89, BM90, Pey95,
BT98, Pey03]:

Conjecture 2.7 (Batyrev—Manin—Peyre-Tschinkel). Let F' be a number field and X
be a geometrically rationally connected smooth projective variety defined over F'. Let
L be an adelically metrized big and nef Q-divisor on X. Suppose that X (F) is not
thin. Then there exists a thin set Z C X (F') such that we have

N(X(F)\ Z,L,T) ~ ¢(F, £, Z)T**5) (log T)*FX-L)-1

as T — oo where ¢(F, L, Z) is Peyre’s constant introduced by Peyre and Batyrev—
Tschinkel in [Pey95, BT98].

The set Z in this conjecture is called as an exceptional set. A reason why we remove
the contribution from an exceptional set is that it is possible that rational points are
accumulating along subvarieties. For example, let S be a smooth cubic surface defined
over F' with L = —Kg. Then we have a(S, L) =1 and b(F, S, L) = p(S). So if Manin’s
conjecture is true, then the magnitude of the asymptotic formula will be 7'(log 7")?(%)~1,
On the other hand, it is well-known that over any algebraically closed field, .S contains 27
lines. If aline ¢ C S is defined over F', then we have a(¢, L|,) = 2 and b(F, ¢, L|,) = 1. So
the asymptotic formula for £ is given by T2. Thus if we do not remove the contribution
from ¢, then the asymptotic formula for N(S(F), £, T) would be T? which does not

reflect the global geometry of S.
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Originally it was expected that the exceptional set Z can be chosen to be contained
in a proper closed subset ([BM90]), however, there is a counter example for the closed
set version of Manin’s conjecture ([BT96]). In the beginning of 21st century, Peyre first
suggested that the exceptional set Z should be a thin set ([Pey03]). Recently there
are some examples of (weak) Fano varieties which Manin’s conjecture has been verified
after removing Zariski dense exceptional set. ([LR19, BHB20])

2.5. The main theorem. In a joint work [LST22] with Brian Lehmann and Akash
Kumar Sengupta, the author geometrically defined a conjectural exceptional set and
proved that it is indeed a thin set. This result is a consequence of a series work on
exceptional sets in Manin’s conjecture ([HTT15, LTT18, HJ17, LT17, LT19, Sen21]).
Here is the main theorem of [LST22]:

Theorem 2.8 ([LST22, Theorem 1.4], Lehmann-Sengupta-Tanimoto, 2022). Let F' be
a field of characteristic 0. Let X be a smooth projective geometrically uniruled variety
defined over F and L be a big and nef Q-divisor on X. As f : Y — X runs over all
generically finite morphism to the image from a smooth projective variety Y such that

(a(X,L),b(F,X,L)) < (a(Y, f*L),b(F.Y, f*L)),

in the lexicographic order, the union

U () cxp),

Y X
18 a thin set.

If we have f : Y — X satisfying the inequality in the statement and the asymptotic
formula for Manin’s conjecture, then we need to remove the contribution of f(Y (F))
from the counting function. Thus to define the exceptional set, it is natural to take
the union of all such contributions and we ask if this is indeed a thin set. Our main
theorem answers this question affirmatively. Also in [LST22], we consider the case of
(a(X,L),b(F, X, L)) = (a(Y, f*L),b(F,Y, f*L)), and the key point here is the notion of
face contracting morphisms.

The main ingredients of the proof of Theorem 2.8 are the following:

e the minimal model program ([BCHM10]);

e boundedness of singular Fano varieties (BAB conjecture, [Birl9, Bir21));
e Hilbert’s irreducibility theorem, and;

e universal families of accumulating maps up to twists ([LST22]).

In particular the proofs utilize the boundedness of Fano varieties with canonical
singularities. This has been proved by Birkar recently, and he received a Fields medal
for this contribution. In some sense, what we did is to translate a finite statement in

algebraic geometry to a finite statement in arithmetic geometry.
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3. GEOMETRIC MANIN’S CONJECTURE

There is a version of Manin’s conjecture over global function fields such as F (), and
this leads to Geometric Manin’s conjecture which is a version of Manin’s conjecture
over function fields of complex curves. This has been introduced by Brian Lehmann
and the author, and in this section, we discuss this conjecture.

3.1. Moduli spaces of curves. We work over the field C of complex numbers. Let
B be a smooth projective curve of genus g(B). Let K(B) be the function field of B.
Geometric Manin’s conjecture concerns K (B)-rational points on a smooth Fano variety
X, defined over K (B). By valuative criterion, this is equivalent to consider sections of
any fixed integral model X — B of X,. To this end we introduce the notion of integral
models for Fano varieties over K (B):

Definition 3.1. A morphism 7 : X — B from a projective variety is called as a Fano
fibration if the following properties hold:

e X is a smooth projective variety;
e 7 is flat with connected fibers, and;
e the generic fiber X, is a smooth Fano variety defined over K (B).

Let 7 : X — B be a Fano fibration over B. Then we define the space of sections
Sec(X/B) as the Zariski open set of the Hilbert scheme parametrizing sections of .
The scheme Sec(X/B) consists of countably many irreducible components. Let o be
an algebraic class of sections, and we define Sec(X /B, &) to be the space of sections of
class . This is a quasi-projective scheme of finite type over C.

Let M C Sec(X/B) be an irreducible component of the space of sections. Then we
have

dim M > —Ky/p.C + (dim X — 1)(1 — g(B)),
where —Ky,p be the relative anticanonical divisor and C' € M. The right hand side is
called as the expected dimension of M. We also have an upper bound:

dim M < —Ky/p.C + (dim X —1)(1 — g(B)) + n*(C, Tx/Blc),

where Tly,p is the relative tangent bundle of X'/B and h*(C, Tx/g|c) is the dimension
of the first cohomology of the restricted relative tangent bundle. In particular when
h'(C,Tx/plc) = 0, the expected dimension and the actual dimension coincide.

3.2. Geometric Manin’s conjecture. In the lecture held at Berlin in 1988 ([Bat88]),
Batyrev introduced a heuristic argument for Manin’s conjecture over global function
fields. His heuristic was relied on some assumptions on properties of the space of
sections, and Geometric Manin’s conjecture is a refinement of these assumptions. This
has been first introduced by Brian Lehmann and the author in [LT19]:

Conjecture 3.2 (Geometric Manin’s conjecture, (Batyrev, Lehmann—Tanimoto)). Let
B be a smooth projective curve defined over C and let 7 : X — B be a Fano fibration.
Then the following statements hold:

(1) pathological components of Sec(X/B) are controlled by Fujita invariants;
6



(2) for a sufficiently positive algebraic class « of sections, there exists a unique non-
pathological component in Sec(X /B, «) which should be counted in Manin’s
conjecture. We call this unique component as Manin component;

(3) Manin components exhibit homological /motivic stability.

An idea to use homological stability in Batyrev’s heuristic is due to Ellenberg and
Venkatesh (see, e.g., [EVW16]). Geometric Manin’s conjecture (1) has been established
over complex numbers in the author’s recent preprint which is a joint work with Brian
Lehmann and Eric Riedl ([LRT23|), and we will explain results in this paper in the
next section. Roughly speaking, Geometric Manin’s conjecture (2) claims irreducibil-
ity of the moduli space Sec(X'/B,«a). This has been extensively studied by various
mathematicians when B = P!

smooth Fano hypersurfaces ([HRS04] and [RY19));

rational homogeneous spaces ([Tho98] and [KPO01]);

toric varieties ([Boul6);

del Pezzo surfaces ([Tes09] and [BLRT23));

moduli spaces of vector bundles over curves ([Cas04] and [MTiB20));

e smooth Fano threefolds ([CS09], [Cas04], [LT19], [LT21], [BLRT22], [ST22], and
[BJ22]);

e del Pezzo fibrations ([LT24] and [LT22]), and,;

e del Pezzo manifolds ([CS09] and [Oka22]).

Many results in this list utilized Bend and Break techniques found by Shigefumi Mori,
and the proofs are based on induction on degree of curves. In particular, Lehmann and
the author proposed Movable Bend and Break conjecture to prove Geometric Manin’s
conjecture (2), and this has been established in dimension < 3 ([Tes09], [LT24], [LT22],
and [BLRT22]). Regarding Geometric Manin’s conjecture (3), there have been studies
on Cohen—Jones—Segal conjecture ([CJS00]), and there are sporadic results on this
topic, e.g., low degree affine hypersurfaces ([BS20]). Motivic Manin’s conjecture has
been extensively studied for equivariant compactifications of vector groups in [CLL16],
[Bil23], and [Fai23].

3.3. Main theorems. In this section, we discuss the main results of [LRT23]| which
is joint work with Brian Lehmann and Eric Riedl. These results confirm Geometric
Manin’s conjecture (1) over complex numbers in full generality. To this end, we explain
what we mean by ”pathological components” in Geometric Manin’s conejcture:

Definition 3.3. Let 7 : X — B be a Fano fibration. A section s : C' — X of 7 is
relatively free if T, p|c is globally generated and H'(C, s*Tx/g5) = 0.

Let M C Sec(X/B) be an irreducible component. If M parametrizes a relatively
free section, then one can conclude that a general section parametrized by M is rela-
tively free. Moreover, since H'(C,s*Ty/p) = 0, the dimension of M is given by the
expected dimension and a point on Sec(X/B) corresponding to a relatively free section
is a smooth point of the moduli space Sec(X/B). In particular, such a component is

generically reduced. In this way, any component generically parametrizing relatively
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free sections are easier to understand and the deformation theory works well for such
a component in an expected way. On the other hand, components only parametrizing
non-free sections are difficult to understand. A priori, we do not know what the di-
mension of such a component is and it could be generically non-reduced. So we mean
these non-free components by pathological components. Geometric Manin’s conjecture
(1) provides a tool to access information regarding such components. Here is the main
result from [LRT23]:

Theorem 3.4 ([LRT23, Theorem 1.3], Lehmann-Riedl-Tanimoto, 2023). Let 7 : X —
B be a Fano fibration. There is a constant & = () with the following properties. Let
M be an irreducible component of Sec(X/B) parametrizing a family of non-relatively
free sections C" which satisfy —Kx,p-C > §. Let U” denote the normalization of the
universal family over M and let ev : UY — X denote the evaluation map. Then either:

(1) ev is not dominant. Then the subvariety Y swept out by the sections parametrized
by M satisfies

a(Vy, —KxBly,) > a(X,), —Kx/B|x,)-

(2) ev is dominant. Letting f : Y — X denote the finite part of the Stein factoriza-
tion of ev, we have

a(YVy. —f*Kx/sly,) = a(Xy), —Kx/B|x,).

Furthermore, there is a dominant rational map ¢ : Y --+ Z over B with con-
nected fibers such that the dimension of Z s at least 2 and the following proper-
ties hold. Let C' denote a general section of Y — B parametrized by M and let
W' C Y denote the unique irreducible component of the closure of ¢~($(C"))
which maps dominantly to ¢(C"). There is a resolution b : W — W' such
that the locus where 1~ is well-defined intersects C' and v has the following
properties.

(a) We have a(W,, —¢* f*Kx,slw,) = a(X,), —Kx/B|x,).

(b) The litaka dimension of

Ky, — a(Wy, =" f*Kx/slw, )" [ Kx/Blw,
15 0.
(¢) The general deformation of the strict transform of C" in W is relatively free
n W.
(d) There is a constant T = T(m) depending only on w, but not M, such that
the sublocus of M parametrizing deformations of the strict transform of C’
in W has codimension at most T in M.

When a generically finite B-morhpism f : Y — X to the image from a projective B-
variety ) satisifes a(),, —f*Kx,) > a(X;, =Ky, ), we call such an f as an accumulating
map. The above theorem shows that non-relatively free general sections of sufficiently
large degree are coming from accumulating maps.

Let me explain in the case (2) of the above theorem, how we obtain a B-rational

map ¢ assuming Y = X. In [LRT23], we prove Grauer-Mulich theorem which shows
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that if Ty, is [C]-semi-stable, then its restriction Ty ,p|c is almost semi-stable. When
a general section C' is non-relatively free, one can show that Tx,|c admits a low slope
quotient. Using our Grauer-Mulich theorem, this shows that Tx,p is [C]-unstable so
that one can find a foliation of big slope in Ty . It follows from [CP19] that this
foliation induces a rational map ¢ : X --» Z.

Example 3.5 (Cubic hypersurfaces). Let us explain an application of Theorem 3.4.
Let 7 : X — B be a Fano fibration such that the generic fiber X, is isomorphic to a
smooth cubic hypersurface of dimension > 5. Using adjunction theory, one can show
that there is no accumulating map for X'. Thus Theorem 3.4 implies that any general
section of sufficiently large degree on X is relatively free.

We explain one more theorem from [LRT23]: it shows that non-relatively free com-
ponents are coming from a bounded family of accumulating maps:

Theorem 3.6 ([LRT23, Theorem 1.6], Lehmann-Riedl-Tanimoto, 2023). Let 7 : X —
B be a Fano fibration. Then we have

(1) There is a proper closed subset V C X such that if M C Sec(X/B) is an
irreducible component parametrizing a non-dominant family of sections then the
sections parametrized by M are contained in V.

(2) There are a proper closed subset V C X and a bounded family of smooth pro-
jective B-varieties Y equipped with B-morphisms f : Y — X satisfying the
following properties:

(a) f is generically finite onto its image but not birational;

(b) a(Yy, =" Kx,ly,) = a(Xy, —Kx,);

(c) if equality of Fujita invariants is achieved, then the litaka dimension of
Ky, — a(Yy, = [ Kx,|y,) " Kx,ly, is zero;

If M C Sec(X/B) is a component that generically parametrizes non-relatively
free sections of sufficiently large degree, then a general section C' parametrized
by M satisfies either (i) C C V or (ii) C = f(C") where f : Y — X is in our
family, and C" is a relatively free section in Y.

The main tools of the proof of this theorem are (i) the boundedness of singular
Fano varieties (BAB conjecture) proved by Birkar in [Birl9] and [Bir21] as well as
the construction of universal familes of accumulating maps up to twists in [LST22].
Furthermore, it relies on the space of twists constructed in [LRT23].

3.4. An arithmetic application. Finally we explain an arithmetic application of
Theorem 3.6. Let F' be a number field and B be a smooth projective curve defined over
F. Let S be a finite set of places of F including all archimedean places, and we denote
the ring of S-integers of F' by opg.

Let 7 : X — B be a Fano fibration defined over F' and 7@ : X — B be an integral
model of 7 over opg. Let V' C X be a proper closed subset from Theorem 3.6 and
let V C X be the flat closure of V. Let v be a place not contained in S. We denote

the reduction of m at v by w, : X, — B, and this is defined over the residue field k,.
9



We assume that this is a Fano fibration over k,. Let V, be the reduction of V at v.
Let Sec(X,/By. V,)<q be the Zariski open subset of Sec(X,/B,) parametrizing sections
C of anticanonical degree < d such that C' ¢ V,. We consider the following counting

function:

N(Xv \ Vi, _KXU/va d) = #SeC<Xv/va %)Sd(kv)'

Weak Manin’s conjecture over K (B,) predicts that for any € > 0,

N(X,\ Vi, = Kx,/,.d) = o(qi" ),

as d — oo where g, = #k,. Our main theorem is the following:

Theorem 3.7 ([LRT23, Theorem 1.10], Lehmann-Riedl-Tanimoto, 2023). Assume
that de > dim X,,. then we have

N(Xv \ ‘/1)7 _KXU/BW d)

d(1+€
C_Iv(+)

— 0,

as v — 00.
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