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Disclaimer. These are expanded notes for a talk at a general algebraic number theory conference. The
talk was very much aimed at non-experts. As such, for the most part the machinery is kept as minimal
as possible, e.g., varieties over a field instead of quasi-compact quasi-separated schemes, triangulated
categories instead of stable co-categories, spectral sequences instead of a filtered spectra, etc. Consequently,
many distinctions, resp. hypotheses, that become important in the general setting are collapsed, resp.
automatic. We made some attempt at addressing this in Remark 30 and Remark 31, but the expert
reader is advised to consult the original articles [EM23] and [KS24].

For smooth schemes X over a field, Voevodsky’s motivic cohomology H!(X,Z(j)) (or equivalently,’
Bloch’s higher Chow groups CH®(X,2i—j)) satisfies many of the properties predicted by Beilinson and
Lichtenbaum, [Bei82], [Bei87], [Lic83]. For example, it sits in an Atiyah-Hirzebruch spectral sequence
(1) Hyer (X, Z(=j)) = K_i—j(X)
calculating algebraic K-theory, and with finite coefficients prime to the characteristic, it coincides with
étale cohomology in the range 7 < j.

For non-smooth schemes over a field admitting an appropriate resolution of singularities Voevodsky’s
cdh motivic cohomology? Z(n)°d" is still useful. This is demonstrated by Suslin and Voevodsky’s work
on the Bloch-Kato conjecture, [SV00a, §5]. However, we lose some desirable features such as the Atiyah-
Hirzebruch spectral sequence discussed in Example 17.

In this talk we discussed two approaches to correcting this that were developed concurrently. The
one we discuss first is joint work of the author with Shuji Saito, [KS24]. It is motivated by Voevodsky’s
topological approach to motivic cohomology. The idea is to coarsen the cdh topology slightly in order
to preserve nilpotents. The coarsening we have chosen® is related via Proposition 20 to procdh excision
studied by Morrow, [Mor16], and used in Kerz, Strunk, Tamme’s proof of Weibel’s conjecture, [KST18].
We call it the procdh topology. The resulting complexes are written

Z(n)prOth.

The one we discuss second, developed independently and at the same time, is due to Elmanto and
Morrow, [EM23]. Tt is motivated by trace methods in algebraic K-theory. The idea is to repair the damage
of cdh sheafifying by glueing back in the desired missing part. Explicitly, there is some appropriate map
Z(n) — Z(n)T¢ of complexes induced by the trace map K (X) — TC(X) and one can define

as the Cone(Z(n)*" @ Z(n)T¢ — Z(n)T¢ ) [~1]. The identification of Z(n)" and Z(n)T¢ " depends
on the characteristic; see Section 4 for details.

These are qualitatively different approaches. The procdh approach is similar to Voevodsky’s original
constructions, e.g., the one that used the h-topology, [Voe96]. It is automatically well-defined, even
in mixed characteristic, and since it is defined via a universal property, there is automatically a map
from Z(n)P*" to other potential candidates for motivic cohomology satisfying procdh excision. On the
other hand the trace methods approach is more convenable to computations. It is difficult to concretely
calculate Z(n)P™c" without the comparison to Z(n)M.

1Bloch’s higher Chow groups are a Borel-Moore homology theory, rather than a cohomology theory. However, over
smooth schemes there is a good duality theory, so up to shift and twist cohomology can be identified with Borel-Moore
homology.

2See Remark 31 for clarification about what this means.

30f course others options are available, see [Kel24].



Both of these approaches only give a cohomology, disembodied from a category of motives. In the last
section we mention recent work of Annala, Iwasa and Annala, Iwasa, Hoyois one hopes will lead to such
a category.

There are five sections. Section 1 is aimed at someone who is completely new to the word “motive”.
In it, we discuss a proof of Manin showcasing how the category M?f@ of classical motives can be used
to give a conceptual explanation of the numbers of rational points of certain varieties over finite fields,
cf.Eq.9, Eq.10.

In Section 2 we connect Miff@ to Voevodsky’s motivic cohomology H*(X,Z(j)) for smooth schemes

X via Voevodsky’s triangulated category of motives DMZH. The most important parts of Section 2 are
the definition of the complex of presheaves Z(i) on Smy, Eq.(15), and the Atiyah-Hirzebruch spectral
sequence, Eq.(16), as these will be used later.

In Section 3 we discuss the cdh topology as one approach to working with motives of non-smooth
varieties, and motives with compact support. Again, this is aimed at someone who has never seen the
term cdh before. We present nilinvariance as a shortcoming of cdh motivic cohomology, Exam.17, and
introduce the coarser procdh topology, Def.19, as a solution.

In Section 4 we describe Elmanto-Morrow’s motivic cohomology, Def.28, and present the equivalence
Z(n)Procdh = 7,(n)EM Thm.29. Both Z(n)P" and Z(n)M sit in Atiyah-Hirzebruch spectral sequences,
Prop.25, Rem.30.

In Section 5 we mention recent work of Annala, Iwasa and Annala, Iwasa, Hoyois on a category of
non-Al-invariant motivic homotopy types where Z(n)*M is representable.

I thank the organisers of the workshop for the wonderful opportunity to visit RIMS in Kyoto and speak
about this work. I also thank Federico Binda, Tess Bouis, Thomas Geisser, Annette Huber, Ryomei Iwasa,
Matthew Morrow, Kay Riilling, Shuji Saito, and Vladimir Sosnilo for comments during the preparation
of these expanded notes. I take full responsibility for any places where I have ignored or misunderstood
their good advice and ended up introducing inaccuracies and mistakes.

1. WHAT IS A MOTIVE, THOUGH?

It is never clear how much background the audience has to the theory of motives. In an attempt to
ground the talk in the “real world” we begin with a result from the origins of the theory. This doesn’t
have much to do with the main theorems of the talk, but hopefully will give the reader some kind of
picture to associate with the words “motive” and “motivic cohomology”. The reader not interested in
classical motives can go directly to Section 2.

Theorem 1 (Manin, 1968, [Man68]). Suppose that X is a smooth projective unirational threefold over a
finite field k =1TF,. Then the number v, of rational points over Fyn is

(2) Vn:1+qn_qnzw;@+q2n+q3n
i€l

for some finite set I where w; are algebraic integers with |w;| = q'/3.

Remark 2. In the talk, Eq.(2) was incorrectly stated as v, = 1+ ¢ — ¢" Zgl w4+ ¢®" + ¢*. The 10
in the sum appears in the special case where X is a cubic hypersurface in P%; it is twice the dimension
of the Albanese variety A(S) of the surface S parametrising the lines of X. This special case was proved
by Bombieri and Swinnerton-Dyer in [BSD67], and is presented by Manin as an application of his more
general result. Indeed, Bombieri and Swinnerton-Dyer state their result as v, = 1 + ¢ — ¢"Tr(7") +
q*" + ¢ where Tr(7™) is the trace of the nth power of the Frobenius endomorphism of A(S)/F, in the
endomorphism algebra of A(S) over Q.

Proof. (Manin). Unirational, by definition, means there exists a generically finite morphism U — X from
some dense open subscheme U C P?¢. Of course d = 3 in our case. By results of Abhyankar on resolution
of singularities of threefolds in positive characteristic, [Abh66, pg.1, “Dominance”], the morphism U — X
can be promoted to a roof

Py, v . .y, =vlx
where f is generically finite and each p; is the blowup in a smooth connected centre. Writing H¢V*"(X) =

Oy HZ (X x5, Fq, Qp), HO(X) = @, HZ (X xp,Fq, Qr), and H*(X) = H*"(X) & H¥(X), we recall
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that the Lefschetz trace formula, [Del77, pg.86,Thm.3.2], says

_ eigenvalues of _ eigenvalues of
Yn = Z { Frobenius |H"*"(X) } Z { Frobenius |H°%(X) |-
Poincaré duality gives a Gysin morphism f, : H*(Y) — H*(X) satisfying f.f* = deg f - id, [ADT3,
Exp.XVIII]. So
(3) H*(Y) = H*(X) @ { something }

in the category

graded Q-vector spaces
with a continuous Z-action

Gale = {
Since dimY; = 3, the centre Z; of the blowup Y;41 — Y; is a point or a curve. The blowup formula,
[Stal8, 0EW4], then says
, H* (V) ® H*(Z;)(~1) dimZ, = 1
) (Y1) { H*(Y)) & H*(Z)(~1) & B*(Z)(~2) dimZ; =0
where '
—(=j) = - @ H*(P")¥
Finally, we know that
() H*(P%) = 7o Qe(—).
By Eq.(3) the eigenvalues of H*(X) are among the eigenvalues of H*(Y). And using Eq.(4), Eq.(5),

and induction on 7 we reduce to calculating the eigenvalues of H*(W) for dim W = 0, 1. Dimension zero
is easy and dimension one was done by Weil in the 40’s, [Weid9]. |

Observation 3.

The decompositions (3), (4), (5)
all come from algebraic cycles.

Explicitly, consider the cycle class map ¢l : Z"(X) — H?*"(X,Q¢(r)) where Z"(X) is the free abelian
group of closed irreducible subschemes Z C X of codimension r. Any cycle y € Z"(XxY) withr = dimY
induces a morphism of graded Galois modules

H*(7y) : H*(Y,Q¢) = H*(X, Q)
a = prix(cl(y) Npraa)

where pri,pra : X XY — XY are the two projection morphisms, and N is the product on the bigraded
abelian group HE (X x Y, Qg(*)).

Example 4.
(1) In the case of Eq.(3), the direct summand H*(X) of H*(Y) is the image of the morphism
associated to @[Y xx Y] € ZiImY(y xY).
(2) In the case of Eq.(5), the direct summand Qy(j) is cut out by the cycle [P3~7 x P/] where PX C P?
is the embedding [(x,...,*,0,...,0)].

Definition 5 (Grothendieck, 60’s). Cf. [Man68, §2, §3, §4]. Define the Q-linear additive category
Cr,q as follows. Objects are smooth projective varieties. Given smooth projective varieties Y, X we set
home, (Y, X) = CHY¥™Y (X xY)q, where CH%(—)g means the Q-vector space of cycles of codimension
d modulo rational equivalence, [Ful84, §1.3].* Composition is, [Ful84, §16],

CHY™X2(X) x X5)g x CHW™ X3 (X, x X3)g — CHM™ X3 (X, x X3)g
(a, B) = priz«(prisa - pris3)

where pr;; : X1 x Xo x X3 — X; x X are the canonical projections, (—)* means flat pullback and (—).
is proper pushforward, and - is the intersection product, [Ful84, §1.4, §1.7, §6].

Cf. [Man68, §5]. The category Cy g is an additive category where disjoint union of varieties corresponds
to direct sum. However, idempotents in the category Cj g do not necessarily split in the sense that there

4More generally, if Y is not equidimensional then we use @;C Hdim Yi (X xY;)q where the Y; are the connected components
of Y.
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are morphisms ¢ : M — M satisfying €2 = ¢, but not admitting a decomposition M é My @ Ms for
which ¢ is idas, ® Opg,. For example, P3 is connected, so considered as an object of Cy g it has no proper
nontrivial direct summands.

We formally impose such decompositions by passing to the idempotent completion Mifo = C,E’Q.
Explicitly, an object of MfoQ is a pair

(X,e)

where X € SmProj, and ¢ € CHY™X(XxX)g satisfies € o ¢ = e. Heuristically, the pair
(X,e) represents the direct summand of X cut out by &, so, unsurprisingly, the new hom sets are
homMiffq((Xl,el), (X2,e2)) = {f € homg, ,(X1,X3) | e20 foer = f}. Then for any such (X, &) we have
the canonical decomposition (X,id) 2 (X,¢) @ (X, 1—¢).?

Sending a morphism f : X — Y to the cycle associated to its graph® [['f] € CHY™Y (X xY')q produces
a contravariant functor

SmProjy? — M,

from the category of smooth projective k-varieties. For this section we will use the same notation for a
variety and its image in MZ?Q since it will be clear from the context which is intended.

Example 6. Since the diagonal [diag.] € CH!(P!xP!) is rationally equivalent to py + p; where py =
[P!x{0}] and p; = [{0} xP!], and po, p1 are idempotents, we obtain a decomposition P! = (P!, py) &
(P*, py) in szfQ. The former summand is isomorphic to Q := Spec(k). The latter summand is denoted
LL and called the Lefschetz motive. That is,

Pl~QolL.
Example 7. More generally, for any irreducible smooth projective variety X of dimension d and any
closed point z € X we have two canonical idempotents, py = W[X xz] and pg = W[xxX] in

CHY(X xX)g. If d > 0 these are orthogonal in the sense that pg o py = pg o po = 0. Correspondingly, we
obtain a decomposition X = (X, pg) ® (X,id —po — pa) ® (X, pa) in szfQ. The left and right summands
are isomorphic to Q and L&? respectively, the tensor product on szf(@ being defined by (X,e)® (Y, n) =
(X xY,eMn) where ¥ : CHY (X x X )oxCH®(Y xY)g — CH™ (X xY x X xY)g has the obvious meaning.
The middle summand, (X,id —py — p4), is denote X+ in [Man68, §10]. So we have

X=QaeXxtoL®
This setup complete, we can now lift the decompositions
H*(Y) = H*(X) @ { something }
- { B ENY o
(Vi) ® H*(Z;)(—1) ® H*(Z;)(—2)
H*(P°) = Q¢ ® Qe(—1) ® Qe(—2) ® Qe(-3).

in Galg, to decompositions in MfoQ

(6) Y = X & { something }

- _JYi® Zi®L  or
Q Yin _{ Y @ ZeL © Z;QLe?
(®) PP=Q e L & L ¢ L.

Note the above is now independent of ¢! Applying the additive monoidal functor
H* : M§%, — Galg,

(X,€) — image (H*(E) CH(X,Qp) — Hi (X, Qg))

recovers (3), (4), (5). The expression

(9) Vn:1+qn_qnzw?+q2n+q3n
i€l
5More generally, given an idempotent e = nocon: (X,n) — (X,n) we have (X,n) 2 (X,n) ® (X,n—e).
SExplicitly, Ty = im(id X f : X = X x Y).
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in Theorem 1 now becomes a consequence of the following theorem, combined with Weil’s proof of the
Riemann Hypothesis for curves, [Weid9].

Theorem 8 ([Man68, §11]). Suppose that X is a smooth projective unirational three-fold over a finite
field k =TF,. Then there is a decomposition

(10) X~2Qol e LU @ L¥ @ L®
mn M?CHQ where U is a direct summand of a motive of the form @jejc;_, the C; being curves.

Remark 9. It turns out that the decompositions Eq.(6), Eq.(7), Eq.(8) work over any base field. If the
base is some subfield K C C, then sending X to the sum of its de Rham cohomology defines a functor

Mi% — Hdg := { graded pure Hodge structures }
X—H ;{R(X )

towards the category of graded pure Hodge structures. Then the decomposition of Theorem 8 has
consequences, for example, for the periods of X.

If the base is a field of positive characteristic p, then crystalline cohomology gives a functor towards
the category of graded W(k)[%]—modules equipped with a semi-linear endomorphism.

Mi{f@ s Crys = { W(k)[%]—modules equipped with }

a semi-linear endomorphism

X — HE (X))

crys

and similarly, the decompositions Eq.(6), Eq.(7), Eq.(8) have implications for Hg. (

X).

Here is a picture:

(11) . Galg, Fe Lk
Hl»adic
. e H*
SmProj;” Mg, — Hdg QckccC
I
“* Crys F,Ck

2. SMOOTH MOTIVES AND K-THEORY

In this section we discuss Voevodsky motives. The reader familiar with this theory can jump to
Section 3. The most important part of this section is the definition of the complex of presheaves Z(7) on
Smy, Eq.(15), and the Atiyah-Hirzebruch spectral sequence, Eq.(16), as these will be used later.

In the 90’s, Voevodsky defined a covariant functor M : Smy — DMZff towards a triangulated category
fitting into a commutative square, [Voe0Ob, Prop.2.1.4],

SmProj, — (M¢T)op

l lfully faithful

Smy, DM

The functor M is universal (in a sense that can be made mathematically precise) with respect to the
properties:

(1) (Colimits) DMT admits all small sums. In particular, idempotents split.”
(2) (Transfers) For certain finite morphisms f : Y — X there are “backwards” morphisms

PfeM(X) — M(Y).
(3) (Homotopy invariance) The morphisms
M(AY) - M(X)
are isomorphisms.
"Explicitly, if £ : X — X satisfies €2 = ¢, then X & X. @ X1_. where Xy = Cone(®nX g ®nX) and 1 — o is the

obvious interpretation of (zo,z1,x2,...) — (nxo,nxr1 — To,NT2 — T1,...).
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(4) (Zariski descent) For open immersions U,V C X there is a distinguished triangle
MUNV)->MU)eMV)—-MUUV)— MUNV)[1].

Definition 10 ([Voe00b, pg.20]). Concretely, to build Dl\/[iff Voevodsky first defines a mild enlargement
Smy, € SmCory, of the category of smooth k-varieties. Then
DM € D(PSh(SmCory, Z))

is the smallest full sub-triangulated category admitting all small sums and containing the complexes of
presheaves on SmCory

(12) M(X) == L% L*" homgmcor, (—, X)

for X € Smy, where LA™ means localisation with respect to the morphisms AL —T for T € Smy, and L%*
means localisation with respect to Zariski hypercoverings.®

Remark 11.

(1) In the top right corner we have used Mzﬁ in place of the M?fQ that appeared in Section 1. It is
defined in the same way, except one uses Chow groups with integral coefficients C H*(—) instead
of rational coefficients CH*(—)g. We used rational coefficients in Section 1 to get the splitting
Eq.(6). The splittings Eq.(7) and Eq.(8) hold integrally.

(2) Traditionally, LA" K(—) = K(A® x —) is taken for L2 where A" = Spec(Z[to, . .., tn]/1 = 3 t;)
and the differentials come from the alternating sum of the face morphisms A™ — A™*! as in
singular cohomology.

(3) The functor L% is Zariski hypercohomology in the sense that for any K € D(PSh(SmCory,Z))

in the image of LAl, if one restricts L% K to the small Zariski site Ty, of any T' € Smy, one gets
the Zariski hypercohomology L% (K)|r,,, = H}, (K|r,,,), [VoeOOb, Prop.3.1.8, Thm.3.1.11].
As in the case of pure motives, when F; Z k, for each n € N we have an étale realisation functor
(DMT)P — D(ke, Z/0")
M(X)w— Rf.(Z/0™)
where f : X — Spec(k) is the structural morphism of X and Z/¢™ € D(Xe,Z/¢™) is the constant sheaf,
and when Q C k C C we have a de Rham realisation functor
(DM")°P = D(k)
M(X) — RUz., (X, Q%)
which can be embellished to capture mixed Hodge structures in the sense of [Del74]. References for
these two realisations include [Hub00], [Hub04], [Ivo07], [Lec08], [LW09], [Sch12], [LW13],[Har16], [KS17,
App.A].
The p-adic picture is more subtle. Crystalline cohomology is not Al-invariant so by definition cannot

give a functor out of DMZH. Berthelot’s rigid cohomology does give a functor by passing through étale
motives without transfers, [Ayol4, App.B], but this has K-coefficients where K = W(k’)[%], so the

all-important p-torsion is missing. However, recently, integral p-adic realisation functors from DMZff
have been constructed by Merici, [Mer22], and Annala, Hoyois, Iwasa, [AHI24]. Under resolution of
singularities, Merici’s sends M (X) to the log crystalline cohomology of a smooth compactification X C X
and it is expected that the two agree.

(DM5")°P — D(W (k)
M(X) = Rl erys((X,0X) /W (k))
Here X = X \ X. So now we (almost) have the picture:

(13) . Dl Z/07) F & k
Smf? M (DMgT)or 0 (k) QckcC
RT An1
Bven ™ DW (k) F, Ck

80r equivalently, since the Zariski topos is hypercomplete, localisation with respect to Zariski Cech hypercoverings.
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As in MZPQ we have liftings to DM?;ff of various properties of these cohomology theories. One which will
be important in this talk is a distinguished triangle associated to a blowup?

(14) M(E)— M(Z)® M(BlxZ) — M(X) = M(E)[1]
where Z— X is a closed immersion in Smy, and E = ZX x Blx Z, [Voe00b, Prop.3.5.3].

Remark 12. Since M(X) = M(X xA') in DMST, we are missing other functors that we might like such
as

A ViN
H\(=,Z/p) : (DM))*" /> D(F,), Hy;,.(=,0) : (DMZ)* # D(Q)

We will come back to this in Section 4.

We finish this section with a short discussion about K-theory. In the category M;", for an irreducible
smooth projective variety X we have, almost by definition, hom yer (X, L&) =~ CH(X). In DMST this
generalises to

par (X, Z(j)) = hompygerr (M (X), Z(i)[5]) = CH' (X, 2i—j),

[Voe02], where CH* (X, ) are Bloch’s higher Chow groups, [Blo86], [Lev94]. Here, one defines
(15) Z(i) := L& —2i]

where L& is considered as an object of DM$T under the embedding (MSf)°P € DMST. Explicitly, Z(i)
is the direct summand of L% LA’ homgmcor, (—, (P*)*?) complementary to all the “axes” P x - - - x P x
{oo} x P x .-+ x PL.

Even better, for X smooth, the Grothendieck-Riemann-Roch isomorphism Ky(X)®Q = CH*(X)®Q,
[SGAT1], gets promoted to an Atiyah-Hirzebruch style spectral sequence, [FS02], [Lev08], originally
conjectured by Beilinson, [Bei82], [Bei87],

(16) By’ = Hy (X, Z(~)) = K-i—j(X).

Here Z(—j) = 0 for j > 0. In particular, E;] =0 for j > 0. It is also known that E;J =0 fori>dimX,
and i > —j.

It is this spectral sequence which motivates our definition of motivic cohomology for non-smooth
schemes below.

3. SINGULAR MOTIVES AND THE CDH-TOPOLOGY

In this section we discuss the cdh topology, followed by the procdh topology. The reader familiar with
the cdh topology can skip to Definition 19.
So much for smooth varieties. What about singular varieties? The presheaves homco,, (—, X) defined

as
Z is closed, irreducible,

T—Z<{ZCTxX and finite surjective over an
irreducible component of X

make sense more generally for any X of finite type over k, however not much can be said of the corre-
sponding objects L% LA" homger, (—, X) in DM without assuming that the base field satisfies some
kind of resolution of singularities.!” If the base field does satisfy resolution of singularities, then we obtain
an equivalence, [Voe00b, Thm.4.1.2],
DM;" = DM,

with the category of cdh-motives, implicit in Voevodsky’s work, cf.[Voel0], and explicitly studied by
Cisinski and Déglise, [CD15]. To motivate this topology let’s talk about cohomology with compact
support following the author’s note [Kell7].

In general, for any closed immersion Z — X with open complement U C X, a reasonable cohomology
theory with compact support can be expected to have a localisation distinguished triangle of the form

(17) RT(U) — RT.(X) — RT.(Z) — RT.(U)[1].

9Since we are assuming Z and X are smooth, this triangle is split, but we don’t use this here.

10For resolution of singularities in the classical sense, this is done in [Voe0Ob, §4]. In the author’s PhD thesis, [Kel17],
using Gabber’s work on alterations, all the results from [Voe0OOb, §4] are obtained in positive characteristic at the expense
of inverting p in the coefficients.
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Another property that is reasonable to expect is that for proper schemes X (or compact topological
spaces) the compact support version agrees with usual cohomology

(18) RT.(X) & RT'(X), X proper.

Given that we would like Eq.(17) and Eq.(18), a reasonable way to define RT'.(X) starting from a functor
RT' € D(PSh(Schy,Z)) on the category Schy of separated schemes of finite type over k, is to choose a
compactification X C X and then define

RT,(X) := Cone (RP(X) — RF(&X)) [—1].

An obvious problem is that this is only well-defined if it is independent of the choice of compactification.

2

(19) Cone (RF(X) - RF(BX)) =~ Cone (RF(X’) - RF(@X’)).

For this question of independence of the compactification, it suffices to consider the case that there is a
morphism f : X oX compatible with the embeddings X C Y,, X C X. In this case, the isomorphism
Eq.(19) is equivalent to asking that the sequence

RT(X) = RT(X') @ RT(0X) — RT(0X")

fits into a distinguished triangle.!! Noting that this resembles a Mayer-Vietoris condition, one could try
and turn this into a sheaf condition, and this is precisely what Voevodsky does.

Definition 13 (Voevodsky). Write Schy, for the category of separated schemes of finite type over k. The
cdh topology on Schy, is generated by families of the form
(1) Nisnevich coverings.
(2) Families of the form
{Z - XY = X}

where Z — X is a closed immersion, p : Y — X is proper, and p is an isomorphism outside of Z,
ie,p I (X\Z) > X\ Z.

Proposition 14 ([Voel0]). A complez of presheaves C € D(Shvnis(Schy, Z)) lies in D(Shvean (Schy, Z))
if and only if for every Z,Y, X as in Def.13(2), the sequence

CX)=»CY)aC(Z) = C(ZxxY)
fits into a distinguished triangle.

Remark 15. Following the discussion above, another way to phrase Proposition 14 would be: C is in
D(Shvean(Schy, Z)) if and only if it is in D(Shvyis(Schg, Z)) and has a well-defined theory of compact
support.

It is a little more subtle, but using the material in [SV00b] one can make a version Corj of SmCory,
whose objects are the objects of Schy, which contains SmCory, as a full subcategory in the obvious way.'?
One can find expositions of this in [Ivo07], [CD19], [Kell7], and now also the Stacks Project [Stal§].
Then one can build a category of cdh motives as follows.

Definition 16. Take the smallest full sub-triangulated category
DM;" 41, € D(PSh(Cory, Z))

1

admitting all small sums and containing the complexes of presheaves' on Cory,

(20) M(X) = LI homcer, (—, X).

Hor course, at the level of triangulated categories none of this makes sense unless everything is rigidified in some way. We
should instead be talking about fibre and cofibre sequences in some kind of stable co-categories, for example pretriangulated
dg-categories.

1211 the notation of [SVOOb] one takes homcor, (X,Y) = cequi(X X Y/X,0).

13Strictly7 speaking, Ledh Al 4g only known to be Al-invariant under some kind of resolution of singularities, [FV00,
Thm.5.5(3)], [Kell7, Cor.5.2.3]. So in general one should take the localisation Ledb A with respect to both classes at once,
rather than Ledh A",



As discussed above, this category of cdh-motives will have a good theory of motives with compact
support, almost by definition. Some cohomology theories such as f-adic cohomology have cdh-descent
and as such still admit realisation functors, but some do not.

Example 17. In Definition 13(2) one can take Z = X,oq. Then Y = & and the fibre sequence condition
of Proposition 14 becomes C'(X) = C(X,eq). However, algebraic K-theory is not nilinvariant in general.
For example

Ky(k) = k* # (k[e)/e2)* = Ky (k[e]/2).
Hence, we cannot hope to have a spectral sequence such as Eq.16 for general schemes in Schy using the
motivic cohomology represented in DMifdeh.

Example 18. By work of Morrow, [Morl6], and Kerz-Strunk-Tamme, [KST18], algebraic K-theory
does have fibre sequences for blowup squares if we remember the formal neighbourhoods of the closed
immersions. That is, suppose Z, X,Y are as in Def.13(2). Define Z,, = Spec(Ox/Z}) as the nth
infinitesimal neighbourhood of Z, and similarly, F, := Z,, X x Y. Then there is a distinguished triangle
of spectra

K(X)— RlimK(Z,)® K(Y) = RlimK(E,) = K(X)[1].
We make the following definition.
Definition 19 (K., Saito, [KS24, Def.1.1]). The procdh topology on Schy is generated by families of the

form:

(1) Nisnevich coverings.
(2) Families of the form
{Z, = X}penU{Y — X}
where Z — X is a closed immersion, p : Y — X is proper, p is an isomorphism outside of Z, i.e.,
p H(X\Z) > X\ Z, and Z,, = Spec(Ox /1%).

Proposition 20 (K., Saito, [KS24, Thm.1.2]). A complex of presheaves C' € D(PSh(Schy,Z)) lies in
D(Shvprocdn(Schy, Z)) if and only if it has Nisnevich descent, and for every Z,Y,X as in Def.13(2), the
sequence

CX)—=CY)®RlimC(Z,) - RlimC(Z, xxY)
is a fibre sequence, where Z,, = Spec(Ox /1%).
Remark 21. Looking at the definitions, one sees that the cdh topology is generated by the procdh
topology and families of the form {Y;eq — Y}. On the other hand, by the definition of relative cycles,
we have isomorphisms Yeq = Y in Cory for every Y € Schy. Consequently, for objects coming from
PSh(Cory ), the cdh and procdh sheafifications will agree. This leads to an equivalence

Dsz,fprocdh = DMZ{fcdh

if the left hand side is defined as in Definition 16 with cdh replaced with procdh.

Instead of using the complexes coming from motives of the form (20), we start with the left Kan
extension of the complexes Z(n) on Smy,.

Definition 22. Write LX2" for the left adjoint of the adjunction
LX# . D(PSh(Smy,)) = D(PSh(Schy)) : restriction
where the right adjoint is restriction.

Remark 23. The functor L¥®" above is a more general version of a functor that the reader is perhaps
more familiar with. Considers the analogous adjunction

L :PSh(Etyx) = PSh(Schy) : R

where Et x is the category of étale schemes over an affine scheme X and Schy the category of finite type
X-schemes, the henselisation of X along a closed subscheme Z C X is

X% = Spec(LO(Z)).
That is, global sections of X% are calculated as the left Kan extension of the structure sheaf O : Y
['(Y, Oy) evaluated at the closed immersion Z — X. So in this way, the functor L¥8" from Definition 22

can be considered as a kind of very general henselisation.
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There is at least one major difference though, since Smy doesn’t admit fibre products, the colimits
calculating L¥*" are not filtered, so they need to be derived, cf.[BK72]. To concretely describe
LXK C(Y) = Llim y_, x C(X) for some C € D(PSh(Smy)) and Y € Schy, one can use an appropri-

X €eSmy,

ate simplicial object as people do when working with the cotangent complex, cf.[BK72, Chap.XII,§5].
Definition 24 (K., Saito, [KS24, Def.1.9]). Define Z(n)Procdh as

Z(n)procdh .— procdhKang )
where LPTo¢dl js the left adjoint to the inclusion D(Shvprocan(Schy)) € D(PSh(Schy)). That is, the

procdh sheafifiaction of the left Kan extension of Z(n) € D(PSh(Smy)) from smooth schemes to schemes
of finite type.

By Bhatt-Lurie, connective K-theory for k-algebras is left Kan extended from smooth algebras, see
[EHK*20, Ex.A.0.6]. Moreover, non-connective K-theory is the procdh sheafification of connective K-
theory, [KS24, Thm.1.8]. It follows that if we apply LPr¢dhLKan to any of the filtered presheaves that
give rise to the Atiyah-Hirzebruch style spectral sequence Eq.(16) we obtain a spectral sequence from
procdh motivic cohomology to algebraic K-theory.

Proposition 25 (K., Saito, [KS24, Thm.1.10]). For anyY € Schy, there exists a bounded spectral sequence

(21) Hydean (Y Z(=j)P™) = K_i;(Y)

converging to algebraic K-theory.

4. TRACE METHODS

So now we have one new motivic complex Z(n)P*" what about the other one indicated in the title.
Recall from Remark 12 that we are missing realisation functors H},(—,Z/p) for k = F, and H;_ .(—,O)
for k = Q because these are not A'-invariant. More importantly for our present purposes there are no
functors out of DM§T whose composition with M : Sm{® — DM gives

RTz4:(—,Q2") for k= Q, or
Rl (—,v)) for k =TF),.

Here,

v = Tey(—, im(dlog : (O*)*" — W,.Q"))
is the étale (or Zariski) sheafification of the image of the map presheaves of abelian groups (z1,...,z,) —
d[z1] dlzn]

o] N A ooy Here [—]: O — W, O denotes the Teichmiiller map, cf.[Mor19, §1.2, §2.2, Cor.4.2(i)].
We do however have canonical comparison maps

(22) Z(n) — Q="
(23) Z(n) — li7{n vt [—n]

on Smy, coming from the canonical element ”i—tll /AR dtt—" in HJ3 (G)™) which we describe now.

Construction 26. Given a ring'* A, write KM (A) for the quotient of the tensor Z-algebra @,,cn(A*)®™
by the ideal generated by elements of the form a ® (1 — a) for a € A\ {0,1}, [Mil70]. This is functorial
in A, and we write KM for the Zariski sheaf associated to the presheaf X — KM(T'(X,0x)) on Smg.

Sending a € A* to % € QY defines a morphism of graded rings KM (A) — QF since % A d(l%;a) = 0.
This induces a morphism of Zariski sheaves KM — Q™ on Smg. Since the cohomology Zariski sheaves of

Z(n) on Smg in degrees i > n are, [Blo86, Thm.10.1], [NS90], [Tot92, §3], [Ker09, Thm.1.1],

H(Z(”))_{ 0 i>n
we have canonical morphisms
(24) Z(n) = Ky'[-n]

14Usually Milnor K-theory is only considered for fields, or local rings with infinite residue field, since it doesn’t have the
desired properties for a general ring. We are working over Q and about to take the Zariski sheafification though.
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in D(PSh(Smg)). On the other hand, for any ay,...,a, € A*, the form %“11 ARERWAN da%" lies in the kernel
of the differential Q% — Q’}{H. So the morphism KM — Q" induces a morphism

(25) KM[—n] — Q="
Composing Eq.(24) with Eq.(25) gives the desired morphism Eq.(22).

Construction 27. We could use a similar procedure as Construction 26 to construct a morphism Eq.(23)
in D(PSh(Smp,)), but we use instead a slightly different method. The system (v;') is a system of

presheaves on SmCory, [GLO0, Thm.8.3]. The canonical element ‘i—tll ARERWA ‘ff—: in lim, ' (G)™), where
the ith G,, is Spec(k[t;,t;']), defines a morphism

homgmcor, (—, G,") — @1 v
T

in PSh(SmCory). Now each v/ is Al-invariant, [GL00, Thm.8.3], [Voe0Oa, Thm.4.27], and a Zariski sheaf,
so we obtain a unique factorisation'®
(26) LZar A homgmcor, (—, G5) — Hm .

T

Finally, Z(n)[n] is a direct summand of LZ*LA" homgmcor, (— GX").26 So Eq.(26) induces a morphism
Eq.(23).

Definition 28 (Elmanto, Morrow, [EM23]). On Schy, define
Z(n)*™ = Cone (Z(n)th ® Z(n)TC¢ — Ledb (Z(n)Tc)> [—1]

where
Z(n)cdh — LcdhLKamZ(n)7
cf.Def.24, and Z(n)?¢ is the Zariski local object whose values on affine k-schemes Spec(A) is

TC, 4y Rlim,, LK ((Q3™)=<™),  k=Q,
Z(n) = (4) = { Rlim, LKe"RT (A, v")[~n], k=TF,.

The morphisms
Z(?’L)th N Lth(Z(n)Tc)
are the ones induced by Eq.(22) and Eq.(23) respectively.

In [EM23, Thm.8.2] it is established that Z(n)¥M satisfies procdh excision, and therefore by Proposi-
tion 20 has procdh descent. Consequently, one obtains canonical comparison maps

Z(n)procdh N Z(n)EM

The following comparison theorem was obtained through joint discussion with Morrow. The proof
relies heavily on the main results of [EM23].

Theorem 29 (K., Saito, [KS24, Cor.1.11], Elmanto, Morrow, [EM23]). For k =T, or Q and Y € Schy
there are equivalences

(27) Z(n)Proe (V) 2= Z(n)"M(Y).

The strategy for the comparison in Theorem 29 is straight-forward. Both Z(n )Pt and Z(n)®M are

procdh sheaves, the former by definition and the latter by [EM23, Thm.8.2] and Proposition 20. So if
the procdh topos has enough points, it is enough to compare them on procdh local rings.

Identification of local rings for the procdh topology is something we did not have room for here. Local
rings for the cdh topology are henselian valuation rings, [GLO1], [GK15]. That is, henselian valuation
rings are to the cdh topology as strictly henselian local rings are to the étale topology. Local rings for
the procdh topology are “nice” nilpotent thickenings of henselian valuation rings. Explicitly, a ring is
procdh local if it is of the form O x g A for some local ring A of Krull dimension zero, and valuation

I5Here we implicitly use the fact that lim, v? = Rlim, v.

16By the Mayer-Vietoris triangle for the standard covering of P!, we get Cone(M(Al) — M(P1)) = Cone(M(Gm) —
M (AY)). Since Al is contractible, this says Z(1)[2] = M(P') = M(G,,)[1] where M(X) means the reduced motive of a
scheme with respect to a rational point € X, i.e., M(X) & M(X) @ M(x). Using the fact that DMST has a unique tensor
structure satisfying M(X) ® M(Y) = M(X x Y), we get isomorphisms Z(n)[2n] 2 M (G,)[1]®" C M(G5™)[n].
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ring O C K = A/m of its residue field, [KS24, Prop.3.5]. For example, {a + be € Q,[e]/e? | a € Z,} is
a procdh local ring. Since procdh coverings are not finite, it doesn’t follow from Deligne’s completeness
theorem that the procdh topos has enough points. None-the-less, the procdh topos does have enough
points, [KS24, Thm.1.5]. Describing the values of Z(n)®™ on procdh local rings is done in [EM23].

Remark 30.

(1) The complexes Z(n)P°d and Z(n)®M are actually defined for qcgs schemes over a field. Theo-
rem 29 holds for all Noetherian schemes over F, or Q.

(2) The construction of the motivic complex and development of the theory in mixed characteristic
has been worked out now by Tess Bouis. In particular, Bouis has proved Theorem 29 for general
Noetherian schemes (also in mixed characteristic), [Bou24].

(3) The Atiyah-Hirzebruch spectral sequence with Z(n)¥M is proved in [EM23] for qcqs schemes over
a field, completely independently from [KS24]. For Z(n)P*°d! both the complex and the spectral
sequence can be defined on qcgs schemes over k, but convergence to algebraic K-theory is only
known for Noetherian schemes. In general, the target is'” LP°dM K and convergence is unclear.

(4) As a guiding problem we proposed the question of extending Voevodsky/Bloch’s motivic com-
plexes Z(n) beyond smooth varieties. One of the central theorems in [EM23] is that the restriction
of Z(n)®M to smooth schemes recovers Z(n).

Remark 31. The relationship of Z(n)®" = Ledb[Kan7(n) to the category DM,ﬁidh is a little subtle

without some kind of resolution of singularities. For X € Smy, the identification homsycor, (—, X) —
homcor, (—, X)|smcor, induces a comparison

pedh pKanpZar A omgncor, (— X) = LM LA homegr, (—, X).

With some kind of resolution of singularities and appropriate coefficients, this is an equivalence.'® How-
ever, without assuming resolution of singularities, comparing the p-torsion is still open. Consequently,
Z(n)° as defined above and the complex Z(n)PMean represented in DMy, cqn might have different p-
completions. (This would disprove resolution of singularities in positive characteristic.) In forthcoming
work of Bachmann, Elmanto, and Morrow, it is shown that: The Z(n)°® are the graded pieces of the
slice filtration on K H(X), when X is any qcgs k-scheme.

5. BUT WHAT IS A MOTIVE, THOUGH?

We began the talk with a category of motives, and then ended up with a motivic cohomology. We
observed in Remark 21 that correspondences as they are defined in [SVOO0b], the first step to building
DMiH, can’t see nilpotents. There is however a category, not of motives, but of stable motivic homotopy
types which can see nilpotents, namely the category of motivic spectra MSg of Annala and Iwasa, [AI22],
further developed by them with Hoyois, [AHI24].

It is currently an open question whether S — MSg satisfies procdh descent as a presheaf of categories.
However, a projective bundle formula and elementary blow-up excision for Z(j)®™ are established in
[EM23], which means that Z(j)®M is represented in MSg, for S any qcqs k-scheme. One could try
considering a category of modules over it in analogy to [Rob87], [RD06] and [HK®17].
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