PROCEEDINGS IN RIMS SYMPOSIUM “IMAGINARY POWERS OF
(k,a)-GENERALIZED HARMONIC OSCILLATOR?”

WENTAO TENG

We will give a generalization of a classical result obtained by Stempak and Torrea [18] on the imaginary
powers £ of classical harmonic oscillator £ =: —A + ||z||> in the context of (k,a)-generalized Fourier

analysis developed by S. Ben Said, T. Kobayashi and B. @rsted [4] for a = 2 and 1, respectively. In [18], the
imaginary power £~ (f) of £ was defined as

1

£ (@) = iy /O T e (f) () ol

according to its spectrum and the following integral formula

1

A= I (i0)

o .
/ e dt A > 0.
0

The result by K. Stempak and J. L. Torrea [18] shows that the operator £~ is bounded on LP(RY)
(1 < p < 00) and weakly bounded on L'(RY) according to the method of classical Calderén—Zygmund
theory. We will define and investigate the imaginary powers (—Ag o) "7 (0 € R) of the (k,a)-generalized
harmonic oscillator —Ag 4 = — ||lz]|*"* Ag + ||z]|* for @ = 2 and 1, where Ay, is the Dunkl Laplacian, and
prove the LP-boundedness (1 < p < oo) and weak L!-boundedness of such operators by developing the
Calderén—Zygmund theory adapted to (k,a)-generalized Fourier analysis. The classical result obtained by
Stempak and Torrea in [18] corresponds to the case when k = 0 and a = 2 for the operator (—A,,)~ 7. The
special case when the finite reflection group G is isomorphic to ZY and a = 2 for such result was given by
A. Nowak and K. Stempak in [14].

In the following sections we firstly collect some basic facts in the (k, a)-generalized Fourier analysis devel-
oped by S. Ben Said, T. Kobayashi and B. Orsted [4], especially for the two particular cases for a = 2 and 1.
And then we develop the Calderén—Zygmund theory adapted to the (k,a)-generalized setting for a = 2 and
1 respectively, in order to prove the LP-boundedness (1 < p < oo) and weak L!-boundedness of (—Akya)_w.

1. AN INTRODUCTION ON (k,a)-GENERALIZED FOURIER ANALYSIS

1.1. Dunkl theory.

Dunkl theory is a far-reaching generalization of classical Fourier analysis related to root system initiated by
Dunkl [7], in which finite reflection groups G play the role of orthogonal group O(N). The framework of Dunkl
theory is as follows: Given a root system R in the Euclidean space RY, denote by o, the reflection in the
hyperplane orthogonal to @ and G the finite subgroup of O(N) generated by the reflections o, associated to
the root system. We assume the root system R is normailized without loss of generality. Define a multiplicity
function k : R — C such that k is G-invariant, that is, k (a) = k(8) if 0, and o are conjugate. The
Dunkl operators Tj, 1 < j < N, which were introduced in [7], are defined by the following deformations by
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difference operators of directional derivatives 0;:

Tjf(x) = 0;f(z) + Y ka)ay

a€ERt

f(x) = f(oalz))

(@, @)

)

where (-, -) denotes the standard Euclidean inner product and R* is any fixed positive subsystem of R. They
commute pairwise and are skew-symmetric with respect to the G-invariant measure dmy(z) = hy(z)dz, where

hi(z) = [Loer | {a, z) [F@). The Dunkl Laplacian Ay, = Zj.vlej? has the following explicit expression,

<<Vf,a> f(x)—f(oa(x)))

<Oé,.’13> <a7(1;>2

Apf@)=DFf(x)+2 ) k(a)
aERt
where A stands for the classical Euclidean Laplacian. The eigenfunction of Ay for fixed y is the integral
kernel of the generalized Fourier transform called Dunkl transform. It takes the place of the exponential
function e~“*¥) in classical Fourier transform.
The operators 0; and T; are intertwined by a Laplace-type operator (see [8])

V@) = [ 10)dnetw) (11)

associated to a family of probability measures {1,| 2 € RN } with compact support (see [16]), that is, TjoV;, =
Vi 0 0;. Specifically, the support of j, is contained in the convex hull co(G - x), where G-z = {g- x| g € G}
is the orbit of . And if k > 0, then G.z C suppp,. (see [10]). For any Borel set B and any r > 0, g € G, the
probability measures satisfy

firz (B) = piz (7' B) , pige (B) = pe (97'B) .

Spherical h-harmonics

The study of Dunkl theory originates from a generalization of spherical harmonics, with the Dunkl weight
measure dmy(z) = hi(z)dr playing the role of Lebesgue measure dz in the classical theory of spherical
harmonics. Let P,, be the space of homogeneous polynomials on RY of degree m. The so called Dunkl
Laplacian Ag was constructed in such a way that P,, N ker/\ are orthogonal to each other for m =0,1,---
with respect to Dunkl weight measure my. It Denote H}" (RN ) = P,,Nker/Aj to be the space of h-harmonic
polynomials of degree m. Then the elements in the restriction H}* (RY) [sv-1 of H}* (RY) to the unit sphere
SN=1 were called spherical h-harmonics. The spaces H" (]RN) |sv-1, m=0,1,--- are finite dimensional and
there is the spherical harmonics decomposition

D
L2 (SN71 by (a') do(2') = Y HE (RY) sn—1, (1.2)
meN
where do denotes the spherical measure. For each fixed m € N, denote by d(m) = dim (H}®* (RY) [gn-1).
Let {Y/": i=1,2,--- ,d(m)} be an orthonormal basis of H}"* (]RN) |sv-1. They are the eigenvectors of the
generalized Laplace-Beltrami operator Ag|gn—.

1.2. (k,a)-generalized Fourier analysis.

In [4], S. Ben Said, T. Kobayashi and B. Orsted gave a further far-reaching generalization of Dunkl theory
by introducing a parameter a > 0 arisen from the “interpolation” of the two sl(2,R) actions on the Weil
representation of the metaplectic group Mp(N,R) and the minimal unitary representation of the conformal
group O(N + 1,2). They gave an a-deformation of the Dunkl harmonic oscillator Ay, — [|z[|* as follows

Apa = ||z~ Dk — |||
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The operator is an essentially self-adjoint operator on L? (RN 2 Oka () da:) with only negative discrete spec-

trum, where 9y, (z) = |#)|“ ?hi(z). They then proved the existence of a (k,a)-generalized holomorphic
semigroup Zy , (2) := exp (iAk,a) , Rz > 0 with infinitesimal generator %Ak,a. This holomorphic semigroup
recedes to the Hermite semigroup studied by Howe [11] when k£ = 0 and a = 2; to the Laguerre semigroup
studied by Kobayashi and Mano [12, 13] when k£ = 0 and a = 1; to the Dunkl Hermite semigroup studied by
Rosler [15] when k>0, a =2 and z =2, t > 0.

From the spherical harmonic decomposition (1.2) of L? (SN~ hy, (2/) do(2')), there is a unitary isomor-
phism (see [4, (3.25)])

@

S HE (RY) v 1) @ L2 (R+7r 2<k>+N+a_3dr) = L2 (RN, 0y, (2) da) .
meN
In [4] the authors constructed an orthonormal basis {@g%)j‘l eN,meN, j=1,2,--- 7d(m)} of L2(RY,
U1 (z) dz). They are eigenfunctions for the (k,a)-generalized harmonic oscillator —Ag o = — [|z|*7* Ag +
2], ie.,
D a® (1) = 2+ Ngagm +1) @2 (@), (1.3)

where A\gq,m = w and (k) := > cp+ k(o). The (k,a)-generalized Laguerre holomorphic semi-

group ea ke (Rz > 0) on L? (RY, ¥y, (x) dz) has its spectral decomposition

eionn(f) (o) = 30 A V(L 87 ) 2 (@), S € L2 (R Dna(e)dr), (1)
l,m,j ’
where (f,9); . = [z f(2)g(2)0g a(2)dz. Tt is a Hilbert-Schmidt operator for Rz > 0 and a unitary operator

on Rz = 0 (see [4, Theorem 3.39]). By Schwartz kernel theorem, the operator ea“*« (Rz > 0) has the
following integral representation (see [4, (4.56)])

eatra (f)(x) = cra /N F W) Ago (2,95 2) k.0 (y) dy, (1.5)
R
. a -1
where cpo = (fav exp (=2 [|2]|*) Vg0 (z) dz) . .
The (k, a)-generalized Fourier transform is then defined as the boundary value z = % of the semigroup,
ie.,
. 2(k)+N+a—2 i)
Fk,a - em-( 2a )Ik,a <3> .

It has the following integral representation on L? (]RN, Via () dz) (see [4, (5.8)])

Pt (€)= o | £ () B (€.0) () du, € SRV,

. cm(2(k)+ N+a—2 N . .
where ¢ 4 is a constant and By, (z,y) = eis 2a )Ak,a (a:,y;z%) is a symmetric kernel which is the

eigenfunction of — ||z||*~* Ay, for fixed y (see [4, Theorem 5.7)), i.e.,
2—a Az a
™ AL Br.a(2,y) = = [y]l" Br.a(2, y)-

It recedes to the Dunkl transform when a = 2 for f € (L' N L?) (RN, 9y, (z)dz). In [4, 5], it was shown
that the integral kernel By, (z,y) satisfies the condition

|Bk7a (I7y)| S |Bk,a (07y)| S 1 (16)
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if a =2/n, n € N assuming that 2 (k) + N + a —3 > 0. In such cases one can define the (k,a)-generalized
translation operator on L2 (RN, Vg0 () dx) by

Fea (1y.f) (€) = Bra (—1)"y,€) Fra (f) (€), € €RY.

And it can be written via an integral for f € £i (RY),

7 (@) = Cra /R Bra (-1)"0,8) Bra (-1)"9,) Fia (1) (€) O () d,

where £} (RY) := {f € L' (RN, Uy o (z)dz) : Fio(f) € L' (RN, V44 (x) dz) } , combining the inversion for-
mula of the (k,a)-generalized Fourier transform for a = 2, n € N (see [4, Theorem 5.3]). We can observe
that 7, f(z) = 72 f(y).

The two special cases for a = 2 (the Dunkl case) and a = 1 are of particular interest because for the
two cases the structures will be richer. And in particular, we have the formulae for radial functions of
the generalized translations for the two special cases. For the case of a = 2, the generalized translation
corresponds to the classical translation operator f +— f(z + -); and for a = 1, it corresponds to the classical
translation f — f(z —-). We will discuss more on the properties of the generalized translations for the two
cases.

The case of a =2

For the case of a = 2 (the Dunkl case), the radial formula of Dunkl translations was found by Rosler in

17)

T f(=y) = Vi <J?(\/|9€|2 +lyll* —2(y, ->)> (),

where f(z) = f(|z]) € Srea(RN). This formula was first proved by Résler for radial Schwartz functions,
and was then extended to all continuous radial functions by F. Dai and H. Wang [9]. This shows that Dunkl
translation is positive on radial functions because the intertwining operator Vj, is positive, i.e., if f € L%(my)
is radial and f > 0, then 7,.f > 0. For a nonnegative radial function f in L'(R™, hy(z)dx), we have

/ o f (9 (y)dy = / F@)hi(y)dy, = € RV,
RN RN

The following is a theorem in analogy to the property of classical translation that if supp f = B(0,r), then
supp f(x — ) = B(z,r), where B(z,r) = {y € RV : ||z —y| <7}
Theorem 1.1. ([19]) Assume k > 0. Let f = fo (||||) be a nonnegative radial function on L? (RN, hy, (z) dz),
suppf = B(0,r), then

supprof = | Blga.).
g€eG

where B (z,r) == {y e RN : ||z —y|| < r}.
The case of a =1

The radial formula of (k,1)-generalized translations was found by S. B. Said and L. Deleaval in [3] for
2(k) + N —-2>0,

Ty f(z) =

Vi ( / o (2l -+l = V2@ Tl + () (1 - u2)g+<k>_2du> (@). (1.7)
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where f(z) = f(||z]|) is a radial function in £L(RN). This formula can also be extended to all continuous
radial functions analogously. The (k, 1)-generalized translation is also positive on radial functions from the
positivity of the intertwining operator. For a nonnegative radial function f in L*(RY, 9y 1(z)dz),

| et @@y = [ @)y, o € Y.
RN RN
We also have a theorem parallel to the Theorem 1.1 for a = 2.

Theorem 1.2. ([20]) Assume k >0 and 2(k) + N —2 > 0. Let f = fo (||-||) be a nonnegative radial function
in L2(RN, 9y 1 (z) dz), suppf = B(0,r), then

suppr=f = | J Blgx,7),
e

where B (z,7) == {y e RN :d(z,y) <r} and d(z,y) = \/HIH + lyll = V2] lyll + (2, ).

It was shown in [20] that the function d (z,y) = \/||x|| + lyll = /2 ([[2] lyl] + (z,y)) is a metric satisfying
the three properites: 1) d(z,y) > 0 if and only if = # y; 2) d(z,y) = d(y,z); 3) d(z,y) < d(z,2) + d(z,y).
And it is not difficult to check RY equipped with the metric is complete and that the closure of the open
ball with respect to the metric is the closed ball.

2. CALDERON-ZYGMUND THEORY

We review the classical Calderén—Zygmund theory on general homogeneous space first. Let (X, d) be a
metric space. Denote B(x,r) to be the ball B (z,r) := {y € X : d(z,y) <r} for x € X. If there exists a
doubling measure m, i.e., there exists a measure m such that for some absolute constant C,

m (B (z,2r)) < Cm (B (z,7)), Vo € RN, r >0, (2.1)
then (X, d) is a space of homogeneous type. The Calderén—Zygmund theory on a space of homogeneous type

(X,d,m) says that for f € L'(X,m)N L?(X,m) and a function K (z,y) on L*(X x X, m x m), define the
operator S with the integral kernel K (z,y) as

S(@) = [ K (@) () dm(y).
If S is bounded on L?(X,m) and K (z,y) satisfies the Hérmander type condition
/ K (z, y) — K(z, yo)|dm(z) < C, y,yo € RY, (2.2)
Jd(z,y)>2d(y,y0)

then the operator S is bounded on LP(X,m) (1 < p < 2) and weakly bounded on L'(X,m). We refer to [6,
Chapter III] for this theory.

Now we adapt the classical Calderén—Zygmund theory on general homogeneous space to the setting of
(k, a)-generalized Fourier analysis for a = 2 and 1, respectively. Denote dmy, o(x) = Ok,q () dz, Vg0 (z) =
||| 2hp(x), 2 (k) + N —a — 3 > 0. We firstly claim that the metric spaces (X, d, my.q) for both a = 2 and
a = 1 are of homogeneous type. Here for a = 2, d(z, y) denotes the Euclidean metric, i.e., d(z,y) = ||z — y|| .

And for a = 1, d(z,y) = \/HI” +1lyll = V2 (=] lyl] + (z,y)). In particular, for a = 2, it was shown in [1]

that my, (B(z,r)) ~ rN T[], er (| (z, a) |+ ) And so, my 2 is a doubling measure. For a = 1, we have the
following scaling property

mis (B (t2,vir) ) = 2O ng 1 (B (2,1), £ 0. (2.3)
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And my1 (B(z,7)) = fE(I nlz [2W+N=2 (%) dz from polar coordinate transformation z = /pw, where

_ N . + . )
E(xy,r) = {z eRN: H — V=] H£+HinH H < r} . It can be observed that my 1 (B(tz,r)) is equivalent to a

function which is non-decreasing as ¢ grows. And then it can be easily shown that my ; is also a doubling
measure combining the scaling property (2.3). Now we are ready to give the Hormander type condition
adapted to (k,a)-generalized setting. However, the classical Calderén—Zygmund condition on homogeneous
space is no longer valid in the setting of (k,a)-generalized Fourier analysis. And we define the distance
between the two orbits G.x and G.y,
de (w,y) = min d (gz,y).

Obviously, dg (x,y) < d(x,y). The classical Hormander type condition (2.2) on general homogeneous spaces
is then modified in the following theorem in order to adapt the classical Calderén—Zygmund theory to the
(k, a)-generalized setting. The proof for the case of a = 2 (the Dunkl case) was shown in [2], and the similar
proof also applies to the case of a = 1.

Theorem 2.1. (]2, 20, 21]) For 2(k) + N+a—3 > 0, a = 2 or 1, let K be a measurable function on
RN x RN\ {(Lg.z) i eRN, g€ G} such that the operator S is defined as

S(@) = [ K @) £ ) Vi () dy. G sups = 2
for any compactly supported function f € L* (RN 9y , (z)dz). If S is bounded on L* (RN 9 , (z)dz) and
K satisfies

/ K(z, y) — K(z, y0)] 9ha () dz < C, y,y0 € RV,
da (z,y)>2d(y,y0)

then S extends to a bounded operator on LP (]RN,ﬂk,a (z) d:c) for 1 < p <2 and a weakly bounded operator
on L' (RN 9y, (z) dz).

3. IMAGINARY POWERS OF THE (k,a)-GENERALIZED HARMONIC OSCILLATOR

From the spectral decomposition (1.3) we can define the imaginary powers (—Ak,a)_w ,o0 € Rfor f €

L? (RN, 9y, (z) dz) of the (k,a)-generalized harmonic oscillator —A, , naturally as
(~Dka) ™" () (@) = 32 (@@ Moo + 1) (1 2(75,5), B0 (@), (3.1)
lm,j

It is obviously a bounded operator on L? (RN V() dx) from its spectrum.
For a = 2 or 1, the reproducing kernel Ay , (z,y; 2) of e¥®*a (see (1.5)) can be reformulated as follows

exp(—z(llz|* + llyll* ) tanh 5) _
Sinh( )M

_exp(= (" + [lyll") tanh §)
sinh(z)%ﬂwa_2
PO+ K)o

VAT (852 + (k)
1 N )
X3 Vi f_lle—m(\|x|\+\|y||— 2([ My 1+ v)u) (1= ) ¥ 2du> o ey, 69

Vi e—ﬁ(Hx\|2+\|y\|2_2(ny>)) (z) (a=2).

A (@,y;2) = y (7T ) (1)), a= 2, n=20r1, (3.2)




In what follow we put
K (z,y) = / Ago (o, y;at) 7 Ldt. (34)
Jo

It is then easy to verify that if @ = 2 or 1 and 2(k) + N —a — 3 > 0, then the integral (3.4) converges
absolutely for all 2,y € RN, y & G.x.

Based on the formula -
AT = L/ e dt A >0
I (io) Jo
and (3.1), (1.4), (1.5), we can write (—Ay,)~* in the following way (such definition goes back to [14] and
[18])

1 RN 2 o1
o e @t

Ck,a o io—1
= o dt Ap.o (25 8) Vg o (y) dy.
e | [0 M) D ()
We can observe that this integral converges absolutely for all compactly supported functions f € L2(RY, ¥y, ()

dz) with supp f NG.z = @. And for compactly supported functions f € L? (RN7 Vg0 () da:), G.xNsupp f =
D, (—Ak,q) "7 satisfies

(—Dra) ™ () (@) =

(ke (@) = s [ K@) 50D )y

by changing the order of integration. We will show that the kernel K (z,y) of (—Akya)_w satisfies the
condition in Theorem 2.1 to prove the following main theorem. And we will give the sketch of the proof of
the theorem. For the detailed proof we refer to [20, 21].

Theorem 3.1. (]20, 21]) For 2(k) + N +a —3 >0, a = 2 or 1, the imaginary powers (—Akﬂa)_w ;o €R
are bounded on LP (RN7’L9]W1 (z)dz), 1 < p < oo, and weakly bounded on L* (RN7’L9]W1 (z)dz).

Sketch of Proof: Notice that (—A.,)~* is symmetric on L2 (RN, 9.4 (z) dz). Tt suffices to show that the

integral kernel K (z,y) of (—Ak)a)_w for a = 1 or 2 satisfies the Calderén—Zygmund condition adapted to
(k, a)-generalized Fourier analysis.
We write

1 o0
K (z,y) = / Ago (2, y;at) t7 dt +/ Apa (z,y; at) 7 dt
0 1
= KW (2,9) + K® (2,9),
It can be shown easily that fRN ‘K(Q) (x,y)‘ Dp.0 () dz < C for both a = 2 and 1 and

/ (K (@.9) = KO (a,50)| 010 () do
da(z,y)>2d(y,yo0)

<2 K@ (@y)|des @ o <C
RN

For KW (z,y),

1
’K(” (z,y) — KW (w,yo)‘ S/ |Ak,a (%, y; at) — Ag.a (2, y0; at)]| %dt'
0
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We will then show that KV (z,y) satisfies the adapted Calderén-Zygmund condition for @ = 2 and 1
respectively.
For a = 2, We need an estimate of the partial derivative of the integral kernel.

Lemma 3.2. ([21]) For 0 <t < 1, we have

iz c g

Then from the mean value theorem for integrals and the above lemma, we have

OAj 2

1
KO (2,4) = KO (2,30)| < S

(I7?J€7,2t)’ o

1 1
<Cly=wl | —rrmgat [ (1) (-o)as
B o t+5ET ’

where yg = yo + 0(y — yo). Notice that 7, (6_%”'”2) (—yg) < 7 (e‘ﬁ(”'H"'“y_y“”)z) (—yo) if da(z,y) >
2|ly — yoll- Then from the properties of the Dunkl translation,

/dc(ac,y)>2|y—y0|
| ! . >
<Clly=—wol | —wdt Tyo (e‘ﬂ“"””y—y"“) ) (—a)hy, (z) dx ) db
Jo t<k>+ ;— Jo JRN

1
1 a2
:c||y_y0”/ mdt/ e~ F =01 b, (1) do

=Cly- y”"/ e y||>d:
0

For a =1, 2(k) + N — 2 > 0, we need the following estimate of the difference quotient analogue, parallel
to the estimate of the partial derivative in Lemma 3.2. As continuous rectifiable curves between two distinct
points may fail with respect to the metric corresponding to (k, 1)-generalized analysis, we can no longer make
use of estimate of partial derivatives but will make use of an estimate of the difference quotient analogue
instead. We refer to [20, 21] for the detailed proof of the following lemma.

Lemma 3.3. ([20, 21]) For 0 <t < 1, y # yo,
‘Ak,l (,y3) — Aga (x,yo;t)‘ < ¢ (Tyo (e—%wn) (@) + 7, (e—%IHI) (I)).

d (y,yo) {2k +N—3
To prove the above lemma we need an enhancement of the triangle inequality of the metric d(z,y).

Lemma 3.4. ([20, 21]) For u € [-1,1], n € co(G.z), and =,y € RY,

‘\/le +Hlyll = V2l lyll + o, 9))u - \/IIIH + el = V2l 2l + (0, 2)u

From Lemma 3.3,

KW (,y) = KO (@,y0) | hn (@) da

<d(y,2).

1
1
K ) = KO (o) < [ 1A o950) = A Comi )]
0

<Cd (yyyo)/ol m (Tyo (e_ﬂl'”) (z) 47y (6_%”'”) (a:)) dt.



When dg(z,y) > 2d(y, yo), it can be observed that

o (1) (yo) < 7, <e;(¢ﬂ+d<y7yo>)2) ). 7 () @) <7, <e43( ||-||+d<y,yo>)2> ().

Therefore, from the properties of the (k, 1)-generalized translation,

/ KO (2,y) ~ KOz, yo)| s (2) da
dg (z,y)>2d(y,y0)

1 2
1 -4 |l+d(y,vo
<catvm) [ sy ([, (#0000 )
. 2
+ / 7y <e‘4‘t(v RRECED) )(I)ﬂm () d:v) dt
RN

1 1 s . 0 2

= Cd(y7y0)/0 mdt /RN Qe 4t (V [|lz||+d(y,y )) ﬂk,l (33) dr

oo 1
2 c 2
2(k)+N—2 — 55 (Vr+d(y,90)
< Cd(y,yo)/ T dr/o NI ( ) at

2(k)+N 2 00 ) .
d(y, o) — dr/ —————¢€ *du
0 (Frdy) AN So kN
d(yyyo)/ —3657“:
0 (\/F+d(y7y0))
The proof of Theorem 3.1 is complete. (]
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