Solvability of the heat equation on a half-space
with a dynamical boundary condition
and unbounded initial data
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This is a survey article for the paper [5], which is joint work with Marek Fila (Comenius
Univ.) and Kazuhiro Ishige (Univ. of Tokyo).
1 Introduction

Let N > 2 and RY := R¥~! x R,. This paper is concerned with global solvability of the
problem

Ou — Au = 0, reRY, t>0,

Ou+ O,u =0, zedRY, t>0, )
u(x,0) = p(x), z € RY,

u(z,0) =0, = (2/,0) € ORY, 2/ := (w1,22,...,TN-1),

where 0, := d/0t, and 0, := —0/dxy. The boundary condition from (1) describes diffusion
through the boundary in processes such as thermal contact with a perfect conductor or
diffusion of solute from a well-stirred fluid or vapour (see e.g. [2]). Various aspects of
analysis of parabolic equations with dynamical boundary conditions have been treated by
many authors (see e.g. the reference of [5]).

In this paper we focus on the simplest linear problem from a point of view which has not
been considered yet (as far as we know). Namely, we are interested in an appropriate choice
of the function space of initial functions ¢ such that problem (1) is solvable.

Throughout this paper we often identify RV~ with 9RY. We introduce some notation.
Let I'p = T'p(z,y,t) be the Dirichlet heat kernel on RY, that is,

Up(z,y.t) = (4xt) "> [exp< _ %) B exp( - %)1



for (z,y,t) € @ x RY x (0, 00), where y. = (v, —yn) for y = (v, yn) € RY. Set

[Si1(1)0)(x) == | Tolz,y,t)o(y)dy, (z.t) € RY x (0,00), (2)

Y
for any measurable function ¢ in RY if the right hand side of (2) is well-defined. For z =

(@' zn) € @ and t > 0, set

P(x' xn,t) == Cn(xy + 1) (|93'|2 + (zn + t)2> ,

ol

where Cly is the constant chosen so that
/ P(x' xn,t)dx’ =1 forall zy >0 and ¢ > 0.
RN-1

Then P = P(z/,zy,t) is the fundamental solution of the Laplace equation in RY with the
homogeneous dynamical boundary condition (see e.g. [1]). Set

[S2(t)v](z) == /IRNl Pl —o on, () dy', (z,1) € Rf x (0, 00), (3)

for any measurable function 1 in RV =1 if the right hand side of (3) is well-defined. Then the
function U(x,t) := [Sy(t)y](x) satisfies

—AV = 0, v eRY, t>0,
oV + 0,V = 0, zedRY, t>0,
U(x,0) =(x), x = (2/,0) € ORY.
Consider
ov=A~Av—Fp], Aw=0, zeRY, ¢t>0,
v=0, Ow—0yw=20,v, v€IRY, >0, )
v(z,0) = p(x), z € RY,
w(x,0) =0, x = (2/,0) € ORY,
where

Flv|(z,t) := / P(z' —y',zn,0)0.,v(y,0,t) dy’
RN-1

t
s [ [ ara =gyt = 0.0l 0.5) dy ds
0o Jrr-1

Following [4], we formulate the definition of a solution of (1).



Definition 1.1 Let ¢ be measurable function in RY. Let 0 < T < oo and
v, By, we C(RY x (0,7)).
We call (v,w) a solution of (4) in RY x (0,T) if

15, ()] (2), / 1S, (t - $)F[o](s)](x) ds, / (Sa(t — )0y v(-, 0, 8)](z) ds

are well-defined and functions v and w satisfy
v(x,t) = [Sl(t)'s&](x)—/o [51(t = 5) Fv](s)] () ds,
wle.t) = [ 18a(t = 90,0009 (w) ds.

forx € @ and t € (0,T), respectively. Then we say that v := v + w is a solution of (1) in
RY x (0,T). In the case of T = oo, we call (v,w) a global-in-time solution of (4) and u a
global-in-time solution of (1).

For 1 <r < oo, we write | - [pr := || - || Lroryy and || - [|zr o= [ - [[r(may) for simplicity.
Furthermore, for 1 < r < oo and o > 0, we define

Ly ={f € L'(RY) : || flly < oo},

where

|f(z)|"h(xy)~" d:c) if 1<r< oo, ' TN
W fller == (/Rﬁ with h(zy) = PR

| £l o< if r= o0,
Then we can easily show that [|f||z; < [|f[[ry for r € [1,00] and 0 < a < 8.
Now we are ready to state the main results of this paper.

Theorem 1.1 Let N > 2 and 1 < q < oo. Furthermore, let
p€ (Ng/(N—-1),00 if g< o and  p=o0 if gq=o0.

For r € [q, 00|, put
== (7-1)+ ©)
a(r) = (N — S -
q T q
Assume ¢ € L7 . Then problem (4) possesses a unique global-in-time solution (v, w) with
the following property: For any T > 0 there exists Cp > 0 such that
N(1_1 1 1
sup |2t e | lo(t)l[re + 2 |[O0ny0(@)||1e | 4+ 12|00y 0(t)]ir | < Crllelrs
0<t<T o(p) (7>

sup [||w(t)||Lp+ |w(t)|Lr} < Crllelee

o<t<T
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forr € [q,p]. Furthermore, v and w are bounded and smooth in @ x I for any bounded
interval I C (0, 00).

Remark 1.1 We explain the role of the space L‘é(p) in our study. Let 1 < g <
take arbitrary functions ® € LY(RN™Y), J € L(1,00). Now set ¢(z) = ®(2')¥(xy) for
v = (2 xy) € RY, where

() Ny if 0<zxzy<1 X€ER,
Ty) =
N Vzy) if zn > 1.

Choose p as in Theorem 1.1. Then it is easy to check that ¢ € Li(p) if and only if

A>(N—1)G—%>(>o if g < ).

If X\ >0, then limogo(a:) = 0 which means that the condition u(z',0,0) = 0 in (1) is satisfied.
TN—

This indicates that the choice of the space of initial functions is natural and also optimal in
some sense since A can be arbitrarily close to 0 if q is large enough.

We have not observed the importance of the behavior of ¢ near 9RY in the L>®-setting in
[4]. The main novelty of this paper consists in working in an appropriate weighted L9-space
by which we extend a result from [4] significantly, as we explain below.

In [4] we studied the problem

Ou — Au =0, zeRY, t>0,

o+ O,u=0, zedRY, t>0, ®
w(z,0) = p(x), z € RY,

uw(x,0) = py(z'), z = (2/,0) € ORY,

where ¢ and ¢, are bounded functions. A part of Theorem 1.1 in [4] reads as follows:

Theorem 1.2 Let N > 2, ¢ € L¥(RY) and ¢, € L>®(RN1). Then problem (8) possesses
a unique global-in-time solution u which is bounded and smooth in RY x I for any bounded
interval I C (0, 00).

Hence, if ¢, = 0 then Theorem 1.2 is a very special case of Theorem 1.1. If ¢, € L>=(RV 1)
and ¢ € Li(p) with p,q as in Theorem 1.1, then we can combine Theorem 1.1 with Theo-

rem 1.2 to obtain the existence of a solution of (8) easily, since the problem is linear.

2 Preliminaries

In this section we prove several lemmata on S1(t)¢ and F[v], and recall some properties of
Sa(t). In what follows, by the letter C' we denote generic positive constants (independent
of z and t) and they may have different values also within the same line.

We first recall some properties of S (t)¢ (see e.g., [6] and [4, Lemma 2.1]).
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(Gy) Forany 1 < ¢ <r < oo,

N

_N1_ 1
1S1) @l r < et 25|18 o, t>0,

forall ¢ € L4 (]Rﬂ\: ), where ¢; is a positive constant, independent of ¢ and r. In particular,
if ¢ = r, then

sup [|S1(t)o[|zr < |||z

>0

Furthermore, for any 1 < ¢ <1r < oo,

N/1 1 1
—*(a—;)—al

||61N51(t)¢HL’" <ot 2 ‘QbHLQ, t >0,
for all ¢ € LI(RY), where ¢, is a positive constant, independent of ¢ and r.

(Gs) Let ¢ € LY(RY) with 1 < ¢ < oo and T' > 0. Then S;(f)¢ is bounded and smooth with
respect to x and ¢ in RY x (T, 00).

Applying an argument similar to the proof of Young’s inequality, we have the following.

Lemma 2.1 Let 1 < g <r < oo. Assume ¢ € L, with a(r) as in (6). Then there exists
c3 = c3(N) > 0 such that

1
Ou 100l < cat Hle,,  t>0 )
Next we recall some properties of Sy (t)1).
(P)) Let v € L"(RY=1) for some r € [1,00] and ¢, # > 0. Then

[Sa(t)¢)(a, wn) = [Sat + 2n)¢] (2, 0),
[Sa(t + 1) 0](x) = [Sa(t)(S2 () )] (),

for x = (2/,zy) € @ Furthermore,
li_r>%|52(t)¢ — Y, =0 if1 <r < oo.
(P) Forany 1 <r < ¢ < oo,
[Sa(t)len < Ot NIl >0,

for all ¢» € L"(RN-1). In particular, if ¢ = r, then

sup [S3(4)¢|e < [¢)]za.
t>0



(P3) Let 1 <r < ooand Nr/(N —1) < ¢ < oo. Then
C(N_D(A_1)p1
IS2(t) e < Ct N VG ay|, >0,
for all vp € L"(RY~!). Furthermore,

sup 1S2() e < C([¢)]Le + [¢0]1r) (10)

for all ¢y € LYRN 1) N L7 (RN ).

Properties (Py), (FP2), and (Ps) easily follow from (3) (see e.g. [3]) and imply that

sup [|S3(8) 6l < [l
£>0

for all ¢ € L>®°(RM~1). Furthermore, by an argument similar to that in the proof of prop-

erty (Gs) we have:

(Py) Let ¢ € L"(RN™1) with 1 < r < oco. Then, for any T > 0, Sy(¢)1) is bounded and
smooth in RY X (T, c0).

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. By [4, Theorem 1.1] with ¢ = 1 and ¢, = 0 we have
Theorem 1.1 for the case p = ¢ = oco. So we focus on the case ¢ < oc.

Let T>0, M>1,1<g<o0,and p € (Nq/(N —1),00]. Set

o<t<T

Xpoa o= {v L 0,050 € C(RY % (0,7)), 0]l xp0r < oo}, 0] xg0s i= sup e M E[](1),

where
1 1

Blo)(t) =22 (0@l + 8 0syo(®)lls] + sup 310,000

q<r<p

Then X7, is a Banach space equipped with the norm || - ||x,,,. We apply the Banach
contraction mapping principle in X »s to find a fixed point of the functional

Qul(t) = S ()¢ — Dlv](1) (11)

on Xr , where D[v] is the function defined by

Div|(t) :== /0 S1(t — s)Fv](s) ds (12)

and F[v] is the function defined by (5). For the function F'[v], we have the following.



Lemma 3.1 Let "> 0, M > 1,1 < g < oo, and p € (Nqg/(N —1),00]. Assume that v €
Xra. Then there exists C > 0, independent of T and M, such that, forp € (Nq/(N—1),00),
it holds that L

[Pl < C(L+t0 )tz vl xy

for 0 <t <T. Furthermore, for any r € [q, p|,

_ 1 _1
[E ] ¢ en, )| -1y < 0(1 + (let)2>t 2 0]l xp

forzy € (0,00) and 0 <t < T.
Applying Lemma 3.1, we obtain the following estimate for the function D|v].

Lemma 3.2 Assume the same conditions as in Lemma 3.1. Let D[v] be the function defined
by (12). Then there exists M, > 1 such that

1
1D]llxza < 5l1ollxra (13)

forv € Xry and M > M,. Furthermore, D[v] is bounded and smooth in @ x (1,7T) for
any 0 <7 <T.
Now we are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let 7" >0, M > 1,1 < ¢ < o0, and p € (Ng/(N — 1),00]. Then,
since (|||, < [l¢llzy for r € [1,00] and 0 < ov < 8, by (G1) and (9) we have

e MES1()#)(t) < (a1 + 2+ )l (14)

fort > 0, where ¢, ¢y, and c3 are positive constants given in (G7) and Lemma 2.1, respectively,
and a(p) is given in (6). Furthermore, by Lemma 3.2, taking a sufficiently large M > 1 if
necessary, we see that

1
IDWllxra < 5lollxra, v € X, (15)
for 0 <t <T. Set
m = 2(c; + ¢ + c3)||go||L«;(p). (16)

We deduce from (11), (14), (15), and (16) that

1QM]llxrp < sup e E[S1(1)]() + I D[],
0<t<T

1 (17)
< (ateta)leln  +5lvlxn,, =m
for v € Xp with ||v]|x,,, < m. Similarly, it follows from (15) that
1
1Q[v] = Qlvalllx,.,, = IID[or = valllxrys < Sllor = vallxra (18)
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for v; € X (4 =1,2). Then, by (17) and (18), applying the contraction mapping theorem,
we find a unique solution v € Xy with [|v||x,,, < m such that

v=Qv] =51(t)p — D|(t) in Xru.

In particular, we see that
follxra < Cliglas,,

Moreover, by (G3) and Lemma 3.2, we see that v is bounded and smooth in @ x (Ty,T) for
any 0 < Ty <T.
Set

w(z,t) = /0 [Sa(t — $)0xyv(+,0,5)](x) ds

for z € RY and t € (0,T). By (10) and (16) we obtain

¢
||fu/(t)||Lp§/ 1S2(t — $)0zyv(+,0,8)|| e ds
0

t
< C’/ (|5)xNv(s)|Lq + |8mNU(S)|Lp) ds
0

t
<C [ eMes ol ds < CMTT gy, < o
0 ’ olp

and

()| < /|SQt—38 WU(+,0,8)|Lrds

<C/ | |er$

sc/emfww&MwSCWWWmmu<m,
0 ' o

for 0 <t < T. Furthermore, by (P3) we apply an argument similar to that in the proof of
Lemma 3.2 and see that w is bounded and smooth in RY x (71,T) for any 0 < T} < T.
Therefore we deduce that (v,w) is a solution of (4) in RY x (0,7 satisfying (7).

Let (0,w) be a solution of (4) in RY x (0,7) for any T, > T and such that o € Xr, .
with some M, > 0. Then v € Xp ; and since

v—0=Q[v] — Qo] =Dlv—20] in Xryu,

by (13) we have
1

||U_UHXT1\1 = ||U_ UHXTI\I
This implies that v = ¥ in X7 ;. Therefore we deduce that (v, w) is a unique global-in-time
solution of (4) satisfying (7). Thus Theorem 1.1 holds for the case ¢ < oco. Furthermore, by

[4, Theorem 1.1] with £ = 1 and ¢, = 0 we have Theorem 1.1 for the case p = ¢ = oo, and
the proof of Theorem 1.1 is complete. O
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