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1 Introduction

In this paper, we consider a three dimensional model for grain boundary motion with
time-dependent external forces as follows:

System (P)
(O — An+g(n) +(n)|[Vu] = fo  in Q:=(0,00) x Q,
Vn-npr =0 on ¥ := (0,00) x 01,

(1(0,2) = no(z) for z € Q.

)

o = my (div (a(n)% + /@2Vu> + f) in Q,

<a(n)% + K/QVu) np =0 on X := (0,00) x 09,
for x € Q.

\u(O, x) = up(x)

Here N € N, 1 < M € N, £ > 0 are fixed constants, Q C R" is a bounded domain
with Lipschitz boundary 99, nr is the unit normal vector on 9Q. [, u] € R x RM is a
pair of unknown functions to (P). g, o, fo are R-valued given functions, f is an R*-valued
given function. 7y is the projection onto the tangent space at u € SM=1, ie.,

oW :=w — (w-u)u, for we&RM.

*This author is supported by Grant-in-Aid No. 20K03696, 21K03312, JSPS.
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The second equation in (P) is formally derived by the constrained L?-gradient descent
flow:

Ju OF
S € T <5—u(r/,u) + f>

of the following energy functional F:

Free-energy:
[n,u] € L*(Q) x L RY) = F(n, u)

1 12
—/ |V7]|2d:1:—|—/G(n)dx+/a(n)|Vu|dx+K—/ |Vul|? da,
2 Jo Q Q 2 Ja
= if ne H'(Q) and ue H(Q:RM), (1.1)
+00, otherwise;

under the range constrained condition u € S¥~!. Here G is a primitive function of g.

The unknown functions 1 and u describe the orientation order and the orientation
in a polycrystal, respectively. If M = 4, u is an element of the 3-dimensional sphere S3
corresponding to a 3-dimensional rotation using the quaternion representation.

In [12], the authors proposed a model for grain boundary motion in the three dimen-
sional case as an extension of the two dimensional Kobayashi-Warren-Carter model [13].
In the model, there are two unknowns: 0 < 7 < 1 and u representing, respectively, the
orientation order (0 being the value for a totally disordered phase and 1 the one for a
totally ordered phase) and the orientation, i.e., an element in the space of rotations in
R3: SO(3). Considering a quaternion representation for rotations, and after identifying
quaternions with elements in the unit hypersphere S* in R*, we formulated (P) as the
constrained L?-gradient descent flow of the energy functional F under u € S¥~! in [16].
The flow is constrained to the fact that the orientation u needs to be in the unit hyper-
sphere. In fact, the projection onto the tangent space at u € S~ in the equation for u
ensures that |u(t)| = 1 if |ug| = 1.

The problem (P) without forcing terms, Moll-Shirakawa—W. [16] proved the existence
of solutions [n,u] on any finite interval (0,7), satisfying 0 < n < 1, |u] = 1 a.e. in
Q x (0,7). In addition, Moll-Shirakawa—W. [17] considered an external time-dependent
forcing [fo, f] in the system, for both unknown functions [, u] and formulated the system
as the L2-gradient descent flow of the free energy with forcing. We note that, due to the
presence of an external forcing in the equation for 7, the condition 0 < n < 1 as in [16,
Section 3] cannot be anymore guaranteed. Then, we allow that n € R and we interpret
its values as n > 1 means that the phase is totally ordered and n < 0 means a totally
disordered phase.

The purpose of this paper is to introduce the results in Moll-Shirakawa—W. [16, 17].
In particular, we provide outline of the proof of global existence of solutions to system ( P)
and an invariance principle for the solutions. In Section 2, we prepare some mathematical
tools. In Section 3, we explain a derivation of the model. In Section 4, we introduce
assumptions and the Main results. In Section 5, we prepare an approximating system for
(P). We approximate the constraint [u| = 1 via a Ginzburg-Landau type penalization on
the free energy (with a parameter ¢). Then, we smooth out the singularity of the Euclidean
norm | - | with the approximation \/e?+ |- |?. Finally, in order to obtain continuity of
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the solutions for proving an invariance principle, we also add an N-laplacian term to the
energy with parameter v. Existence and uniqueness of solutions to the approximating
system is obtained via the use of nonlinear semigroup theory. In Section 6, together with
the results in Section 5, we are able to pass to the limit in the weak formulation of the
system first with 6 — 0%, thus recovering the constraint |u| = 1. For the limit with v — 0
and € — 0, we only show the results. Meanwhile, we obtain an invariance principle for
some particular cases of initial data uy and forcings f.

2 Preliminaries

2.1 Multi-vectors

In this subsection, we recall some definitions and basic properties about multi-vectors that
we need in our analysis. We refer to e.g. [11, Chapter 1] and [8, Chapter 1] for details.
Let m € N. The spaces Ag(R™) and A;(R™) are defined as

A()(Rm) =R and Al(Rm) = Rm,

respectively. For any integer 2 < k < m, the k-th exterior power of R™, denoted by
Ax(R™), is defined as a set spanned by generators; i.e elements of the form

wmA- AW, w,eR™ i=1,... k.
Generators are subject to the following rules:
(av+bw) Aug A~ Aug=a(VAug A Aug) +b(wAug A Auy);

u; A -+ - A ug changes sign if two entries are transposed;

for any basis {ey,...,e,} of R™, the set )
{ea:=€u N Neg, |a=]ar,..., ] € I(k,m) }
forms the basis of Ax(R™), where > (2.1)
I(k,m) ::{ a=la,...,op) €ZF |1§a1 <---<ap<m }

/

The elements of Ag(R™) are called multi-vectors (or k-vectors), and Agx(R™) is a vec-
tor space of dimension <’]’;) Given k,¢ € {0,...,m} with k + ¢ < m, there exists a
unique bilinear map (X, ) — AA p from Ag(R™) X Ay(R™) to Agyo(R™), whose effect on
generators is

(W Aug Ao Aug) A(VIAVREA AV =u Aug A~ Aup Avi AvVva A A vy

There is an isomorphism between Ag(R™) and A,,_x(R™), called the Hodge-star oper-
ator:
() Ag(R™) 2 X — A € N\, (R™),



which is defined on the basis as

w(€q, N Neg) i =€q  N--Neg,, (22)
for all permutations {ay,...,a,} of {1,...,m}, having positive signature. '

In particular, in what follows we will systematically identify A,,_;(R™) with R™ and
A (R™) with R. We will use the following well known formulas (see e.g. [8, (1.64)] and
8, Table 1.2]) :

£(xA) = (=DFMPX " for all A € Ap(R™), (2.3)

and
aA*x(bAc)=(a-c)x*b—(a-b)xc in R™ (= A,,_1(R™)),

for all a,b,c € R™ (= A;(R™)).

We next introduce the inner product on A, (R™). Given two generators A = Aj A ... A Ay,
w=pqy A...N\ py, we define

(N )i = det (N, )t iy) - (2.5)

The inner product on Ag(R™) is an extension by linearity of this definition. Then, we
easily see that

(2.4)

CWHED VT (2.6)
Moreover,
A= ANE= | 3 AP| . where A= 3 Ae. (2.7)
acl(k,m) acl(km)

2.2 Vector valued functions

Let X be a Banach space with dual X’ and let V C R¢ be a bounded open set endowed
with the Lebesgue measure £¢. A function u : V — X is called simple if there exist
r1,...,x, € X and V4,...,V, L™-measurable subsets of V such that v = Y\ z;xv;.
The function w is called strongly measurable if there exists a sequence of simple functions
{un} such that ||u,(z) —u(z)||x — 0asn — 4oo for almost allz € V. If 1 < p < oo, then
LP(V; X) stands for the space of (equivalence classes of) strongly measurable functions

u:V — X with )
Nl Leqvix) = (/VHu(x)Hg( dx) < 0.

Endowed with this norm, LP(V; X) is is a Banach space. For p = oo, the symbol L>(V; X)
stands for the space of (equivalence classes of) strongly measurable functions u : V' — X
such that

ullpeevix) = esssup{|lu(z)||x : z € V} < oo

IfV =(0,T) with 0 < T < o0, we write LP(0,7; X) = LP((0,T); X). For 1 <p < o0,
LP(0,T; X") (5 + 5 = 1) is isometric to a subspace of (LP(0, T; X))', with equality if and
only if X’ has the Radon-Nikodym property (see for instance [9]).

We consider the vector space D(V;X) := C§°(V; X), endowed with the topology

for which a sequence ¢, — 0 as n — +oo if there exists K C V compact such that
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supp(¢n) € K for any n € N and D%, — 0 uniformly on K as n — +oo for all
multi-index a. We denote by D'(V; X) the space of distributions on V' with values in
X; that is, the set of all linear continuous maps 7" : D(V; X) — R. As is well known,
LP(V; X) C D'(V; X) through the standard continuous injection. Given T € D'(V; X),
the distributional derivative of T is defined by

(DT, @) .= —(T,0;p) forany ¢ € D(V;X) and any i € {1,...,d}. (2.8)

General notations for matrices. Let d,m € N. If A = [aﬂ = [aﬂ 1<t<m € R™is an m x d
1<k<d

matrix, we write
al=1[af,.. . a}] €R? for (=1,....m,
ap="'ai,...,alr] €eR™ fork=1,...,d.

If B=[bi] = [bﬂ 1<t<m € R™ is also an m x d matrix, we let
1<k<d

A:B=>"Y"afdf and yA\:<A;A)é:<ZZ(a§;)2>.

(=1 k=1 (=1 k=1
Given A = [al,...,am] € R™™ with a, € RY, i =1,...,m, and b € R?, we let
AAb = (ayAb,...,a, Ab),
x(AADb) = (x(ajAb),...,*(a, ADb)).

2.3 Multi-vector fields

Let d,m € N. Let V C R? be a bounded open set. A multi-vector distribution in U is a
linear continuous map A € D'(U; Ax(R™)) (see §2.2). It may be expressed in terms of the
basis (2.1) as
A= Y Me,, with X\, € D'(ViR™) for any o € I(k,m).
acl(k,m)
Then, according to (2.8),
Dix= > Dile, foranyic{l,... d}. (2.9)
acl(k,m)
From (2.9), the following two identities are easily seen to hold for k,¢ € N and ¢ €
{1,...,d}:
for any A € L*(V; A(R™)) such that D;X\ € L*(V; A,(R™)) and any 1 € L*(V; Ao(R™))
such that D;n € L*(V; Ay(R™));
*(D;A) = D;(xA) for any A € D'(U; Ap(R™)). (2.11)
For any k € N, [A;(R™)]™ is a Banach space with the norm

Al ia @y == <Z !Mﬁ) , for A= (A, Ay)
i=1

with | - |x given by (2.7).



3 Derivation of the model

In [12] the authors generalized the existing two dimensional model by Kobayashi et al
[13, 14] to the case of 3D-crystals. In essence, it consists in the L%-gradient descent flow
of the following energy functional:

6 € QP = 5 [ Vo o+ [ Gloda
+/Qa(77)]V«9]dx+%/Q]V«9]2daze 0,00,

The unknowns 1 = n(t,x) and 6 = (¢, x) represent, respectively, the “orientation order”
and the “orientation angle” in a polycrystal. n = 1 corresponds to a completely ordered
state while n = 0 corresponds to the state where no meaningful value of mean orienta-
tion exists. « is a nonnegative function corresponding to the spatial mobility of grain
boundaries while G is a single well potential ensuring that only the ordered state n = 1
is stable.

In order to generalize the model, one needs to consider orientations in 3D and mis-
orientations, since the term |V6| represents the misorientation on a short scale. In 3D
case, orientations are elements of SO(3) which is the special orthogonal group in R3.
In [12], the term |V6] is substituted by the corresponding Euclidean norm in R?; i.e.

1
|VP||re := (Zijzl |Vpi,j|2> *for P = [pijli;j- Then, one has to compute the gradient
descent flow for the constrained energy under P € SO(3), thus ensuring that the solutions
for the orientation variable still belong to SO(3).

In [19, 20], instead, a quaternion representation is used for SO(3). Since quaternions
can be identified as elements in the unit sphere S? in R*, the authors replaced the terlln
|V6| by the Euclidean norm of the gradient of the quaternion: i.e. |Vq| := (320_, |V¢i]?)?,
forq=(¢".¢",¢*,¢") € S*.

We take the point of view of [19, 20] and we consider the energy functional (1.1)
constrained to functions with values in the unit sphere S¥~! of RM with 1 < M € N.
The system (P) has the projection onto the tangent space at u € S¥~!. Through the
following formal calculation, we get the representation of the projection:

- (%Aa(@\Vu]dw—kf)
_ div ( (n )|§E|> Lfo (div (a(n)é—zo -u)u—(f-u)u

=div |« vu a ujlu— (f-u)u
—d (()W |)+f+<>|V| (- wu.

Here, we computed that

v (o) ~u =i (a0 gn) —a gy v

Moreover, we note that (*Vu)u=0 by u € S¥! and Vu: Vu = |Vu|?.
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4 Assumptions and Main Theorems

We start with setting up the assumptions in the principal part of this paper. The as-
sumptions also fix the notations in the system (P), and in its approximating problems.
(A0) 1< NeN 1<MEeN,and k> 0.

(A1) Q ¢ RY is a bounded domain with Lipschitz boundary I' := 9Q and unit outer
normal nr. We use the following notation:

H:=L*Q), X:= L*(;RM), ¥x:= HxX,
Vi=HYQ), W:= H'(OQ;RM), 2=V x W.
(A2) g € CY(R) is a fixed Lipschitz function such that g has a potential 0 < G € C*(R),
ie. G'(s) = LG(s) = g(s) on R. Moreover, g satisfies that

liminf g(s) = —oo and limsup g(s) = oo.
§——00 s§—00

(A3) 0 < a € C?*(R) is such that
e &/(0) =0, o =20onR, and a and aa’ are Lipschitz continuous on R.
e o :=inf(R) > 0.

(A4) For any € > 0, 7. : RMN — [0, 00) is a continuous convex function, defined as

Ve - W = [wf;] 1<e<m € RMN — ’}/5<W) = \/82 + |W|2 € R.

1<k<N

(A5) For any § > 0, II; € C*(RM) is the following function:
1 2 2

= —(w|" =1 R.
(W - 1%

We let w; € CH(RM; RM) be the gradient of I, i.e.:

_!
"5

I : w € RM — Tlz(w) :

ws: w € RM s ws(w) = VIIs(w) (jwl]* = 1)w € RM.

(A6) §:= [fo,f] € L. ([0,00); X) is a fixed pair of forcings with fo € L>(Q) and f =
[f17 R fM] S L120c([07 OO)7X)

(A7) Uy := [no,up) € L=(2) x X is a fixed pair of initial data.

Remark 4.1. From its definition, it immediately follows that v, : RMY — [0,00), € >0,
are non-expansive over RMY. Also, if € > 0, then 7. € C®(RMY) and if ¢ = 0, then
the corresponding function 7y coincides with the (Euclidean) norm || - ||gmy on RMY,

Additionally,
w
— (=[V](W)), ife>0,

Sgn N (W), if e =0,

0’)/5(W) = for all W = [wﬂ 1<e<m € RMN

1<k<N



MN . . . .
where Sgn™ : RMN 5 9R™™ i5 the sign function on RMN i.e.

w
{am b it £ 0,
SgnM7N(W) = |W| for all W = [wk} 1<esm € RMN,
~ ~ ~ 1<k<N
{Ww|w.w<1}, ifw=0,
Next, we define the notion of solutions to our system (P).

Definition 4.1. A pair of functions U := [n,u] € L2 ([0, 00); X) is called a solution to
the system (P), if
{U = [ u] € WiZ([0,00): %) N L5, (0, 00:20), )

n€ L®(Q) and u € SM~1 ae. in Q,

(@m(t) + g(n()) + o/ )| Vu(t)], ), + (Vn(t), Vi) ;= (fo(t),9) . (4.2)

for any ¢ € V, a.e. t >0, subject to n(0) =no in H;
and there exist functions B € L>°(Q; RMY) and u € L] ([0, 00); L'(2)), such that
B e Sgn™Y(Vu) in RMV,
& (V) a.e. in @, (4.3a)
w = (a(n)B + k*Vu) : Vu = a(n)|Vu| + £?|Vu|?,

/ ona(t) - de + /Q( (n(t)B(t) + k*Vu(t)) : Vip do = /ﬂu(t)u(t) b dx
+ /Q(f(t) — (f-u)(t)u(t)) - ¢ dz for any ¢ € C'(Q;RM), (4.3b)

a.e. t >0, subject to u(0) = up in X.

Next, we state the main results of this paper.

Main Theorem 1. Assume (A0)—(A7), and that Uy = [no, ug] € W with ug € S~ in
Q. Then, the system (P) admits at least one solution U = [n,u] € L% ([0, +0); X), such
that

Fom)+ 3 [ v < )y [0 jor air o

where F is the energy given by (1.1). Also, concerning the function B* € L>(Q; RMY) in
(4.3), it holds that

div(a(n)B* + x2Vu) € L ([0, 00); L' (€ RM)),
div(a(n)B* + k2Vu) Au € L ([0, 00); L*(Q; Ao (RM)).

Moreover, if §f = [fo,f] € L=(Q) x [L=(Q)]M and there exists po € SM~t such that
ug € By(po; R), with R < % and that % € By(po; R), |f|-a.e., then

u € By(po; R), a.e. in Q, for all t € [0,+00). (4.4)

Here, B,(po; R) is the open ball on SM~1 of centre py and radius R.
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To state next result, we define the w-limit set w(U) of a solution U = [n, u] given by
Main Theorem 1, as follows:

oo, and U(t,) = [n(t,),u(t,)] — U = [7,10] in X, as
n — oo.

~ there exists a sequence {t,}>2; C (0, 00), such that ¢, T
wlU): =1 U=[n,0 €W ]

Main Theorem 2. In addition to the assumptions in Main Theorem 1, let us assume
the following condition:

(A8) There exists a pair of function §° = [fg°,£*°] € X with £ = [f,..., f] € X,
such that f— = € L*(0, 00; X).

Then, the w-limit set w(U) is nonempty and compact in X, and moreover, any w-limit
point U = [, u*] € w(U) solves the following variational system:

(9(>) + o' (n™)[Vu™©], ), + (Vn™, V), = (f5°.9) for any o € V;

e e = [ (4.5)
+ /Q(foo — (£ -u®)u™) -y dr, for any ¢ € CH(GRM),
with B € L*(Q;RMY) and p> € L1(Q), fulfilling
B> € Sgn™(Vu>) in RMN,
{M‘” = (i(n)l’ﬁ‘io + KZVuo") cvue, in 2. (4.5b)

In the case of no forcing in the orientation variable, and under a smallness assumption
on the datum ugy, we can characterize the w-limit set.

Main Theorem 3. (Large-time behavior in the homogeneous case) In addition
to the assumptions as in Main Theorem 1, we assume that f = 0 and that there exists
po € SM71 such that ug € By(po; R), with 0 < R < T- Then, it holds that, there erists
T* € [0, +00) such that

/ dist,(u(t, ), pe(t))*dr — 0, ast 1 T,
Q

where p.(t) is the Barycenter of = u(t)iLY, i.e. the minimizer of

1

peSY !l U, (p) = 5/ dist, (-, p)*dp.
S]\/f—l

In [1, Theorem 2.1.] it is proved that a unique center of mass exists for any Radon
measure on By(pg, R) for R < 7 and we have

expr_,c1 dp, (4.6)

0= dt,(p.) = |

Bg(po,R)

where exp;cl: By(pe, Z) = Tp.SM ! denotes the logarithmic map at pe.
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Remark 4.2. Taking into account Main Theorems 2 and 3, we can say that if f = 0, then
the component u® of any w-limit point is constant over €2 and that u® is reached the
constant in finite time in case the range of the initial datum g, possibly after a rotation,
is in the open hyperoctant of SM~1.

In this paper, we show outline of the proof of Main Theorem 1 only. For the proofs of
Main Theorem 2 and 3, please see Moll-Shirakawa-W. [17].

5 Approximating problem

In this section, we consider the approximating problem to our system (P). Let us assume
(A0)—(A7), and fix constants € > 0, 6 > 0, and v > 0. On this basis, the approximating
problem consists in the following system of parabolic PDEs:

Problem (P)*

e,v,0

(0m — An+g(n) + o/ (n)7.(Vu) = fo in Q,
Vn-np =0 on X,
(7(0,2) = no(x), z €
(Ou — div (a(n)07.(Vu) + £2Vu+v|pVu[N1vVu) + ws(u) o f in Q,

((n)07=(Vu) + £2Vutv|vVuN 1vVu)nr 50 on X,
u(0,x) =ug(x), z € Q.

The approximating problem (P)Z,
energy, which is defined as:

El/c) U = [77» ] EXr— f:u,d'(U) = ‘/_-:,1/76(777 u)
= ‘IJO(U) + \IIE rxé(U) = ‘IJO(U) + \Ij;y,é(nvu)a

is derived as a gradient descent flow of a free

with
\I/()Z HGD(\IJQ) VCH|—>\110 = /\Vn\de—F/G
and

) a € LY RM)) and
\Ilslxé U= [7]7 ] S D(\ijué) = { [n’ < w‘ uc wh N+1(Q)RM)

U, (U) = UE, () = / a(p)e(Vu) de + / Vul?da

N+1/|qu|N+1d:L’+/HO( )dz € [0, 00).

Definition 5.1. A pair of functions U := [n,u] € L% _(]0,00); X) is called a solution to
the system (P)Z, ;, if and only if

U = [n.u] € W.2([0,00); X) N L2, (0, 00; 2); (5.1)
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(G (t) + g(n(t)) + &/ (n(t)=(Vu(t), ) + (Vn(t), Vo), = (fo(t), 0)m, (5.2)
for any ¢ € V, a.e. t > 0, subject to n(0) =y in H;

and there exists B* € L*>(Q; RMY), such that

B* € 07.(Vu) in RMY ae. in Q,

(&u(t) — %u(t),@b)x + /Q(Oz(n(t))[j*(t) + £*Vu) : Vp dz

1
+u/ lvVu(t)|Nwvu(t) - Vap do + 5/ lu(t)|?u(t) - ¢ doe = (f(t),zp)x,
Q Q
for any ¥ € WHNHLHQ; RM) a.e. t > 0, subject to u(0) = ug in X.

Additionally, we note that our approximating system (P)Z, ; can be reformulated as
the following Cauchy problem of evolution equations in the Hilbert space X:

Cauchy problem (CP)*

£,U,0

U'(t) + 09, (U) +G5(U(@)) >§(t) in X, >0,
U(0) =Up in X.

In this context, “’” denotes the time-derivative 47 of an X-valued function (in time).
dt

For every k,e,v,0 > 0, @7, 5 : X — [0,00] is a proper Ls.c. and convex function, defined
as follows:

U= [nu] € D(®L,5)C X

= (I)f ué(U) = (I)a 0 777 . / |V7]|2 dl’—|—

51/5

/ wuMdr  (5.3)

+%/H <mE(Vu)+%a(n)) dx+—/ [ul*dz € [0, ),

and G§ : X — X is a non-monotone perturbation, given by

G+ U=l € X GH(U) = G0 = | g0n) — o/, —u | e

K2

The solution to (CP)~

&V,

equations (cf. [3, 4, 6]).

5 is defined on the basis of the general theory of nonlinear evolution

Definition 5.2. A function U € Lloc([O, 00); X) is called a solution to the Cauchy problem
(CP):, 5, if and only if U € Wi2([0, 00); X), @, 4(U) € L¥(0, 50), and U satisfies

(U'(t) + G5 (U() — W), +2%,5(U(1)
<07, (W ) (()7U(t) W)y, for any W € D(®Z,,;),

with the initial condition U(0) = Uj in X.
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Remark 5.1. Assumptions (A2) and (A3) guarantee the Lipschitz continuity of the per-
turbation G§. Hence, the well-posedness of the Cauchy problem (CP)% , ; is immediately
verified by means of the general theory of nonlinear evolution equations, such as [6, 4].
Moreover, we will observe the continuous dependence of solution with respect to € > 0,
0 >0,v >0, and K > 0, by means of the general theory of operator-convergence as in
2, 18].

Now, on account of Remark 5.1 and the previous works [16, Theorems 1 and 2], we
immediately obtain the following proposition.

Proposition 5.1 ([17, Proposition 4.4]). Let us assume (A0)-(A7), and let us fix the
constants ¢ > 0, 6 > 0, v > 0. Additionally, we assume that uy € L*(;RM) and
vug € WHNTLHQ:RM) | for the component ug of the initial data Uy = [no, ug]. Then, the
following items hold:

(O) The system (P):, s is equivalent to the Cauchy problem (CP):

ev,0°

(I) The system (P)¢, s admits a unique solution U = [n,u] € L} ([0, 00); X), such that

U = [n,u] € W.22([0, 00); ) N L2, (0, 00; 20),

loc loc

vu € LT[0, 00); WHNHL(Q; RM)).

loc

(5.4)

(A1) let {en}pZy C [0,00), {0n}7Zy C (0,00), {vn}nZy C [0,00), and {kn}7Z, C (0,00)
be sequences of constants, such that

t

[Kns Ens Unsy On] = [K,6,1,0] in RY, as n — oo. (5.

Let Uy = [no,ug] € W be the initial datum as in (A7), and let {Upn}oe, =
{[M0m, Won) }52, C W with vy, € LYLRM) and {vaug,} € WHTHQRM) be
a sequence of initial data satisfying

)

Uon = [Nons on] = Uy = Mo, wo] in X, and weakly in 20, (5.6)

and vpug, — vug weakly in WHNTHQ: RM)  as n — oo.

Let U = [n,u] € L}, ([0, 00); X) be the solution to the system (P): 5. Also, for any
n €N, let U, = [nn,u,] € L2 .([0,00); X) be the solution to the system (P):"

loc €nyVn,0n

corresponding to the initial data Uy, = [1on, Won] € 0. Then,
Un = [, 0] = U = [n,u] in Cioe([0,00); X), in L2 ([0, 00); 20),

loc

weakly in W,22([0,00); %), and weakly-+ in L2,(0, co; 20), (5.7)

loc loc

and vpu, — vu in LY [0, 00); WENHLH(Q; RM)), as n — oo.

Moreover, we can prove the following theorem, concerned with the L*°-boundedness
of the component 7.

Theorem 1 ([17, Theorem 4.5]). Under the assumptions (A0)-(A7), let us assume € > 0,
§>0,v>0,u € LY(URM) and vuy € WIHNH(Q:RM). Let 0, > 0 be a positive
constant such that

| folze@) < 0w, g(—=04) < =|folz=@) and g(o.) > | folr=(q)- (5.8)

Then, for the component 1) of the solution to (P)Z, ; given by Proposition 5.1, it holds
that
| <o, ae inQ.
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6 Outline of the proof of Main Theorem 1

In this section, we show outline of the proof of Main Theorem 1. To see this, we take the
limit in (P)Z 5 as 0, v, € — 0, respectively.

At first, we show an energy inequality for 7 s and a priori estimates for the approx-
imating solutions.

6.1 An energy inequality and a priori estimates

Lemma 6.1 (ref. [17, Lemma 5.1], cf. [16, Lemma 5]). Let Uy = [no,uo] € 20, with
u € LY(OQ;RM), vug € WV, RM) and U, 5 == 1.5, U1 5] be a solution to (P)E, 5
Then, U, , s satisfies the following energy inequality:

1 (7 1 (7
SsUews(D) + 3 / 10U (O dt < T 5(Uo) 45 / Ol (61)

for all T' > 0. Moreover, it follows that

Uevs € Wi2((0,00): X) N LiS, (0, 00;20) N L2(Q) x L(Q; RM), 62)
6.2
KV s € L2 (0,00; L*(;RMYY)), vVu., 5 € L2 (0, 00; LN (Q; RMY)),
and
—1 2 2 K 1 g 2
0 [Juesl* = 1||L<>°(O7T;H) < f57y,5(Uo)+§ i |[F()[xdt, (6.3)
for all T > 0, and
||O‘(775,y,6)[v%](vus,u,d)||Loo(Q;RMN) S Ca (64)

for some C' > 0, independent of ¢, v, d.

Lemma 6.2 (ref. [17, Lemma 5.2], cf. [16, Lemma 6]). If [uy| < 1 a.e. in Q and
f e L>(Q;RY), then solutions u.,;s to (P),; satisfy |u.,s| < Cs a.e. in Q, where
Cs := max{||f|[L~(@mrm), V1+ 0} for any 0 < < 1.

At the end of this subsection, we introduce a compactness result which can be proved
as [7, Theorem 2.1] and [15, Lemma 9] by using the fact that the operator

div ((1e6)[VI (V) + 57(V) + 7V - [N (V)

is uniformly elliptic. We omit the proof of the following lemma, since it is quite similar
to [5, Lemma 2.2].

Lemma 6.3. Let ¢ > 0, v > 0 and k > 0 be fized. Let {w.,;}s~0 be bounded in
Wi (0,00;X) N LiS.(0,00; W), {n.s}as0 be bounded in Wi(0,00; H) NLES,(0, 005 V)N

L>®(Q), and {h.,s}s~0 be bounded in Li,.(0,00; L'(Q;RM)) uniformly in 4, respectively.

loc

Suppose that they satisfy the equation, for o > 0, a.e. in Q
atwe’:‘,l/,6 — div (O‘(ns,u,é)[vr}/s](v Wa,u,é) + KQVWE,I/,(; + V|VVWE,I/,(5|N_1VVWE,V,6) = ha,u,é )

in the sense of distributions. Then {W.,,s}s-0 is precompact in L} (0, o00; Wh(Q; RM))
foralll <q<2.

We use Lemma 6.3 to take the limit in (P)Z, ; as ¢ — 0. When we take the limit as
v — 0 and € — 0, we use similar compactness lemmas (ref. [17, Lemma 5.3, 5.4], cf. [16,
Lemma 8, 9]).
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6.2 The limit as 6 — 0

In this subsection we study the limit problem, as 6 — 0, in (P);V’é, assuming 0 < € < gg
for some g9 > 0; i.e. we solve the following problem. Note that the dependence on k is
not anymore needed or used. Therefore, we remove it.

Problem (P).,,

Oew — Ao + 9(Ne) + &' (12)7: (V) = fo in Q,

Ve, -np =0 on X,

New(0,2) = mo(x), © €

rﬁtug,y —div(a(n.,) [V7](Vu.,) + 2Vu., + v[vVu., [N vVu,,)
= ftepteytf — (£ u-,)u., in @,

(@) [V (V) + £2Vu., + v[vVu., [N 'wVu., )nr = 0 on I,

\uw((),a:) =ug(x), x €

together with
per = (a(n.,) [V (Vu,) + k*Vu,, +vlvVu,, |V 'vVu.,) : Vu.,, ae. in Q.

And we use the following energy functional:

(1
§/|V77|2dx+/G(n)d:r+/a(n) €2 + |Vul2dx
Q) Q Q

1 N+1 “2/ 2
—_— d — d
Fou(n u) = +N+1/Q]VVu\ T+ Q]Vu] x,
if e H'(Q) and u e H'(Q;RM) with |u] =1,

| +oo, otherwise.

Theorem 2 (ref. [17, Theorem 5.7], cf. [16, Theorem 3]). Let Uy = [no, uo] € W with
vuy € WL RM), Jug| = 1 in Q and £ € L®(Q;RM). Then, there exists U., =
e, 0] € Cioe([0,00); X) such that U, satisfies (P)., in the sense of distributions and

Uzr € Wi ([0,00); %) N L5, (0,00;20) N L=(Q) x L>(Q; RM),
K*Vu., € L0, 00; L2(Q;RMNY)) | vVu., € L2 (0, 00; LNTHQ; RMNY), (6.5)

lu.,| =1 ae inQ,

and

T T
FoslUea) 45 [ 1000 30 < Rl [ iR (60

1 T
< feo,y(Uo)+§/ 15|12t for all T > 0,
0
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‘ ‘ a(Ne) [V (V)

where the constant C' > 0 is independent of €.

re(rmny < O (6.7)
2
div ( (1) [Vl (V) + 5V, )

+v|vVu, [NV,

< C, (6.8)

Ll20c (0,00; L1 (£;RM))

<C, (6.9)

L2 (0,00;L2(QA2(RM)))

N (( a(1.,) [V (Vu.,) + 5V, ) A u)

+v|vVu. [NV,

Proof. For 0 < § < 1, we take
Cs := max{||f||Logrm), V1 + 0} and C) := max{|[f]| ~rm), V2}.
Since |ug| = 1, we observe that II5(ug) = 0. Hence,

‘FE V5(UO) f&l/(UO) < on,I/(UO) =. C < +OO

Having in mind the energy inequality (6.1), the uniform estimates (6.2)—(6.3) and the max-
imum principle |u. 5| < Cs < Cy on Q, it follows that there exist a subsequence {U. s, }n
and a function U, € Cje.([0, 00); X)N I/Vllaf([Q 00); X) N L52,(0, 00; )N L2(Q) x L®(Q; RM)
such that

Ucvs, = Uy in Cye ([0, 00); X), weakly in W’llaf([o >0); X),
(0, 00;20),
(0, 00; WHNFL(Q; RM)),

weakly- * in Lf°

loc

(6.10)
V.5, — VU,  weakly- x in Lp}

loc

| [uews,| =1 strongly in L2 (0, 00; H),

as n — oo by the Aubin type compactness theorem [21, Corollary 4]. Then, we also see
that
lu.,| =1 ae. in@. (6.11)

By |u.,s| < C; in @, the Lebesgue dominated convergence theorem implies that
u.,;5 — u., stronglyin Ly (0,00; L"(Q;RM)) asn — oo, (6.12)

for all r € [1, 00).

Let I be any bounded open interval such that I CC (0,00). By |u.,s| < Cyin Q
again, we can show that

//ywé (Wers) ydmt<—// N 2dxdt+—//]1 ey 52| Pl

By (6.3), the first term of right-hand side is uniformly bounded with respect to §. To
estimate the second term, we take a sequence {sgn,(r)},~0 C C*(R) satisfying

sgn, (r) — sgn(r) aso — 0, sgn (r) >0,
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for all » > 0. Multiplying both sides of the equation of u. , ; by u., s, integrating by parts
and applying the Holder inequality, and (A6), (6.1), (6.2), (6.4), we see that

1
5 [ 5ot = )0 s PP
I1JQ
< ||atus,u.6 || L2(I;X) Hua,u,é HL2(1;X) + | |f| ’Ll([;Ll(Q;RM)) | ’ua,u,é | |L°°(I;L°°(S2;RM))
" / / (@(e,5) [V (Ve y5) + K2V 5+ 00V 6V Ve, 5)
1Ja

s (sgny (1 — Jue s/ Vue,5 — 2sgn’ (1 — u,5/H)u. 5 @ U, sVue,s)dodt
< ||at115,u.5 || L2(I;X) Hua,r/,6HL2([;X) + | |f| ’Ll (L;LY (S;RM)) | ’ua,l/,5| |L°°(I;L°°(&2;RM))
+ [[a(Me,0.6) [V (Ve )| Lo (I;L>° (Q;RMNY)) HvuswHLl(I;Ll(Q;RMN))
+ H"fvusuéHLz(z L2(RMN)) T HVVUwéHLN+1(1 LN+L(RMN)) < OO

Also, the Lebesgue dominated convergence theorem implies that

/ / st (1= [ty 52 (1 = [ty s|2)[te s Pt — / / 11— [ g2l [t 2,
I1JQ 1JQ

as 0 — 0. Hence, h.,; := —ws(u-,s)+f is uniformly bounded with respect to ¢ in
L} (0, 00; L' (€; RM)). Therefore, we can apply Lemma 6.3 to get
Vu.,,s — Vu., stronglyin L (0,00; LY(Q;RMY)) asn — oo, (6.13)

for all ¢ € [1,2). The above convergence, (6.4) and (6.10) imply that

O‘(na,u,én)[V’YE](vusw,én) - a(ns,V)[v%](vuaV) (6.14)
weakly- * in L=(Q; R™Y), as n — oo.

Next, we use wedge product technique. Taking the wedge product of the equation of
u., s with u., 4, it follows that

atug,y,(? A ug,u,é_div<(a(ns,u,6) I:V,‘)/E:I (vuz,y,5)
+ K2V, stv vV, [N T oV s) Aue,s) = F A (6.15)
Here we note that
div(((n-,5) [V (Ve ) + K2Vu.,s+v[vVue,s| VoV, ,s)) Aue,s
= div((a(ns,u,é)[VWE](vus,uﬁ) + HQVUE,V,5+V|VVUE,V,6|N_1yvug,u,5) A ug,u,ﬁ)
by (2.10) and v Av = 0 for any v € RM. Integration both side of (6.15) on I x ©, and
Setting 0 = §,, and letting n — oo, we get
//{ (e, Aue ), w)s + Z a(1:) [V (0z,u:,) (6.16)
+ K20, u. +vivVu, [N o, ) Ay, 0p,w) 0 Ydadt = //(f AU, w)odzdt,
1Ja

16



for w € L3° (0, 00; WENTLQ Ay(RM))) by (6.10), (6.12) and (6.14).

loc
Taking w = (u., Av) in (6.16) for ¢ € C*(I x Q;RM) and using (2.6) and (2.10), we
have

N

([AH@WWAWWANWWA¢»+§}anw%whm»

=1

+ m28xiu57,,—|—y|uVu€1V|N_1y6xiugﬂy) A Oy, (U A x(uz,y Ap)) pdadt (6.17)
= // f AU, Ax(u., Ap)dedt.
1Ja

Here (2.6), (2.10) and v Av = 0 for any v € R™ imply that

N N
> Binuc, AxOy (0, A) =D Bi Ay, (u., Ax(u., A)),
i=1 =1

where R
B == a(n.,) V) (0su. ) + 620, u. ,+vvVu, |V v, u .

To compute each term in (6.17), we prepare small calculations. Noting (6.11), we see
that
o, -u., =0, 0yu.,-u., =0, ae. inQ. (6.18)

According to (2.4), we obtain
Ue, Ax(Uey AY) = (Uey - ) xue, — (Uey - uey) x P = (U, - ) xue, —*x1p. (6.19)
For the first term of the right-hand side of (6.17), (6.18) and (6.19) imply that
Oy AN ey A*(uey, AY) = (Uey - P)0puc, A *ue, — O, A xp = —0pu., - .
Note that
Oty A *p = (Oue p, )1 = Opue - P,

by Oy, € RM = A (RM).
Similarly, we see that

Bi A 0y, (u.,, A *(us, A b))
= 00, (0o - ) By A ¥ty + (Wey - )B; A Oy, %0y — Bi A Dy, 1)
= (e - P)B; - Oy — By - 9,9,

and

fAu, Ax(u, ANY) = (u, - P)fAsu., —fAsY = (u., - YP)f-u., —f .
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Having the previous equality in mind, we can see that

//{Btuw )+ (a(n.,) [V (Vue,) + k2Vue, +vvVae, [N wVua.,) : Vb tdadt
1Ja

- /l /Q (tey — £-u,) (0., - ) dwdt + /I /Q f - gpdudt, (6.20)

for ¢ € CY(I x ;RM) by (2.1), (2.5), (2.6), (2.11).
On the other hand, (6.10) and (6.13) imply that

a/(77€71/,6n)’7€(vu57v,5n) - a/(nE,V)'VE(VU-E,V) in Lllac(ov 005 Ll(“))v (6.21)

as n — oo. By (6.10) and (6.21), we obtain

/ (O (t) + 9w (t) + ' (e (t)7e(Vue,, (), @) gdt + / (Vnew(t), Vo)udt

1 1

= /I(fmSO)Hdt,

for any ¢ € L*(I; V)N L>(I x Q).

Finally, we confirm (6.6)-(6.9). By (6.1) and (6.10), the energy inequality (6.6) imme-
diately holds. Moreover, the estimates (6.7)-(6.9) also follow by (6.6), (6.20) and (6.16),
respectively. O

Remark 6.1. By Theorem 2, we see that

., € W2 ([0, 00); X) N L5, (0, 00; WHYFHQ; RM))

loc

if £, > 0. Then, the Aubin type compactness theorem [21, Corollary 4] implies that
U: € Cloc([ov OO), C<ﬁ))7

if e,v > 0.

We also give the following invariance principle, analogous to the case where there is
no forcing in the system ([16, Theorem 6]):

Theorem 3 ([17, Theorem 5.8]). In addition to the hypothesis in Theorem 2, suppose
that there is po € SM™! such that uy € By(po; R), with R < 5 and that |—£| € By(po; R),
|f|-a.e. Then, the solution to (P)., satisfies

u., € By(po; R), ae. inQ, forall ¢t € [0, +00).

Proof. First, we note that we can assume without loss of generality that po = (0,...,0,1).
Suppose, by contradiction that there exists 7% = inf{t € [0,T: u.,(¢; Q) ¢ B (po, R)}.
Due to the continuity of u.,, there is a 6 > 0 such that u.,(t;Q) C By(po;5) for
te 0,7+ 9.

We now take the equation for u., in (P)., and we take the projection m,_, from RM
to TuwSM_l. Noting that 7., (pepue,) = 0, we get

ou = mudiv(Z2), (6.22)
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with
u=1u,, Z = a(nE,l/) [V76](vu5,y) + KQVUE,V + V|VVUE,,/|N_1uVu€7y.

We choose on By(po; ) a polar coordinate system p — (p";p%, ..., p-2) centered
at po. The metric in the polar coordinates around the north pole is the following one:

1 0 0 . 0
0 sin?(r) 0 e 0
g0 0 sm)se) 0
. 0 0 o SiDQ(T) sin2(91) cL Sin2(9M—3)

Therefore, the Christoffel symbols of the second kind for the variable r are

00 0 0
. 01 0 0
- _SC) 1o o sin?(6)) 0
2 Do : " 0
00 0 . osin?(0y) - ... - sin®(6pr_3)

Next, we note that (see [10])

mu(divZ) = divZ + Y Th(w) 0y, Zf , i =1,01,..., 002,
7.k,
for any Z € WHH(Q; RMY) such that Z € T,(SM ™).

Here, j,k =7,01,...,0p o, 0 =1,...,N,'Z" € RM is the i-th row vector of Z and Z} € R
is the ¢-th component of *Z’.
Thus, we get that the equation for the radial coordinate in (6.22) is the following one:

. sin 2u” a(n) 2 N+1 N-1
ul =divZ" — + k% + N Vu X 6.23
! 2 <\/52 + |Vu|? [Vl (6.23)

M-3
X <]Vu91\2 + Z sin?(u®) - ... - sin®(u®) Vuei“\Q) +(f—(f-uu)",

i=1

where

Ve2+ |Vul?

Therefore, since u” € [0, 5],

Z = <—O‘(") + R VN“\vu\N—l) V.

uy < divZ" + (f — (f - u)u)”.

Thus,

s [ =Bt = [ - < [z - @ wae - R,
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= —/ 7" - Vu" —I—/ (f—(f-uu)"(u" — R);
Qn{ur>R} QN{u">R}

a(n) 2 N+1 N-1

< - VU | ———== +r*+ 1" "|Vu| <0,
/m{ur>R} («/52 + [Vul?

where in the last but one inequality we use the fact that, if «" > R then (f — (f-u)u)” <0

]

(remember that % € By(po; R)). This finishes the proof.

6.3 The limit as v — 0 and € — 0

In this subsection, we first show the solvability of the limit problem in (P).,, as v — 0
assuming 0 < € < gq for some g > 0.

Problem (P).

Ome — Ane + g(n:) + o/ (n:)1=(Vue) = fo in Q,
Vn. -np=0on 3,

n:(0,2) = no(x), © € Q;
(atug - div(a(ng) V7| (Vue) + H2Vu5) = (e —f-u)u. +fin Q,
(O‘(ns)[vf}/s](vus) + K2vu5)nr =0 on X,
| u:(0,2) = uo(z), z € Q;

together with
pe = (a(n) [V (Vue) + /12Vu5) :Vug, ae. in Q.

Theorem 4 ([17, Theorem 5.9]). Let Uy = [no, ug] € W with ug € S¥~* in Q. Then,
there exists U: = [n.,u:] € Cloe([0,00); X) such that U. satisfies (P). in the sense of
distributions and

U. € WE2([0,00); %) N Li2,(0, 00; 20) N L=(Q) x L¥(Q; RM),

K*Vu. € L7, (0, 00; L2(Q; RMNY),
u. € St g inQ,

and

1 T 1 T
FUAT) +5 [ 10U < 700+ [ iOIRd: for all T >0
0 0

where F. 1= F.p, and
() (VA (VL) || o ey < C

|div(a(n:)[VAe) (V) + £*Vu, C,

) HL%OC(O,OO;LI (;RM)) <

|div((a(n) [V (Vu.) + £*Vu.) A u. C,

) ‘ ‘ leoc (0,00;L2(£2;A2(RM)) <
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where C' does not depend on €.
Moreover, suppose that there is po € SM™! such that ug € B,(po; R), with R < 5 and
that % € By(po; R), |f|-a.e . Then, the solution to (P). satisfies
u. € By(po; R), a.e. in Q, forall t € [0, +00).

Since the proof of Theorem 4 is similar to Theorem 2, we omit the proof (cf. [16,
Theorem 4]).

Finally, we show the solvability of the initial system (P) by letting ¢ — 0. As ¢ — 0,
the limit problem is formulated as follows:

Problem (P)

(0 — D+ g(0) + o/ (1) [ V| = fo in Q,
Vn-nr =0 on X,

(7(0,2) = no(z), © €Y

(Ou — div(e(n)B + k*Vu) = (n—f-u)u+fin Q,
((n)B+ Kk*Vu)nr =0 on X,
u(0,z) = up(x), z € Q;

together with
B € Sgn™™(Vu), and p := (a(n)B + k*Vu) : Vu, a.e. in Q.

Theorem 5 ([17, Theorem 5.10]). Let Uy = [y, ug] € 20 with ug € SM=* in Q. Then,
there exist U = [n,u] € L2 (0,00; X) and B € L>(Q; RMY) such that

loc

U € WE([0,00); X) N LS, (0, 00;20) N L2(Q) x L®(Q;RM),

loc loc

k*Vu € L2 (0, 00; L2(Q; RMNY),

loc

ueSM 1t e inQ,

and

1 /7 1 /7
]:(U(T))+§/O ||atU<t)||§dt§f<Uo)+§/0 [F(0)|2dt  for all T > 0.

Also, there exists a constant C' > 0, independent of k, such that:
”O‘(n)BHLw(Q;RMN) <G

|div(e(n)B + £*Vu < C,

) ||leoc(0,oo;L1(£2;RM))

[div(a(m)B + £2Va) Au)|| 2 o ooy < C

Moreover, suppose that there is po € S~ such that vy € By(po; R), with R < 3 and
that % € By(po; R), |f|-a.e. Then, the solution to (P) satisfies
u€ By(po; R), ae. inQ, forall ¢t € [0,+00).

Since the proof of Theorem 5 is also similar to Theorem 2, we omit the proof (cf. [16,
Theorem 5]).
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