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Abstract

This study examines the M&bius energies for knots and links. These
energies have a Mobius-invariant decomposition, that is, up to constant,
they are decomposed into two parts which are invariant under Mobous
transformations. The first decomposed energy is reminiscent of the frac-
tional harmonic map, and the second part is just the energy of wave maps.
Considering this, this study examines the relevances between the Mobius
energy and harmonic maps and proposes a new formulation for the vari-
ational problem of Md&bius energy.

1 Introduction

The Moboius energy for knots is defined by O'Hara ([10]) as one of the knot
energies, and Freedman-He Wang ([4]) discovered its Mobius-invariant property.
These studies were conducted during the first half of 1990’s. The energy a knot
is defined as

1 1
S (f) = //(]R/LZ)2 (”f(sl) — F(s2)2e  2(f(s1), f(s2))2

where f : R/LZ — R™ is the parametrization by the arc-length of a closed curve
embedded in R™. Further, & is the intrinsic distance on the curve Im f, and the
suffix “kt” means “knot”.

In the recent decade, the understaning on energy has progressed. In 2012,
Blatt ([1]) clarified the proper domain of the energy, that is, the energy of a knot
is finite if and only if f is a bi-Lipschitz function that belongs to the Sobolev-
Slobodeckii space W%’2(R/ LZ) with respect to the arc-length parameter. This
space is a closed linear subspace of Sobolev space W12(R/LZ) with a finite
Gagliardo semi-norm as follows:

Im(s1) = (sl . 2 N
(//(R/LZ)2 PD(f(s1), f(s2))2 dsid 2) < 00,
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where T = %f. Further, the present author found with Ishizeki that the energy
can be decomposed into three Mobius-invariant parts:

(1.1) e () = Exe 1 () + Ee2(f) +4,
where Ext.1(f), Exi.2(f) are defined as
AT,
& // I SR Js1dss,
ko { ®/12)2 2||Af||Rn e

Af _Af
e _ dsid
kt,2(f) //(R/LZ)2 [AF]2. <T(81) A |AF||rn Tls2) IAfIlre >/\2R” e

in [5, 6, 7]. Here, A represents the difference in the functions:

Af = f(s1) — f(s2), AT =7(s1) — 7(s2).

Geometrically, the first decomposed energy measures the bending of the
curve, and the second performs the twisting.

The squared Gagliardo semi-norm is a quite similar to the first decomposed
energy &. The squared Gagliardo semi-norm is an energy of fractional har-
monic map from a circle to S ~'. Blatt-Reiter-Schikorra discussed the regularity
of a critical point by using a similar argument to that for fractional harmonic
maps ([3]). Here, we discuss similarity of the second energy to an energy of
harmonic maps from a torus to S*~!. A key finding was presented in a recent
study [9], where the Mobius energy &) for 2-component links was considered.
Let (Imf,Imf,) be a 2-component link, that of, a pair of two curves embedded
in R™ without intersection. Further, let s, be the arc-length parameter of f,,
and let L; be its total length. The energy is defined by

51k(f) = dSldSQ.

1
//(]R/le)x(]R/Lzz) [ £1(s1) — f2(52)||112v

The suffix “Ik” means “link”. Based on the Mdbius-invariant property of the
cross ratio, the energy is also Mobius-invariant. This energy also has a Mobius-
invariant decomposition corresponding to the (1.1). In the case, the second
energy can be expressed by the Gauss map, which is just the wave map energy.
In the case of knots, the second energy can be expressed by the self-Gauss
map. Considering this, this studt proposes a new formulation to the variational
problem for the Mobius energy.

2 Mobius-invariant decomposition and the par-
allelogram law

It is inefficient to deal with two energies & and &y separately. In fact, & can
be considered as a regularization of &, as in [9, § 2]. Hence, we have unified



the two. Let Imf, be a closed curve embedded in R™ of length L;, and let s; be
the arc-length parameter. Set

1
5 =
o(f1, F2) //(R/LIZ)X(R/MZ) <||f1(81) = Fals2)lln

2
log |1 (s1) f2<sQ>||Rn) ds1dss.
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It obviously holds that

_ [ &a(f1) -4 when fy = f,,
50(f1af2)—{ 5?;(1:11,]62) when Inllfl ﬂzlmfzzm-

We can simultaneously consider both energies £y and &y by addressing with
&y. First, we state that & has a Mdbius invariant decomposition corresponding
o (1.1). We introduce a map g defined as

Fi(s1) — fa(s2)
g(s1,82) = :
[£1(s1) = Fals2)llrn
Clearly g maps (R/L1Z) x (R/LyZ) into S ! in the links. This is called the

Gauss map in link theory. In the case of knot, that is, f; = f,, this is defined
on {(s1,s2) € R/L17Z)?|s1 # s}, and call it the self-Gauss map. As ||g||r» is

always 1 in its domain, g is perpendicular to g—i. It holds that
_dfy, 0 (0 dg
=G = S (= Fallo) = (50— £l g+ 15— ol 52

which is the orthogonal decomposition of 71 into g and % directions. Set

P 0
T = (3—81||f1 - f2||)g— £+~ f2||5_891'

This is the unit vector reflecting 71 with respect to g direction. This is shown
in Figure 1. Similarly, we have

_ 0 dg

r== (gl fal) g - I - Rl

and set o 5
(D e

== (sl fall) g + 1~ Rl 2.

The (self-)Gauss map provides a new interpretation of the decomposition.
We set

~lmas1) = 731, s2) R T (s, 52) — Ta(s2)lRn
HolF s F2) ) = e F ) B~ 2 (1) — Falsa) B
I Frs ) (51, 50) = [71(s1) = Ta(s2)lIgn 75 (s1,82) — T5(s1,52) I3n

B 2|1 f1(s1) — f2(52)||112§n B 2| f1(s1) — f2(52)||112v ,
(T1(51) — T1(51,52)) - (T2(52) — T5(51, 52))

2] f1(s1) — Fals2)lln

Mo (f1, f2)(s1,82) =



Ti(s1,52)

9(517 52)

71(81)

Figure 1: 71 and 73

The following, which is generalization of (1.1), was proven in [9].

Theorem 2.1 Each of #; is absolutely integrable on (R/L1Z) x (R/L2Z).
Thus, the following holds. Set

gi(flan):// Mi(f1, o) dsidss.
(R/L1Z)x (R/L2Z)

Then the decomposition

50(f17f2) = gl(flan) +52(f17f2)

holds. Further, all &; values are invariant under Maébius transformations.

The decomposition follows from

(2.1) la—d|*+lb—c|*=lla—c|?+[b—d|* +2(a—b) - (c - d).
‘We insert
o 7(s1) b T*(s1, $2)
2|l f(s51) — f(s2)[|rn ’ 2|l f(s1) — f(s2)[|rn ’
. 7(82) d 7*(81, 82)

T 2f(s) — Flsllee 2] f(s1) — Fs2) e

into (2.1). Consequently, we obtain

Mo(f) = A(F) + Ao(F).

The relation (2.1) is a variant of

(2.2) e +y)? - lz —y)? = 4z -y,



which is equivalent to the parallelogram law. Using g and its derivatives, the
energy densities can be written as

(11 "'2'9)
o1 F2) = 2\ f1 — f2||]12§n Hasl 852

R’n
(11— 72 '9) H
M , = )
a0 = e 3 o+ o
599 99
(fla f2) 851 8_82
Indeed, these follows from
T ~ (t1-9)g Jg T3 _ (12-9)g Jg

If1— fallen — If1 = Follee  3si” If1— Fallee  1fy — Follre  Os2

and the fact that g is perpendicular to its derivatives. This can also be referred
to as the parallelogram law as follows. The law gives us

1|[(r1—72) g 2 1‘(7’1—7'2)-9 2
—||—%g+o0 =—||-—F>g—o0 +0,
‘ 1F1 = Fallen? Rn [ £1 — fallrn R"
8_9 _ 991" _ dg dg
881 882 Rn N 881 882 Rn 881 882

The sum of the left-hand rides is ,///0( f1,f2), and that of the first terms of
the right-hand side is .#;(f;, f5). Simarly the sum of the second terms is

///2(f1a fz)
We set the angles ¢y and ¢ as

T1(81) - T5(81, $2) = T1(s1, 52) - T2(52) = cos po(s1, 52),
T1(s1) - T2(s2) = T7(s1,82) - T5(s1, 52) = cos p1(s1, s2).

Then, the following can be easily observed:

Corollary 2.1 [t holds that

1 — cos (po(Sl, 52)
Eo(f1,fo) = // dsydsa,
olf1 f2) ®R/1.2)x (R/Lo7) | F1(51) = Fa(s2)l[Fn e
1 — cos (pl(Sl, 52)
Ei(f, o) = // dsydsa,
i{f1: £2) (R/L1Z)% (R/LyZ) [ F1(s1) — f2(52)||n2w e

cos 1 (81, S2) — €os @o(s1, S2)
& , = // dsids
2(F1f2) R/L1Z)X (R/L3yZ) 1 f1(s1) — f2(52)||1%&n e

The statement for & is known as Doyle-Schuramm’s cosine formula. Here,
©o is the comformal angle, which is defined as follows. Let C15 be the oriented
circle tangent to Imf at f(s;) and passing through f(s2), and let Ca; be the
oriented circle tangent to Imf at f(s2) and passing through f(s1). The orien-
tation of Cj; is that of the tangent vector 7(s;) at f(s;). The angle between
Ci2 and Ci2 at f(s1) (also at f(sz2)) is thus obtained as . This is shown in
Figure 2.



g(s1,82) Ti(s1,52)
T1 (81)

A part of Im f,

Ti(s1,52)

%o (81, 82) (see Note below.)
x=__T2(S52

A part of Im f,

Note: g (s1,52) = cos™ (77 (s1, 52) - T2(52)),
because T2(s2) is also the tangent vector of C21 at fy(s2).

Figure 2: The conformal angle g

3 New formulation of the variational problem

The most important type of study is a variational stufy; however, the variational
formula is complex (Ishizeki-Nagasawa [6]). Thus, in this section, we propose
the following new formulation for this problem. As discussed in the previous
section, the second decomposed energy is expressed as:

(3.1) E(f) = //(R/LZ)2 (T —7i) (T2 = 73) dsydsa,

2/ f1 = fallgn

and

dg OJg
3.2 & = -2 —= . —=ds1ds
( ) Q(f) //(R/Lz)2 881 852 ! 2

using of g. The map g is used to define of 7}; however, it does not explicitly ap-
pear in (3.1). Hence, we refer to (3.1) as the indirect expression. This expression
yields the cosine formula. However, g appears explicitly in (3.2). Therefore, it is
called the direct expression. This indicates the relationship between the second
energy and wave maps.

Here, we consider the Mobius energy for knots. As it is invariant under
dilation, the total length is assumed to be 1.

As mentioned in the Introduction, the first energy &; is an analog of the
fractional harmonic map v : T — S"~!. Furthe, g is a map from T? = (R/Z)?
to S"~1. Now, we define the energy Es for these maps as

ow Ow
E = -2 — - —— ds1dss.
2(w) //W D51 O3y 51082



This represents the energy of wave map w : T3 — S"~!. Here, T3 is T?
equipped with the Lorenz metric.

We set the energy Fq by
// ||'U 81 SQ)H]R" ds dSQ.
o]

S

Then, by the decomposition of &,

&o(f) = E1(T) + Ea(g).

However, 7 and g is not independent of each other; thus, the relationship is
expressed as

g(s1,52) = Fls) = fs2) [} 7(s)ds
) ||f( ) ‘f(82)||Rn Hfss; T(S) s

/TT(S)dS =o0

We arrive at the following formulation: Find critical points

The closedness of f requires

E(v,w) = E1(v) + E2(w)
in the class

v T%S”‘l,/vds:o,w:']l‘2—>§"_l}
T

{ww

under the constraint

Jo)v(s)ds
e,

The expected advantages are the following.

w(sy, S2)

e The variational formulae may be easier to handle than the original energy
&o.

e There are certain contributions to topological constraints by use of the
self-Gauss map.

The second advantage is as follows. We have a similar decomposition of the
Mobius energy for 2-component-links (f;, f5). In this case, the Gauss map is

Fi(s1) — fa(s2)
[ £1(s1) = fa(s2)[rn




When n = 3, the mapping degree of g is the linking number

Ik(fy, fo) = degree(g // det(0s,9, 05,9, g) ds1dsz

Thus, the Gauss map includes the topological information of the link.
Simultaneously, there are several disadvantages.

e This is a variational problem with a non-local constraint.

e The question is, can we apply enormous results of harmonic maps to our
problem ? In other words, even if (v, w) is a critical points, then neither
v is a critical point of Fy, nor w is that of Fs.

However, the new formulation still provides many ingredient from harmonic
map theory to the Mobius theory.

4 Related open problem

We have discussed the Mobius energy for knots and 2-component links. Consider
the energy for m-component, where m = 3. Freedman-He-Wang in [4] proposed

g(m)(fp"'v.fm): Z E(fivfj)
15i<jSm

Because this is the sum energies of 2-component links, it is Mdbius invariant
and decomposable.
The energy

5(m)(f17"‘ F) =

o ds,,

/] Moo 7o o

is also Mobius invariant. This fact follows from the M&bius-invariant property
of the cross ratio. However, the decomposability is uncertain.
The Brascamp-Lieb inequality implies that:

m m(wz ) m
EMfr ) S TT {e@Uns)} T SEMF L F)
1Si<j<m
Hence, to study the decomposability, it is reduced to that of

g(m)(f17"' hfm)_g(m)(flv”' 7fm)'

However, this seems to be an open problem.

3o
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