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—SMALL SUBSET OPERATORS OF TOPOLOGICAL GROUPS-

VICTOR HUGO YANEZ

If X is a topological space, we shall use the symbol ¢lx(Y) to denote the closure of the
subset Y C X in X.

If (G,-) is a group and X,Y C G, then we let
(1) X-Y={z-y:zeX,yeY}

All topological groups appearing in this manuscript are assumed Hausdorff.

1. INTRODUCTION

Definition 1.1. We say that a functional T is an operator (for a class C of topological
groups) if the evaluation T @ P(G) — P(G) is a well-defined function on the power
set P(G) for G € C. When C is unambiguous, we may simply call Tg an operator of
topological groups.

For our purposes, the word “operator” for a functional T from Definition 1.1 does
not immediately carry the meaning of neither “interior” nor “closure” operator in the
categorical sense; in fact, it shall actually be incompatible with the categorical notion
as we do not restrict our use of operators to sub-objects from the category TopGrp (in
which case it would be subgroups, see Definition 1.4). Instead, we are able to apply
operators directly to individual subsets of a given topological group G. In addition, our
purposes require us to assign different properties and behaviors to given operators T' by
assigning different adjectives to it based on either intrinsic or combinatorial properties.
Our terminology closely follows that of [5], with one major difference: we remove certain
restrictions on the universal quantifiers which appeared on the original properties of [5],
this is done to make them available for singular topological groups G. Our reasoning is the
following: certain operators may have strong combinatorial properties when considered
for specific subclasses of topological groups (e.g, abelian groups, torsion groups, etc) which
may not be present at all in a general setting. The following list includes the properties
that we shall focus on in this manuscript.

Definition 1.2. Let G be a topological group and T be an operator. The operator T is
said to be:

(i) extensive for G whenever T (X) satisfies that X C T (X).
(i) contractive for G whenever Tg(X) satisfies that Tg(X) C X.
(iii) generative for G whenever T5(X) is a subgroup of G for every X C G.
(iv) algebraically normal for G whenever Ti(X) is a normal subgroup of G for every
X CQ@.
(v) topologically open for G' whenever T;(X) is open for every X C G.
(vi) topologically closed for G whenever T (X) is closed for every X C G.
(vii) central for G whenever the inclusion e € X implies that e € T(X) for every X C G.
)

(viii) monotone for G whenever the inclusions X CY C G imply that Tg(X) C Te(Y).
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(ix) laz-commutative for a homomorphism f : G — H whenever f(Tg(X)) C Ty(f(X))
holds for each X C G.

(x) forward quotient-uniform for G whenever Ty(q(X)) C q(Tg(X)) holds for each
continuous quotient map ¢ : G — H and each set e € X C H.

(xi) backward quotient-uniform for G whenever ¢~ (Ty(Y)) C Ta(q ' (Y)) holds for each
continuous quotient map q: G — H and each set e € Y C H.

In the context of topological groups, we are able to consider operators that are built
based purely on topological properties, algebraic properties or a combination of both. The
following examples show some of these selection patterns.

Example 1.3. (1) The trivial central operator T for which T (X) = {eg} holds for

(2)

every topological group G and every set X C G is universally generative, uni-
versally normal, universally closed, universally central, universally monotone and
lax-commutative for all homomorphisms.

The closure operator cl for which clg(X) denotes the topological closure of X
in G is universally extensive, universally closed, universally central, universally
monotone and lax-commutative for all continuous homomorphisms.

The algebraic generation operator (-) for which (X)gs denotes the smallest sub-
group of GG containing X is universally extensive, universally central, universally
monotone, universally generative, lax-commutative for all homomorphisms, uni-
versally forward quotient uniform and universally backwards quotient-uniform.
The cyclic operator Cyc for which Cyc,(X) denotes the set {z € X : (x) C X} is
universally contractive, universally central, universally monotone and universally
backwards quotient-uniform. In addition, it is lax-commutative for any homomor-
phism between topological groups.

The heart operator N for which Ng(X) denotes the union of all normal sub-
groups of G contained in X is universally generative, universally normal, univer-
sally central, universally monotone and universally backward quotient-uniform. It
is lax-commutative for any homomorphism between topological groups which has
super-normal image (see [5]).

Let us now do a quick comparison between the operators we consider here, versus the
traditional categorical notion of a closure operator:

Definition 1.4 (Categorical closure operators of topological groups). Recall that TopGrp
denotes the category of all Hausdorff topological groups as the TopGrp—objects, together
with continuous homomorphisms as the TopGrp—maps between the TopGrp—objects. Let
G and H denote topological groups. H is said to be a subobject of G whenever H is a
(topological) subgroup of G; categorically this is denoted as H <roparp G (but we shall
omit the sub-index). An operator C' in the category TopGrp is a functional which assigns
to each topological group G and each subgroup H of G a unique subgroup of G denoted
by Cg(H). The operator C' is said to be:

(i) extensive whenever H < C(H) holds for each (topological) subgroup H of a topo-
logical group G.
(ii) monotone whenever K < H implies that Cu(K) < Cg(H) holds for a pair of (topo-
logical) subgroups K, H of G.
(iii) continuous whenever f(Cg(K)) < Cu(f(K)) holds for any continuous homomor-
phism f : G — H between topological groups, and any K < G.



If an operator C' in the category TopGrp satisfies conditions (i)—(iii), then it is said to be
a closure operator of topological groups.

We note that conditions (i)—(iii) of Definition 1.4 have their clear counterparts in our
Definition 1.2 in the form of extensivity (i), monotonicity (viii) and laz-commutativity
(ix). However, the properties for the operators we consider in this manuscript are not
restricted to (topological) subgroups (i.e, subojects in the category TopGrp). A complete
summary of the theory of closure operators for TopGrp can be found in [3]; and a general
reference book of categorical closure operators with applications beyond topology and
algebra (including discrete mathematics) can be found in [6].

2. COMPOSITION OF OPERATORS

Definition 2.1. Let T and S be operators of topological groups. We define S o T to be
the topological group operator satisfying the equality

(2) (SoT)a(X) = Sa(Ta(X))

for each topological group GG and each subset X C G. The operator SoT shall be referred
to as the composition of T and S.

Proposition 2.2. Let T and S be operators of topological groups. Let G be a topological
group.
(i) If S is normal for G, then S o T is normal for G.
(ii) If S is closed for G, then S oT is closed for G.
(iii) Let N be the heart operator. If T is closed for G, then N o T is closed for G.
(iv) Let N be the heart operator. If T is generative for G, then N o T is normal for G.
(v) If T and S are monotone for G, then S o T is monotone for G.
(vi) Assume T and S are lax-commutative for a homomorphism f : G — H between
topological groups G and H. If S is monotone for H, then S oT is lax-commutative
for f.
(vii) Assume T and S are forward quotient-uniform for G. If S is monotone for G and T
is central for G, then S o T is forward quotient-uniform for G.
(viii) Assume T and S are backward quotient-uniform for G. If S is monotone for G and
T is central for G, then S o T is backward quotient-uniform for G.

Proof. Let G be an arbitrary topological group. (i),(ii) and (v) are verified easily.

(iii) Let X be a subset of G. By definition, Ng(7T6(X)) C T(X). Since T¢(X) is closed,
the inclusion clg(Ng(Te(X))) € Te(X) holds. The closure of a normal subgroup of G is
a normal subgroup of G, implying that Ng(T5(X)) = clg(Ng(T¢(X))) by maximality of
N¢(T¢(X)) as a normal subgroup of T (X). This proves that Ng(T6(X)) is closed.

(vi) Assume X C G is arbitrary. Since S is lax-commutative for f, we have that
(3) f(Sc o Ta(X)) = f(Se(16(X))) € Su(f(Ta(X))).

Since T is lax-commutative for f, we have f(T(X)) C Ty (f(X)). Since S is monotone
for H, we have

(4) Su(f(Te(X))) € Su(Tu(f(X))) = Su o Tu(f(X)).

By (3) and (4) we have that

f(Sq oTa(X)) C Sy oTu(f(X)).

This proves that S o T'is lax-commutative for f.
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(vii) Let ¢ : G — H be a quotient mapping from G to a topological group H. Let
X C G satisfy e € G. Since T'is forward quotient-uniform and central for G, we have

en € Tu(q(X)) € ¢(Ta(X)).

Since S is monotone for GG, the above implies that

() Su(Tu(g(X))) € Su(e(Te(X))).
On the other hand, since S is forward quotient-uniform for G and ey € q(Tg(X)) we have

(6) Su(q(Ta(X))) € q(Sa(Te(X))).
Combining (5) and (6) we get
(7) Sk o Tu(q(X)) € q(Sg o Te(X)).
Since G, H and the quotient map ¢ : G — H were arbitrary, this proves that S o T is
forward quotient-uniform for G.
(viii) Let ¢ : G — H be a quotient mapping from G to a topological group H. Let

Y C H satisfy e € Y. Since T is central, the inclusion e € Y implies that e € T (Y).
Since S is quotient uniform for G and e € Ty (Y'), we now have

(8) ¢ Sy oTu(Y)) =q (Su(Tu(Y))) € Salq™ (Tu(Y))).

Since T is backward quotient-uniform for G, the inclusion ¢ (T (Y)) C Ta(qg 1(Y))
holds. Since S is monotone for G, this implies that

(9) Scla™ (Tu(Y))) € Sa(Tala ' (Y))) = Se o Ta(g ' (Y)).
By (8) and (9) we have
¢ (S oTu(Y)) € Sg o Ta(g™ (V).

Since GG, H and the quotient map ¢q : G — H were arbitrary, this proves that S o T is

backward quotient-uniform for G.
O

3. COSET SATURATIONS

In this section we introduce the most important (unary) operation in this theory of
operators of topological groups. This operation was originally introduced by Dikranjan
and Shakhmatov in [5] for a specific operator S (that we shall introduce in the final Section
4), in this manuscript we now formally define this unary operation for any operator of
topological groups.

Definition 3.1. Let T be an operator of topological groups. For each ordinal « let us
define an a-th coset saturation T® of T as follows. For each topological group G and
every X C G we let

(10) TP (X) = {ec}-

If « >0 and Tgf ) is defined for each B < a we define

(11) TE(X) =Te(x - |J 19 (X)).
[B<a

The following lemma summarizes property preservation under coset saturations.

Lemma 3.2. Let GG be a topological group and T be an operator of topological groups.
(i) If T is central for G, then each T'® is also central for G.



(ii) If T is monotone for G, then each T'“) is also monotone for G.

(iii) If T is monotone and extensive for G, then T(® is extensive for G for each a > 0.

(iv) If T is monotone for G and laz-commutative for a homomorphism f : G — H
between topological groups, then cach T'®) is also lax-commutative for f.

Proof. Let G be an arbitrary topological group.

Properties (i)—(iii) are easily seen to hold.

(iv). By Remark 1.3 the operator T((;O) is lax-commutative for all homomorphisms.
Assume that for each 8 < « the operator T((;B ) is lax-commutative for f. Let X C G be
arbitrary. For each f < a we have f (TC(,B ) (X)) C TI({B )( f(X)) by lax-commutativity of
Tg’) ) for f. Since f is a homomorphism, the previous a many inclusions imply that
(12)  fx-JTEX) = £ - U AT X0) € ) - | T (0.

B<a B<a B<a
Since T is monotone for G, (12) and (11) (in this order) imply that
(13)  Tu(f(X - |J 1)) € Tu(F(X) - | TP (X)) = TP (F(X)).
B<a B<a

On the other hand, since T is lax-commutative for f, we can see that

(14) NI (X)) = f(Ta(X - | 767(X)) € Tu(F(X - ([ 76" (X))
B<a B<a

Combining (13) and (14) we obtain
TS () S T (£(X)).

Since the set X C G was arbitrary, this proves that T(® is lax-commutative for f. Il

4. THE OPERATOR FULLNESS CRITERION

Definition 4.1. Let GG be a topological group and 7" be an operator. We say that

(i) G has local T-concentration of degree v of if {A C G : T(A) = G} contains an
open neighbourhood basis of the identity of G.

(ii) G is locally T-trivial whenever {A C G : T(A) = {eg}} contains an open neigh-
bourhood basis of the identity of G.

Definition 4.2. We say that a topological group G is T-full for an operator 71" of topo-
logical groups if and only if the only locally T-trivial topological group quotient of G is
the trivial group.

Our main result is a criterion for fully describing the class of groups with local T-
concentration in terms of their topological group quotients (by the notion of T-fullness).

Theorem 4.3 ([15]). Let T' be a monotone, closed and normal operator for a topological
group G. Assume T is lax-commutative for all topological group quotient maps of G. If T
is backwards-quotient uniform for G then the following statements are equivalent:

(i) G is T-full; and
(ii) G has local T-concentration of degree o for some ordinal o.

The full proof of this theorem is available in the upcoming [15].
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Example 4.4 (The Dikranjan—Shakhmatov operator S). The operator S is defined as
the composition

(15) S=Noclo () o Cyec.

Example 1.3 has the properties of each individual factor in the above composition, and
the results from Section 2 allow us to deduce the properties preserved under the composi-
tion performed in (15): S is universally monotone, universally closed, universally normal,
universally backwards-quotient uniform and lax-commutative for continuous homomor-
phisms between topological groups with super-normal image. All of these properties were
computed manually in [5, Lemma 4.5, Lemma 4.9] (with backwards quotient-uniformity
being unnamed).

While we have not defined the concept of super-normality in this manuscript (which
is present in [5] and can be consulted in more detail in [4]), it suffices to note that any
group is super-normal in itself. As a consequence, any surjective homomorphism between
topological groups has super-normal image. This allows us to obtain the following result
as a consequence of Theorem 4.3:

Corollary 4.5 ([14]). TFAE for a topological group G:
(i) G is S-full; and

(ii) G has local S-concentration of degree o for some ordinal «.

This result was previously obtained by the author in [14] by manually computing the
coset iterations of the operator S. When the group G is Abelian, the above result becomes
stronger:

Corollary 4.6 ([12, 13]). TFAE for an Abelian topological group G:

(i) G has local S-concentration of degree o for some ordinal o.
(ii) G admits no non-trivial continuous homomorphism to an NSS group.

The topological groups which have local S-concentration for an ordinal o are known as
the groups satisfying the small subgroup generating property for a (denoted as SSGP(«)).
The algebraic structure of the abelian SSGP(«) groups (namely, the ones in Corollary
4.6) was fully described by Shakhmatov and the author in [10]. These properties were
introduced by Dikranjan and Shakhmatov in [5] as a generalization of the small subgroup
generating property of Gould [1, 7, 8]. The origin of this property is intimately linked to
original techniques of Prodanov [9] and Dierolf and Warken [2] for constructing minimally
almost periodic groups (:= groups for which any continuous homomorphism to a compact
group is trivial). The common algorithm employed in their techniques was constructing
groups which had no non-trivial homomorphism to an NSS group; precisely the property
appearing in item (ii) of our Corollary 4.6. Examples of group topologies following the
algorithm of Dierolf and Warken was produced by Shakhmatov and the author in [11]
for infinitely generated free groups. Overall, we believe that the operator techniques
we present here signify a humble start in a new type of degree theory in the realm of
topological groups (as shown in Corollaries 4.5 and 4.6). Such a theory allows us to
essentially model purely “functional” properties by calculating a specific type of “degree”
or “dimension” that is to be attained by a given topological group G. In addition, this new
approach allows us to go beyond the categorical setting, thereby allowing us the freedom
to build new types of operators (and therefore, topological group decompositions) based
on subsets of a topological group which may not necessarily be subgroups. We give a
more complete introduction to this theory in the forthcoming paper [15] of the author.
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