Solvability of the heat equation on a half-space with a dynamical boundary condition and unbounded initial data

龍谷大学・先端理工学部 川上竜樹

Tatsuki Kawakami

Faculty of Advanced Science and Technology, Ryukoku University

This is a survey article for the paper [5], which is joint work with Marek Fila (Comenius Univ.) and Kazuhiro Ishige (Univ. of Tokyo).

1 Introduction

Let $N \geq 2$ and $\mathbb{R}^N_+ := \mathbb{R}^{N-1} \times \mathbb{R}_+$. This paper is concerned with global solvability of the problem

$$\begin{cases}
\partial_{t}u - \Delta u = 0, & x \in \mathbb{R}_{+}^{N}, \ t > 0, \\
\partial_{t}u + \partial_{\nu}u = 0, & x \in \partial\mathbb{R}_{+}^{N}, \ t > 0, \\
u(x,0) = \varphi(x), & x \in \mathbb{R}_{+}^{N}, \\
u(x,0) = 0, & x = (x',0) \in \partial\mathbb{R}_{+}^{N}, \quad x' := (x_{1}, x_{2}, \dots, x_{N-1}),
\end{cases}$$
(1)

where $\partial_t := \partial/\partial t$, and $\partial_{\nu} := -\partial/\partial x_N$. The boundary condition from (1) describes diffusion through the boundary in processes such as thermal contact with a perfect conductor or diffusion of solute from a well-stirred fluid or vapour (see e.g. [2]). Various aspects of analysis of parabolic equations with dynamical boundary conditions have been treated by many authors (see e.g. the reference of [5]).

In this paper we focus on the simplest linear problem from a point of view which has not been considered yet (as far as we know). Namely, we are interested in an appropriate choice of the function space of initial functions φ such that problem (1) is solvable.

Throughout this paper we often identify \mathbb{R}^{N-1} with $\partial \mathbb{R}^N_+$. We introduce some notation. Let $\Gamma_D = \Gamma_D(x, y, t)$ be the Dirichlet heat kernel on \mathbb{R}^N_+ , that is,

$$\Gamma_D(x, y, t) := (4\pi t)^{-\frac{N}{2}} \left[\exp\left(-\frac{|x - y|^2}{4t}\right) - \exp\left(-\frac{|x - y_*|^2}{4t}\right) \right]$$

for $(x, y, t) \in \overline{\mathbb{R}^N_+} \times \mathbb{R}^N_+ \times (0, \infty)$, where $y_* = (y', -y_N)$ for $y = (y', y_N) \in \mathbb{R}^N_+$. Set

$$[S_1(t)\phi](x) := \int_{\mathbb{R}^N_+} \Gamma_D(x, y, t)\phi(y) \, dy, \quad (x, t) \in \mathbb{R}^N_+ \times (0, \infty), \tag{2}$$

for any measurable function ϕ in \mathbb{R}^N_+ if the right hand side of (2) is well-defined. For $x = (x', x_N) \in \overline{\mathbb{R}^N_+}$ and t > 0, set

$$P(x', x_N, t) := C_N(x_N + t) \left(|x'|^2 + (x_N + t)^2 \right)^{-\frac{N}{2}},$$

where C_N is the constant chosen so that

$$\int_{\mathbb{R}^{N-1}} P(x', x_N, t) dx' = 1 \quad \text{for all } x_N \ge 0 \text{ and } t > 0.$$

Then $P = P(x', x_N, t)$ is the fundamental solution of the Laplace equation in \mathbb{R}^N_+ with the homogeneous dynamical boundary condition (see e.g. [1]). Set

$$[S_2(t)\psi](x) := \int_{\mathbb{R}^{N-1}} P(x' - y', x_N, t)\psi(y') \, dy', \quad (x, t) \in \mathbb{R}^N_+ \times (0, \infty), \tag{3}$$

for any measurable function ψ in \mathbb{R}^{N-1} if the right hand side of (3) is well-defined. Then the function $\Psi(x,t) := [S_2(t)\psi](x)$ satisfies

$$\begin{cases}
-\Delta \Psi = 0, & x \in \mathbb{R}_{+}^{N}, \ t > 0, \\
\partial_{t} \Psi + \partial_{\nu} \Psi = 0, & x \in \partial \mathbb{R}_{+}^{N}, \ t > 0, \\
\Psi(x, 0) = \psi(x'), & x = (x', 0) \in \partial \mathbb{R}_{+}^{N}.
\end{cases}$$

Consider

$$\begin{cases}
\partial_t v = \Delta v - F[v], & \Delta w = 0, \quad x \in \mathbb{R}_+^N, \quad t > 0, \\
v = 0, & \partial_t w - \partial_{x_N} w = \partial_{x_N} v, \quad x \in \partial \mathbb{R}_+^N, \quad t > 0, \\
v(x, 0) = \varphi(x), & x \in \mathbb{R}_+^N, \\
w(x, 0) = 0, & x = (x', 0) \in \partial \mathbb{R}_+^N,
\end{cases} \tag{4}$$

where

$$F[v](x,t) := \int_{\mathbb{R}^{N-1}} P(x'-y', x_N, 0) \partial_{x_N} v(y', 0, t) \, dy'$$

$$+ \int_0^t \int_{\mathbb{R}^{N-1}} \partial_t P(x'-y', x_N, t-s) \partial_{x_N} v(y', 0, s) \, dy' \, ds.$$
(5)

Following [4], we formulate the definition of a solution of (1).

Definition 1.1 Let φ be measurable function in \mathbb{R}^N_+ . Let $0 < T \leq \infty$ and

$$v, \ \partial_{x_N} v, \ w \in C(\overline{\mathbb{R}^N_+} \times (0, T)).$$

We call (v, w) a solution of (4) in $\mathbb{R}^{N}_{+} \times (0, T)$ if

$$[S_1(t)\varphi](x), \quad \int_0^t [S_1(t-s)F[v](s)](x) ds, \quad \int_0^t [S_2(t-s)\partial_{x_N}v(\cdot,0,s)](x) ds$$

are well-defined and functions v and w satisfy

$$v(x,t) = [S_1(t)\varphi](x) - \int_0^t [S_1(t-s)F[v](s)](x) \, ds,$$
$$w(x,t) = \int_0^t [S_2(t-s)\partial_{x_N}v(\cdot,0,s)](x) \, ds,$$

for $x \in \overline{\mathbb{R}^N_+}$ and $t \in (0,T)$, respectively. Then we say that u := v + w is a solution of (1) in $\mathbb{R}^N_+ \times (0,T)$. In the case of $T = \infty$, we call (v,w) a global-in-time solution of (4) and u a global-in-time solution of (1).

For $1 \leq r \leq \infty$, we write $|\cdot|_{L^r} := \|\cdot\|_{L^r(\partial \mathbb{R}^N_+)}$ and $\|\cdot\|_{L^r} := \|\cdot\|_{L^r(\mathbb{R}^N_+)}$ for simplicity. Furthermore, for $1 \leq r \leq \infty$ and $\alpha \geq 0$, we define

$$L_{\alpha}^{r} := \{ f \in L^{r}(\mathbb{R}_{+}^{N}) : ||f||_{L_{\alpha}^{r}} < \infty \},$$

where

$$||f||_{L^{r}_{\alpha}} := \begin{cases} \left(\int_{\mathbb{R}^{N}_{+}} |f(x)|^{r} h(x_{N})^{-\alpha r} dx \right)^{\frac{1}{r}} & \text{if } 1 \leq r < \infty, \\ ||f||_{L^{\infty}} & \text{if } r = \infty, \end{cases} \text{ with } h(x_{N}) := \frac{x_{N}}{x_{N} + 1}.$$

Then we can easily show that $||f||_{L^r_{\alpha}} \leq ||f||_{L^r_{\beta}}$ for $r \in [1, \infty]$ and $0 \leq \alpha \leq \beta$.

Now we are ready to state the main results of this paper.

Theorem 1.1 Let $N \geq 2$ and $1 \leq q \leq \infty$. Furthermore, let

$$p \in (Nq/(N-1), \infty]$$
 if $q < \infty$ and $p = \infty$ if $q = \infty$.

For $r \in [q, \infty]$, put

$$\alpha(r) = (N-1)\left(\frac{1}{q} - \frac{1}{r}\right) + \frac{1}{q}.\tag{6}$$

Assume $\varphi \in L^q_{\alpha(p)}$. Then problem (4) possesses a unique global-in-time solution (v, w) with the following property: For any T > 0 there exists $C_T > 0$ such that

$$\sup_{0 < t < T} \left[t^{\frac{N}{2}(\frac{1}{q} - \frac{1}{p})} \left(\|v(t)\|_{L^{p}} + t^{\frac{1}{2}} \|\partial_{x_{N}} v(t)\|_{L^{p}} \right) + t^{\frac{1}{2}} |\partial_{x_{N}} v(t)|_{L^{r}} \right] \le C_{T} \|\varphi\|_{L^{q}_{\alpha(p)}},$$

$$\sup_{0 < t < T} \left[\|w(t)\|_{L^{p}} + |w(t)|_{L^{r}} \right] \le C_{T} \|\varphi\|_{L^{q}_{\alpha(p)}},$$
(7)

for $r \in [q, p]$. Furthermore, v and w are bounded and smooth in $\overline{\mathbb{R}^N_+} \times I$ for any bounded interval $I \subset (0, \infty)$.

Remark 1.1 We explain the role of the space $L^q_{\alpha(p)}$ in our study. Let $1 \leq q \leq \infty$ and take arbitrary functions $\Phi \in L^q(\mathbb{R}^{N-1})$, $\vartheta \in L^q(1,\infty)$. Now set $\varphi(x) := \Phi(x')\Psi(x_N)$ for $x = (x', x_N) \in \mathbb{R}^N_+$, where

$$\Psi(x_N) := \begin{cases} x_N^{\lambda} & \text{if } 0 < x_N \le 1, \quad \lambda \in \mathbb{R}, \\ \vartheta(x_N) & \text{if } x_N > 1. \end{cases}$$

Choose p as in Theorem 1.1. Then it is easy to check that $\varphi \in L^q_{\alpha(p)}$ if and only if

$$\lambda > (N-1)\left(\frac{1}{q} - \frac{1}{p}\right) (> 0 \quad \text{if } q < \infty).$$

If $\lambda > 0$, then $\lim_{x_N \to 0} \varphi(x) = 0$ which means that the condition u(x', 0, 0) = 0 in (1) is satisfied. This indicates that the choice of the space of initial functions is natural and also optimal in some sense since λ can be arbitrarily close to 0 if q is large enough.

We have not observed the importance of the behavior of φ near $\partial \mathbb{R}^N_+$ in the L^{∞} -setting in [4]. The main novelty of this paper consists in working in an appropriate weighted L^q -space by which we extend a result from [4] significantly, as we explain below.

In [4] we studied the problem

$$\begin{cases}
\partial_t u - \Delta u = 0, & x \in \mathbb{R}_+^N, \ t > 0, \\
\partial_t u + \partial_\nu u = 0, & x \in \partial \mathbb{R}_+^N, \ t > 0, \\
u(x,0) = \varphi(x), & x \in \mathbb{R}_+^N, \\
u(x,0) = \varphi_b(x'), & x = (x',0) \in \partial \mathbb{R}_+^N,
\end{cases} \tag{8}$$

where φ and φ_b are bounded functions. A part of Theorem 1.1 in [4] reads as follows:

Theorem 1.2 Let $N \geq 2$, $\varphi \in L^{\infty}(\mathbb{R}^{N}_{+})$ and $\varphi_b \in L^{\infty}(\mathbb{R}^{N-1})$. Then problem (8) possesses a unique global-in-time solution u which is bounded and smooth in $\overline{\mathbb{R}^{N}_{+}} \times I$ for any bounded interval $I \subset (0, \infty)$.

Hence, if $\varphi_b \equiv 0$ then Theorem 1.2 is a very special case of Theorem 1.1. If $\varphi_b \in L^{\infty}(\mathbb{R}^{N-1})$ and $\varphi \in L^q_{\alpha(p)}$ with p, q as in Theorem 1.1, then we can combine Theorem 1.1 with Theorem 1.2 to obtain the existence of a solution of (8) easily, since the problem is linear.

2 Preliminaries

In this section we prove several lemmata on $S_1(t)\phi$ and F[v], and recall some properties of $S_2(t)\psi$. In what follows, by the letter C we denote generic positive constants (independent of x and t) and they may have different values also within the same line.

We first recall some properties of $S_1(t)\phi$ (see e.g., [6] and [4, Lemma 2.1]).

 (G_1) For any $1 \le q \le r \le \infty$,

$$||S_1(t)\phi||_{L^r} \le c_1 t^{-\frac{N}{2}(\frac{1}{q}-\frac{1}{r})} ||\phi||_{L^q}, \qquad t > 0$$

for all $\phi \in L^q(\mathbb{R}^N_+)$, where c_1 is a positive constant, independent of q and r. In particular, if q = r, then

$$\sup_{t>0} \|S_1(t)\phi\|_{L^r} \le \|\phi\|_{L^r}.$$

Furthermore, for any $1 \le q \le r \le \infty$,

$$\|\partial_{x_N} S_1(t)\phi\|_{L^r} \le c_2 t^{-\frac{N}{2}(\frac{1}{q}-\frac{1}{r})-\frac{1}{2}} \|\phi\|_{L^q}, \qquad t > 0,$$

for all $\phi \in L^q(\mathbb{R}^N_+)$, where c_2 is a positive constant, independent of q and r.

 (G_2) Let $\phi \in L^q(\mathbb{R}^N_+)$ with $\underline{1 \leq q \leq \infty}$ and T > 0. Then $S_1(t)\phi$ is bounded and smooth with respect to x and t in $\overline{\mathbb{R}^N_+} \times (T, \infty)$.

Applying an argument similar to the proof of Young's inequality, we have the following.

Lemma 2.1 Let $1 \le q \le r \le \infty$. Assume $\phi \in L^q_{\alpha(r)}$ with $\alpha(r)$ as in (6). Then there exists $c_3 = c_3(N) > 0$ such that

$$|\partial_{x_N}[S_1(t)\phi]|_{L^r} \le c_3 t^{-\frac{1}{2}} \|\phi\|_{L^q_{\alpha(r)}}, \qquad t > 0.$$
 (9)

Next we recall some properties of $S_2(t)\psi$.

 (P_1) Let $\psi \in L^r(\mathbb{R}^{N-1})$ for some $r \in [1, \infty]$ and t, t' > 0. Then

$$[S_2(t)\psi](x',x_N) = [S_2(t+x_N)\psi](x',0),$$

$$[S_2(t+t')\psi](x) = [S_2(t)(S_2(t')\psi)](x),$$

for $x = (x', x_N) \in \overline{\mathbb{R}^N_+}$. Furthermore,

$$\lim_{t \to 0} |S_2(t)\psi - \psi|_r = 0 \quad \text{if } 1 \le r < \infty.$$

 (P_2) For any $1 \le r \le q \le \infty$,

$$|S_2(t)\psi|_{L^q} \le Ct^{-(N-1)(\frac{1}{r}-\frac{1}{q})}|\psi|_{L^r}, \qquad t > 0,$$

for all $\psi \in L^r(\mathbb{R}^{N-1})$. In particular, if q = r, then

$$\sup_{t>0} |S_2(t)\psi|_{L^q} \le |\psi|_{L^q}.$$

 (P_3) Let $1 \le r < \infty$ and $Nr/(N-1) < q \le \infty$. Then

$$||S_2(t)\psi||_{L^q} \le Ct^{-(N-1)(\frac{1}{r}-\frac{1}{q})+\frac{1}{q}}|\psi|_{L^r}, \qquad t > 0,$$

for all $\psi \in L^r(\mathbb{R}^{N-1})$. Furthermore,

$$\sup_{t>0} \|S_2(t)\psi\|_{L^q} \le C(|\psi|_{L^q} + |\psi|_{L^r})$$
(10)

for all $\psi \in L^q(\mathbb{R}^{N-1}) \cap L^r(\mathbb{R}^{N-1})$.

Properties (P_1) , (P_2) , and (P_3) easily follow from (3) (see e.g. [3]) and imply that

$$\sup_{t>0} \|S_2(t)\psi\|_{L^{\infty}} \le |\psi|_{L^{\infty}}$$

for all $\psi \in L^{\infty}(\mathbb{R}^{N-1})$. Furthermore, by an argument similar to that in the proof of property (G_2) we have:

 (P_4) Let $\psi \in L^r(\mathbb{R}^{N-1})$ with $1 \leq r \leq \infty$. Then, for any T > 0, $S_2(t)\psi$ is bounded and smooth in $\overline{\mathbb{R}^N_+} \times (T, \infty)$.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. By [4, Theorem 1.1] with $\varepsilon = 1$ and $\varphi_b \equiv 0$ we have Theorem 1.1 for the case $p = q = \infty$. So we focus on the case $q < \infty$.

Let T > 0, $M \ge 1$, $1 \le q < \infty$, and $p \in (Nq/(N-1), \infty]$. Set

$$X_{T,M} := \left\{ v : v, \partial_{x_N} v \in C(\overline{\mathbb{R}^N_+} \times (0,T)), \|v\|_{X_{T,M}} < \infty \right\}, \quad \|v\|_{X_{T,M}} := \sup_{0 < t < T} e^{-Mt} E[v](t),$$

where

$$E[v](t) := t^{\frac{N}{2}\left(\frac{1}{q} - \frac{1}{p}\right)} \left[\|v(t)\|_{L^p} + t^{\frac{1}{2}} \|\partial_{x_N} v(t)\|_{L^p} \right] + \sup_{q \le r \le p} t^{\frac{1}{2}} |\partial_{x_N} v(t)|_{L^r}.$$

Then $X_{T,M}$ is a Banach space equipped with the norm $\|\cdot\|_{X_{T,M}}$. We apply the Banach contraction mapping principle in $X_{T,M}$ to find a fixed point of the functional

$$Q[v](t) := S_1(t)\varphi - D[v](t)$$
(11)

on $X_{T,M}$, where D[v] is the function defined by

$$D[v](t) := \int_0^t S_1(t-s)F[v](s) \, ds \tag{12}$$

and F[v] is the function defined by (5). For the function F[v], we have the following.

Lemma 3.1 Let T > 0, $M \ge 1$, $1 \le q < \infty$, and $p \in (Nq/(N-1), \infty]$. Assume that $v \in X_{T,M}$. Then there exists C > 0, independent of T and M, such that, for $p \in (Nq/(N-1), \infty)$, it holds that

$$||F[v](t)||_{L^p} \le C(1+t^{\frac{1}{p}})t^{-\frac{1}{2}}e^{Mt}||v||_{X_{T,M}}$$

for 0 < t < T. Furthermore, for any $r \in [q, p]$,

$$||F[v](\cdot, x_N, t)||_{L^r(\mathbb{R}^{N-1})} \le C\left(1 + (x_N^{-1}t)^{\frac{1}{2}}\right)t^{-\frac{1}{2}}e^{Mt}||v||_{X_{T,M}}$$

for $x_N \in (0, \infty)$ and 0 < t < T.

Applying Lemma 3.1, we obtain the following estimate for the function D[v].

Lemma 3.2 Assume the same conditions as in Lemma 3.1. Let D[v] be the function defined by (12). Then there exists $M_* \geq 1$ such that

$$||D[v]||_{X_{T,M}} \le \frac{1}{2} ||v||_{X_{T,M}} \tag{13}$$

for $v \in X_{T,M}$ and $M \ge M_*$. Furthermore, D[v] is bounded and smooth in $\overline{\mathbb{R}^N_+} \times (\tau, T)$ for any $0 < \tau < T$.

Now we are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let T > 0, $M \ge 1$, $1 \le q < \infty$, and $p \in (Nq/(N-1), \infty]$. Then, since $\|\varphi\|_{L^r_\alpha} \le \|\varphi\|_{L^r_\beta}$ for $r \in [1, \infty]$ and $0 \le \alpha \le \beta$, by (G_1) and (9) we have

$$e^{-Mt}E[S_1(t)\varphi](t) \le (c_1 + c_2 + c_3)\|\varphi\|_{L^q_{\alpha(p)}}$$
 (14)

for t > 0, where c_1 , c_2 , and c_3 are positive constants given in (G_1) and Lemma 2.1, respectively, and $\alpha(p)$ is given in (6). Furthermore, by Lemma 3.2, taking a sufficiently large $M \ge 1$ if necessary, we see that

$$||D[v]||_{X_{T,M}} \le \frac{1}{2} ||v||_{X_{T,M}}, \qquad v \in X_{T,M}, \tag{15}$$

for 0 < t < T. Set

$$m := 2(c_1 + c_2 + c_3) \|\varphi\|_{L^q_{\alpha(p)}}.$$
(16)

We deduce from (11), (14), (15), and (16) that

$$||Q[v]||_{X_{T,M}} \le \sup_{0 < t < T} e^{-Mt} E[S_1(t)\varphi](t) + ||D[v]||_{X_{T,M}}$$

$$\le (c_1 + c_2 + c_3) ||\varphi||_{L^q_{\alpha(p)}} + \frac{1}{2} ||v||_{X_{T,M}} \le m$$
(17)

for $v \in X_{T,M}$ with $||v||_{X_{T,M}} \leq m$. Similarly, it follows from (15) that

$$||Q[v_1] - Q[v_2]||_{X_{T,M}} = ||D[v_1 - v_2]||_{X_{T,M}} \le \frac{1}{2} ||v_1 - v_2||_{X_{T,M}}$$
(18)

for $v_i \in X_{T,M}$ (i = 1, 2). Then, by (17) and (18), applying the contraction mapping theorem, we find a unique solution $v \in X_{T,M}$ with $||v||_{X_{T,M}} \le m$ such that

$$v = Q[v] = S_1(t)\varphi - D[v](t)$$
 in $X_{T,M}$.

In particular, we see that

$$||v||_{X_{T,M}} \le C||\varphi||_{L^q_{\alpha(p)}}.$$

Moreover, by (G_2) and Lemma 3.2, we see that v is bounded and smooth in $\overline{\mathbb{R}^N_+} \times (T_1, T)$ for any $0 < T_1 < T$.

Set

$$w(x,t) = \int_0^t [S_2(t-s)\partial_{x_N}v(\cdot,0,s)](x) ds$$

for $x \in \overline{\mathbb{R}^N_+}$ and $t \in (0,T)$. By (10) and (16) we obtain

$$||w(t)||_{L^{p}} \leq \int_{0}^{t} ||S_{2}(t-s)\partial_{x_{N}}v(\cdot,0,s)||_{L^{p}} ds$$

$$\leq C \int_{0}^{t} \left(|\partial_{x_{N}}v(s)|_{L^{q}} + |\partial_{x_{N}}v(s)|_{L^{p}} \right) ds$$

$$\leq C \int_{0}^{t} e^{Ms} s^{-\frac{1}{2}} ||v||_{X_{T,M}} ds \leq C e^{MT} T^{\frac{1}{2}} ||\varphi||_{L_{\alpha(p)}^{q}} < \infty,$$

and

$$|w(t)|_{L^{r}} \leq \int_{0}^{t} |S_{2}(t-s)\partial_{x_{N}}v(\cdot,0,s)|_{L^{r}} ds$$

$$\leq C \int_{0}^{t} |\partial_{x_{N}}v(s)|_{L^{r}} ds$$

$$\leq C \int_{0}^{t} e^{Ms} s^{-\frac{1}{2}} ||v||_{X_{T,M}} ds \leq C e^{MT} T^{\frac{1}{2}} ||\varphi||_{L_{\alpha(p)}^{q}} < \infty,$$

for 0 < t < T. Furthermore, by (P_3) we apply an argument similar to that in the proof of Lemma 3.2 and see that w is bounded and smooth in $\mathbb{R}^N_+ \times (T_1, T)$ for any $0 < T_1 < T$. Therefore we deduce that (v, w) is a solution of (4) in $\mathbb{R}^N_+ \times (0, T)$ satisfying (7).

Let (\tilde{v}, \tilde{w}) be a solution of (4) in $\mathbb{R}^N_+ \times (0, T_*)$ for any $T_* > T$ and such that $\tilde{v} \in X_{T_*, M_*}$ with some $M_* > 0$. Then $\tilde{v} \in X_{T,M}$ and since

$$v - \tilde{v} = Q[v] - Q[\tilde{v}] = D[v - \tilde{v}]$$
 in $X_{T,M}$,

by (13) we have

$$||v - \tilde{v}||_{X_{T,M}} \le \frac{1}{2} ||v - \tilde{v}||_{X_{T,M}}.$$

This implies that $v = \tilde{v}$ in $X_{T,M}$. Therefore we deduce that (v, w) is a unique global-in-time solution of (4) satisfying (7). Thus Theorem 1.1 holds for the case $q < \infty$. Furthermore, by [4, Theorem 1.1] with $\varepsilon = 1$ and $\varphi_b \equiv 0$ we have Theorem 1.1 for the case $p = q = \infty$, and the proof of Theorem 1.1 is complete. \square

References

- [1] H. Amann and M. Fila, A Fujita-type theorem for the Laplace equation with a dynamical boundary condition, Acta Math. Univ. Comenianae 66 (1997), 321–328.
- [2] J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, second edition (1975).
- [3] M. Fila, K. Ishige, and T. Kawakami, Large-time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition, Adv. Differential Equations 18 (2013), 69–100.
- [4] M. Fila, K. Ishige, and T. Kawakami, The large diffusion limit for the heat equation with a dynamical boundary condition, Commun. Contemp. Math. 23 (2021), Paper No. 2050003, 20 pp.
- [5] M. Fila, K. Ishige, and T. Kawakami, Solvability of the heat equation on a half-space with a dynamical boundary condition and unbounded initial data, Z. Angew. Math. Phys.74 (2023), Paper No. 143, 17 pp.
- [6] M. Giga, Y. Giga and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser, Boston, 2010.