Global existence of weak solutions to a singular
nonlocal phase field system with inertial term

Shunsuke Kurima
Department of Mathematics, Tokyo University of Science

1. Introduction

This paper deals with the phase field system

{(a(ﬁ))w%—Ae:f in Qx (0,7),

E1l

Aow +pr + Ap + Blp) +m(p) =0 in Qx(0,T). =y
Here © C R3 is a bounded domain, /3 is a monotone function (e.g., B(¢) = ¢*), 7 is a
continuous function (e.g., 7(¢) = —¢), f is a given function. In the case that a(f) = 6,
A =0, Ap = —Agp, (E1) is the classical phase field model proposed by Caginalp [3] (see e.g.,
2,4,7,10,19]). In the case that a(d) = In#6, the first equation in (E1) gives account of an
entropy balance. In the case that a(f) = Inf#, A\ = 0, Ap = —Ap, (E1) has been studied
(see e.g., [5,9]). However, there are rapid phase transformation processes in nonequilibrium
dynamics for which the inertial term ¢ must be taken into account (see e.g., [11] and
references therein). In the case that «(0) = 0, A = 1, Ap = —Ap, (E1) is the parabolic-
hyperbolic phase field system (see eg [15 23, 24]). In the case that a(&) =0, A =1,
Ap = ap — J * p, where a(z fﬂ y)dy, (J x)(x fQ )dyfor:CEQ
J is an interaction kernel such that J ( ) = J(—ux), (El) is the nonlocal phase field system
with inertial term (see e.g., [12,16]).

The phase field system proposed by Penrose-Fife [21]

{etﬂot—A(—g):f in Qx (0,7),
)

(E2)
—Ap+ B(e) +7(p) = —% in Q x (0,7

has been studied (see e.g., [8,13]). Also, the parabolic-hyperbolic Penrose-Fife phase field
system

{QH—%—A(—%) = f in Q x (0,7), (E2)
pu+ ot — Do+ B(p) +7(p) =—5 nQx(0,T)
has been studied (see e.g., [6]).

In this paper, we will derive existence for a singular nonlocal phase field system with
inertial term. More precisely, in this paper, we will prove existence of weak solutions to the



nonlocal phase field system with inertial term related to the entropy balance

(In6), + ¢y — A0 = f in Q% (0,7),
ou+oitap—Jxp+ (@) +m(p) =60 inQx(0,7), )
9,0 =0 on 9 x (0,7,

((In0)(0) =Inbh, »(0) =0, ¢:(0) =vo inQ,

where Q C R? (d = 1,2,3) is a bounded domain with smooth boundary 99, 8, denotes
differentiation with respect to the outward normal of 0€2. Moreover, we assume the four
conditions:

(C1) J(—x) = J(x) for all z € R? and Sup/ |J(x —y)|dy < +oo.

zeQN JQ

(C2) B:R — Ris a single-valued maximal monotone function such that there exists a lower
semicontinuous convex function 6 R — [0, +00) satisfying that 6( ) =0 and 5 = 00,
where 86 is the subdifferential of ﬁ Moreover, 5 : R — R is local Lipschitz continuous.

(C3) m: R — R is a Lipschitz continuous function.

(C4) f e L2(Q x (0,T)) N L0, T; Lo(Q)), 6y € L), In by € L2(Q), o, v € L®(S).

We define weak solutions of (P) as follows.
Definition 1.1. For 7' > 0, (0, ) is called a weak solution of (P) on [0,T] if (0, ¢) satisfies

0 € L*(0,T; H (), In§ € H*(0,T; (H"(2))*) N L>(0,T; L*(2)),
© € W22(0,T; L*(Q)) nWh(0,T; L=(2)),

((I0)e, w) arr (- m o) + (0, w) 20 + /Q VO - Vw = (f,w)2)

a.e. in (0,T) for all w € H'(Q),
ou+oitap—Jxp+F(e)+1(p) =60 ae inQx(0,7),
(In6)(0) =1n by, ¢(0) = o, ¢:(0) =vy a.e. in Q.

The following theorem is concerned with existence of weak solutions to (P).

Theorem 1.1 (K. [17]). Assume that (C1)-(C4) hold. Then for all T > 0 there exists a
weak solution (0, ¢) of (P) on [0,T].



2. L*(0,T; L*(Q))-estimate for ((y)

In the case that A\ = 1, to obtain the L?(0,T; L*(Q))-estimate for 5(y) is more difficult
compared to the case that A\ = 0. In the case that a(f) = 0, A = 1, Ap = —Ayp, assuming
that |8"(r)] < ¢(1 + |r|) for all » € R, where ¢ > 0 is some constant, we can derive the
L>(0,T; L?(Q))-estimate for 8(¢) by establishing the L>(0,T; H(f2))-estimate for ¢ and
by the continuity of the embedding H'(Q) < L%(Q). On the other hand, in the case that
a(f) =60, A =1, Ap = ap — J * p, since the regularity of ¢ is lower compared to the case
that Ap = —Ag, it seems to be difficult to obtain the L?*(0,T’; L*(2))-estimate for B(¢) in
the same way as in the case that a(f) = 0, A = 1, Ap = —Ap. In the case that a(f) = 6,
A =1, Ap = ap — J * ¢, assuming that ¢g,vy € L>®(Q), establishing the L*(0,7T; H*())-
estimate for 0, using the continuity of the embedding H2(Q2) — L>®(Q), we can derive the
L>(Q2 x (0,T))-estimate for ¢ and then we can obtain the L>(£2 x (0,T"))-estimate for 5(y)
by the continuity of 5. However, in the case that A =1, a(f) =1n 6, Ap = ap — J * ¢, since
the regularity of # is lower compared to the case that a(f) = 6, it seems to be difficult to
establish the L%(0,T; H?(§2))-estimate for 6 in the same way as in the case that a(f) = 6,
A=1, Ap =ap — J % .

In this paper, it holds that
1 . 2 '
Sl = Sleo@ + [ gw,s)ptes) ds
0

and

Sl 0P + [ laa o) ds + Bt 0)

= [ btsaa. ) ds + 5l + Beala)
- [ (@@l = (7 e(5))a) + el )l .

Moreover, since € D(In) = (0, +00), we see that

t

t
[ ot syena)ds < lallomaeom [ 06 ds
0 0

Thus, deriving the L>°(0,T; H*(2))-estimate for fg 0(z,s)ds from the first equation in (P),
using the continuity of the embedding H?(Q2) — L*(2), applying the Young inequality and
the Gronwall lemma, we can establish the L>(Q x (0,7T"))-estimate for ¢, whence we can
obtain the L>(€ x (0,7))-estimate for 3(y) by the continuity of f.



3. Approximation

Even if we consider the approximation

(I (6:))e + (pe)e — MG = f in Q x (0,7),
(pe)ue + (92)e + ap: — J x pe + Blp:) + (o) = 0= in Qx (0,7),
0,0- =0 on 02 x (0,7),

[ (In:(0:))(0) = Inc(6o), 9=(0) = o, (pe):i(0) =vo  in Q,

(P)e

we do not know whether we can derive a priori estimates for (P). or not. Here In. is the

Yosida approximation of In on R. Although we can obtain that

1ol OF = Sl + [ (ontes)ipelo,s)ds

and

e+ [ ento,s)Pds+ Bl t)

:A&u@wm@@w+%M@W+@%@»

—/0 (a(@)pe(2,5) = (J * 9(5)) (@) + 7(pe(,5))) (e)e(, 5) ds,

since 0. > 0 does not hold, we see that
t

t
/@@@@&wﬁﬁﬁM%wmmmm/&@@M
0 0

whence we do not know whether the L>(€2 x (0,7"))-estimates for {¢.}. and {5(p.)}: can

be established or not.

In this paper, to prove existence for (P), we employ the following time discretization

scheme: find (6,11, @n+1) such that

( R AL R in 2,
W + Uny1 + apn — J x on + B(Pnr1) + T(Pnt1) = Onyr in Q,
Un+1 = Mz—_% in &2,
B0yt = 0 on 0f)

\

forn=0,...,.N — 1, Whereh:%, N e N,
U; = h1/29j + In (9]'

forj=0,1,...,N, and f;, :== + (]Zh_l)hf(s) ds for k= 1,..., N. Indeed, we can prove existence

for (P),.



Theorem 3.1 (K. [17]). Assume that (C1)-(C4) hold. Then there exists ho € (0, 1] such that
for all h € (0, ho) there exists a unique solution of (P), satisfying

Oni1 € H*(Q), 0,41 € D(In) = (0, 4+00) a.e. in Q, 00,11 =0 a.e. on 09,
Ynt1 € L®(Q)  forn=0,..,N — 1.

The problem (P),, can be written as

(hY20,01 + 106,11 — hAO, 41
= —Pni1 + hfor1 +@n + b0, +1n6, in Q,
0y0ps1 =0 on 042, (P,

i1 + honi1 + h2B(ens1) + W7 (0nt1)
L = h%0,1 + pn + hv, + he, — h2ap, + h?J x @, in Q.

Thus, to prove Theorem 3.1, it is enough to derive existence and uniqueness of solutions to
(P)!, in the case that n = 0. Then the following two lemmas are necessary:

Lemma 3.2. For all g € L*()) and all h > 0 there exists a unique function 0 € H*(Q) such
that

0 € D(ln) a.e. inQ, 0,0 =0 a.e. on 9, h'?0+1Inh —hAd =g a.e inQ.
Proof. The operator A : D(A) C L?(Q) — L*(Q) defined as
Al := —hAG for § € D(A) = {0 € H*(Q)| 9,0 =0 a.e. on 90}

is maximal monotone. Also, since In : D(In) C R — R is maximal monotone, we can verify
that the operator B : D(B) C L*(Q2) — L*(92) defined as

BO:=1nf fordc D(B):={0c L*Q) |6c D(In) ae. inQ, Ind € L*(Q)}

is maximal monotone. Moreover, we see that 1 € D(A) N D(B) # 0 and (A6, B,6)12(q) > 0
for all & € D(A) and all 7 > 0 by noting that (—Af,In. )2y > 0 for all § € D(A)
and all 7 > 0 (cf. Okazawa [20, Proof of Theorem 3 with a = b = 0]), where B, is the
Yosida approximation of B and In, is the Yosida approximation of In on R. Therefore we can
conclude that the operator A+ B : D(A) N D(B) C L*(Q) — L*(Q) is maximal monotone
(cf. Barbu [1, Theoreme I1.3.6]). O

Lemma 3.3. For all g € L*(Q) and all h € (0, min{1, 1/||7|| 1) }) there exists a unique
function ¢ € L?(Q) satisfying

© + hp + R?*B(0) + h*r(p) =g a.e. in S



Proof. We set the operator @ : D(®) C L?(Q) — L*(Q) as
P = n?*B(p) for p € D(®) = {p € L*(Q) | Bly) € LX(Q)}.

Then this operator is maximal monotone. Also, we define the operator £ : L*(Q2) — L2()
as

Ly = hp+ h*m(p) for ¢ € L*(Q).

Then this operator is Lipschitz continuous, monotone for all i € (0, HW’H ) Therefore the

operator ® + L : D(®) C L*(Q) — L*(Q) is maximal monotone (see e.g., [22 Lemma IV.2.1
(p.165)]). O

We can show Theorem 3.1 by using Lemmas 3.2, 3.3, the Banach fixed-point theorem and
by confirming that ¢y € L®(Q) (for details, see [17, Proof of Theorem 1.2]).

4. Outline of the proof of Theorem 1.1
In order to derive existence for (P) by passing to the limit in (P),, as h N\, 0, we put

n(t) =y + L ),

h
Bult) = pu + TR (1 — ),
Bnlt) = v + %(t — nh)
for t € [nh,(n+ 1)h], n=0,...,N — 1, and
Un(t) = Uns1, On(t) = Onir, Bi(t) = @nin, @, (t) = ¢n,
Tn(t) = Vg1, Frlt) = fap
for t € (nh,(n+1)h],n=0,..., N — 1, and we rewrite (P),, as
((@n)e + (Bn)e — Ay = [, in % (0,T),
(On)e +Tn + ap, — Jx @, + B(@,) +7(@,) = 0n 0 Qx(0,7T),
U, = (Pn)s in Qx (0,7),
Ty, = h'/20), + 1n 0, in Q x (0,7), (B
d,0, =0 on 002 x (0,7,
(T (0) = hY20, + 16y, Pr(0) = o, Du(0) =vy  in €.

Moreover, to obtain the L?(0,T’; L*(Q2))-estimate for {3(,) }n, the following estimate is nec-
essary (see [17, Lemma 4.5)):



Lemma 4.1. There exists a constant C > 0 such that
m—1
Z 9n+1
n=0

for sufficiently small h € (0,1).

<C
H?(Q)

h max
1<m<N

There exists a constant C; > 0 such that

Slom(@)P + 1|vm<x>|2 + Blgm(@))

> _H(100||L°°(52) + 5 HUOHLoo(sz) + ||5(4P0)||L°°(Q)

m—1
+h Z Ont1(x)vn1(z) + Cih Z [ s
n=0
HW HLOO(R) +1 =2 = 7 (0)[?
fh Z lnt1ll7o () + 2P Z [0n 11| 700 0y + 2 T

n=0

for sufficiently small A € (0,1) and for a.a. z € Q, m = 1,..., N. On the other hand, since
¢, € D(In) = (0,+00) ae. in Q for j = 0,1,..., N, it follows from Lemma 4.1 and the
continuity of the embedding H?(Q) < L>(£2) that there exists a constant Cy > 0 such that

m—1
hZM )01 ( >Sh(1<magNva||mm)Zoen+1<x>
m—1
(s Bl ) [ 32

<C’21£nax |[vml 2o (9) = Cal[Onl| L @x(0.1))

IN

Lo ()

for sufficiently small h € (0,1) and for a.a. z € Q, m = 1,..., N. Hence there exists a constant
C'3 > 0 such that

HSDmH%oom) + va"%w(g)

m—1 m—1
< Cs + Csl[Onl| o @xomy) + Csh Y 651170y + Csh D 10l (e
7=0 7=0

for sufficiently small h € (0,1) and m = 1,..., N. Thus it follows from the discrete Gronwall
lemma (see e.g., [14, Prop. 2.2.1]) that

HSDmH%oom) + va"%w(g) < Oy + Cyl|vn | L= @x(0.1))



for sufficiently small h € (0,1) and m = 1, ..., N with some C; > 0. Hence we have that

H@h”%w(szx(o,:r)) + HEhH%OO(SZx(O,T)) <Ci+ c'4||@hHLO"(QX(O,T))

1, i
< Cy+ §thH2L°°(Q><(07T)) + 74

Therefore we can establish the L>(Q2 x (0,7))-estimate for {$,}, and then we can derive
the L>(Q x (0,T))-estimate for {5(p;,) }n by the continuity of .

To obtain that 7(p,) — m(¢) in L*(0,T;L*(Q)) as h = h; \, 0, we need the strong
convergence of {Py}, in L?(0,T; L*(Q)). However, we cannot establish the LP(0,T; H*())-
estimate (1 < p < 00) for {py, }, and then we cannot apply the Aubin—Lions lemma for {@y,},
and the compact embedding H'(Q2) — L?(2). Thus the following lemma are necessary (see
(17, Lemma 5.1}):

Lemma 4.2. There exists a constant C' > 0 depending on the data such that

181 — @7 llcqom2 @) + 100 — Urlleqomz ) + 108 — U2l L200,752202))

< O+ 7Y2) + Cllon — B ll o e oy

for sufficiently small h,T € (0,1).

We can prove Theorem 1.1 by establishing some uniform estimates for (P),, by applying
the Aubin-Lions lemma for {0}, and compact embedding L?(2) — (H'(Q))*, by using
Lemma 4.2, by passing to the limit in (P), as h = h; N\, 0 (for details, see [17, Proof of
Theorem 1.1]).

Remark 4.1. We can show that there exists a weak solution of the nonlocal Penrose-Fife
type phase field system with inertial term

(0, + 01— A(=3) =1, >0 in Q x (0,7),
it prHap —Jx o+ B(p) +m(p) = —5 inQx(0,7),
Oy (—%) +(—3) =ogr on 082 x (0,7,
(0(0) =00 (> 0), ©(0) = w0, ©:(0) = vo in Q

(see K. [18]).
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