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This short article is an announcement of the forthcoming paper [20] with Chunhua Li,
Yoshinori Nishii and Yuji Sagawa, which concerns L2-decay properties of small solutions
to a class of cubic derivative nonlinear Schrodinger equations in one space dimension.
Throughout this article, we denotes by £ the standard free Schrodinger operator 0, + %0:%
for (t,2) € R x R with i = /—1. The function space H* stands for the L2-based Sobolev
space of order k equipped with the norm [||lzx = >, 109¢]|12, and the weighted

Sobolev space H*™ is defined by {¢ € L*|(-)™¢ € H*} with (z) = /1 + 22.

1 Backgrounds

First of all, let us recall some of well-known results on large-time behavior of small data
solutions to the cubic power-type nonlinear Schrédinger equation in the form

Lu = Nu|*u, t>0, zeR, (1.1)

where X is a constant. What is interesting in (1.1) is that the large-time behavior of the
solution is actually affected by the coefficient A even if the initial data is sufficiently small,
smooth and decaying fast as |z| — oco. If A € R, it is shown in [5] that the solution to
(1.1) with small initial data behaves like

_ b {22 —Aaa/t) log t} 172
u(t, x) \/Eoz(ac/t)e +o(t7/%) as t —
with a suitable C-valued function «(y). An important consequence of this asymptotic
expression is that the solution decays like O(t7'/2) in L>(R,), while it does not behave
like the free solution unless A = 0. In other words, the additional logarithmic factor in
the phase reflects the long-range character of the cubic nonlinear Schrédinger equations
in one space dimension. If A € C in (1.1), another kind of long-range effect can be
observed. For instance, according to [26] (see also [16], [9], [3], etc.), the small data
solution u(t, 7) to (1.1) decays like O(t~'/%(logt)~'/2) in L=(R,) as t — +oo if Im A < 0.
This gain of additional logarithmic time decay should be interpreted as another kind of
long-range effect (see also [1], [2], [3], [4], [6], [7], [8], [9], [10], [11], [13], [14], [16], [17], [18],
21], [22], [24], [25], and so on). Time decay in L*-norm is also investigated by several
authors. Among others, it is pointed out by Kita-Sato [15] that the optimal L?-decay
rate is O((logt)~'/?) in the case of (1.1) with Im A < 0. We intend to extend this kind of
L2-decay results to the case where the nonlinear term depends also on J,u.



2 Derivative nonlinear Schrodinger equations

2.1 Weak dissipativity

From now on, we turn our attention to the initial value problem in the form
Lu = N(u,d,u), t>0, zeR (2.1)
with
u(0,z) = (), r € R, (2.2)

where ¢ is a prescribed C-valued function on R. The nonlinear term N (u, d,u) is a cubic
homogeneous polynomial in (u,7, dyu, Jy,u) with complex coefficients. If ¢ is O(e) in
H? N H*! with 0 < ¢ < 1, what we can expect for general cubic nonlinear Schrodinger
equations in R is the lower estimate for the lifespan 7, in the form 7. > exp(c/e?) with
some ¢ > 0 not depending on &, and this is best possible in general (see [12] for an example
of small data blow-up). More precise information on the lifespan is available under the
restriction

N(e” 0) =e“N(1,0), 6€R (2.3)
and the initial condition

u(0, ) = (), z € R, (2.4)
instead of (2.2), where ¢ € H> N H*! is independent of . In fact we have the following.

Theorem 2.1 ([23], [27]). Assume that ¢ € H* N H*'(R). Suppose that the nonlinear
term N satisfies (2.3). Let T be the supremum of T' > 0 such that the initial value problem
(2.1)~(2.4) admits a unique solution in C'([0,T); H* N H*'(R)). Then it holds that

1
liminf £? log T, > —— (2.5)
o H0 2sup(|¢(§)[[Im v (§))
¢eR
with the convention 1/0 = +o00, where the function v : R — C is defined by
1 dz
= — N(z,i€2)— R 2.
=55 § NGNS, EER (2.6

and ¥ denotes the Fourier transform of ¥, i.e.,

/ _L —iy¢
w<§>—m/ﬂ%e V(y)dy, €€ R.

In view of the right-hand side in (2.5), it may be natural to expect that the sign of
Im v (&) has something to do with global behavior of small data solutions to (2.1). In
fact, it has been pointed out in [23] that typical results on small data global existence
and large-time asymptotic behavior for (2.1) under (2.3) can be summarized in terms of
Im v (&) as follows:



e Small data global existence holds in C'([0, 00); H*> N H*') under the condition

Imv(£) <0, €eR, (A)

e The global solution has (at most) logarithmic phase correction if

Also it is not difficult to see that there is no L?-decay under (Ay) for generic initial
data of small amplitude.

e [2-decay of the global solution occurs under the condition

supImr(§) < 0. (A)
¢eR

Note that v(§) = X if N = Mu|?u. So these results cover the results in the power-
type nonlinearity case mentioned in Section 1. However, it is pointed out in [19] that
an interesting case is not covered by these classifications, that is the case where (A) is
safistied but (Ag) and (A,) are violated (for example, if N = —i|u,|*u, we can easily
check that Imv(§) = —&% < 0, while the inequality is not strict because of vanishing at
¢ =0). This is what we are interested in.

Before going further, let us remember the fact that, if (A) is safistied but (Ay) and
(A) are violated, then there exist ¢y > 0 and & € R such that Imv(§) = —co(§ — &)
The converse is also true. This fact naturally leads us to the following definition of the
weak dissipativity.

Definition 2.1. We say that a cubic nonlinear term N is weakly dissipative if the following
two conditions (i) and (ii) are satisfied:

(i) N(e",0) =¢N(1,0) for 6 € R.
(ii) There exist ¢p > 0 and & € R such that Im v(¢) = —c(§ — &)

2.2 Upper and lower L?-decay bounds in the weakly dissipative case

The following two results are due to [20], which reveal the L?-decay property in the weakly
dissipative case.

Theorem 2.2 ([20]). Suppose that N is weakly dissipative and that ¢ = ||| gsnp21 is
sufficiently small. Then there exists a positive constant C, not depending on £, such that
the global solution u to (2.1)—(2.2) satisfies

Ce
(1+&2log(t +1))1/4

lu(@)]zz <

fort > 0.



Theorem 2.3 ([20]). Suppose that N is weakly dissipative and that v does not vanish at
the point & coming from (ii) in Definition 2.1. Then we can choose €y > 0 such that the
global solution u to (2.1)—(2.4) satisfies

lim inf ((log t)Y4||u(t)||2) > 0
t—+o00 ®

for e € (0,¢&0].

Remark 2.1. According to [15], the optimal L-decay rate is O((logt)~'/2) in the case
where N = A|u*>u with Im A < 0. This should be contrasted with Theorems 2.2 and

2.3, because these tell us that the optimal L2-decay rate in the weakly dissipative case is
O((log t)~¥/4).

Now, let us explain heuristically why L2-decay rate should be O((logt)~1/4) if 4(&) #
0. For this purpose, let us first remember the fact that the solution u° to the free
Schrodinger equation (i.e., the case of N = 0) with (2.2) behaves like

a0 i \" ey
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ast — +oo for £ =0,1,2,.... Viewing it as a rough approximation of the solution u for

(2.1), we may expect that 9%u(t, z) could be better approximated by

<E>k LA <logt E) ei%i
t) Vi "t

with a suitable function A(7,¢), where 7 =logt, £ = x/t and t > 1. Note that
A(0,6) = e ()

and that the extra variable 7 = logt is responsible for possible long-range nonlinear effect.
Substituting the above expression into (2.1) and keeping only the leading terms, we can
see (at least formally) that A(7, &) should satisfy the ordinary differential equation

i0, A =v(E)|APPA+ -
under (2.3). If N is weakly dissipative, we see that
O |A]? = —2¢0(€ — &)* A" + -+
Then it follows that
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whence
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up to harmless remainder. By considering the behavior as ¢ — +oco of this integral care-
fully, we see that L?-decay rate in the weakly dissipative case should be just O((logt)~'/4).
Indeed, we have the following lemma.

Lemma 2.1. Let § € L*(R), & € R and

B B(O)?
St = / T €= &) 10E)Pr

¢, t>1. (2.7)

(1) We have
S(r) < 40| per™ V2, 7> 1.

(2) Assume that there exists an open interval I with I 3 & such that infecr |6(€)] > 0.
Then we can choose a positive constant C., which is independent of T > 1 (but may
depend on 0 and &), such that

S(r) > c.r V2 r>1.

Our strategy of the proof of Theorems 2.2 and 2.3 is to justify the above heuristic
argument. For the details, see the forthcoming paper [20].
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