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1 Introduction

This is a joint work with Thomas Eiter (Weierstrass inst. Applied Analysis and Stochas-
tics, Berlin) and Mads Kyed (Hochschule Flensburg) and this manuscript was written
based on Either, Kyed and Shibata [7].

Let © be a C? exterior domain in R? and I' the boundary of 2. At begining, I consider
the Navier Stokes equations

du+u-Vu—Au+p=F, divu=0 inQxT, ulp=0. (1)

Here, F is a 27 periodic external force, that is F(-,¢t 4+ 27) = F(-,t) for any ¢t € R and
T = R\27Z. There are a lot of studies of periodic solutions to the Navier-Stokes equations
(1), cf. ]9, 14, 21, 22]. See [7] for more reference. By far the most popular method that
emerged is based on a representation formula that arises from the principle that a solution
to the initial value problem tends to a periodic orbit as ¢ — oo regardless of the initial
value. Equivalently formulated, a solution to the initial-value problem with time-periodic
right-hand side tends to a periodic orbit as ¢ — co. Since the Stokes operator generates a
C" analytic semigroup, which is denoted by {7'(t)};>o here, the solution is represented as

u(t) = / T(t — s)F(s) ds — / T(t - s)P(u- Vu)(r) ds, 2)

—00 —00

where P denotes the solenoidal projection defined by (11) of Sect 2, below. Then, it is
easy to verify that this integral expression indeed leads to a periodic solution of the same
period as F. The challenge with the method based on (2) is to construct a framework of
Banach spaces such that the integral expression is well defined. Since F' is time-periodic
and therefore non-decaying, this clearly requires suitable decay properties of the semi-
group {T'(t) }+>0, which is basically guaranteed by L,-L, decay estimates due to Iwashita
[13].



In this note, I would like to propose a completely different method based on the R-
solver and operator valued de Leewe theorem. In this section, I would like to explain our
method created in [6, 7] in the abstract framework. Let X, Y, Z be three Banach spaces
such that X C Z C Y andlet A€ L(X,Y) and B € L(X,Z)NL(Z,Y). Here, L(E, F)
denotes the set of all bounded linear operators from E into F. Let T = R\ 277Z be the
27 torus and we consider time periodic problem

du—Au=F, Bu=G forteT, (3)

where F(t+2n) = F(t) and G(t+2n) = G(t) for t € R. Our approach is to use R-solvers
associated with the corresponding resolvent problem:

M —Av=f Bv=y. (4)
Here, X is a complex number ranging on
e ={A€C||argA <7m—¢, |A] > Ao}

for some A\g > 0 and € € (0,7/2). The situation here is the case where the following
generalized resolvent estimate holds:

Aolly + llollx < CU SNy + llgllz + 1A 2glly)

when Z = (Y, X)1/2. This is an abstract version of the Agranovich and M. I. Vishik type
estimate for parameter elliptic problems (cf. [1], 2], [3], [4]).

To introduce the R-solver (R bounded solution operator) of problem (4), we start with
the definition of R-bounded family.

Definition 1. Let E and F' be two Banach spaces. We say that an operator family
T C L(E,F) is R bounded if there exist constants C' > 0 and ¢ € [1,00) such that for
any integer n, {15}, C T and {f;}}_, C F, the inequality:

1 n 1 n
/0 IS )Ty % du < C / 1S ) £ du
j=1 j=1

is valid, where the Rademacher functions ri, k& € N, are given by ry : [0,1] — {—1,1};
t — sign(sin 2F7t).
The smallest such C' is called R bound of 7 on £(X,Y’), which is denoted by R, r)T.

Next, we introduce an operator valued Fourier multiplier. Let m(&) be an Lo.(R \ {0}
function with value in L(F, F')). We set

Tnf = Fg [m(E)FrlfIE)] feSR, E),
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where Fr and Fg ! denote respective Fourier transformation and inverse Fourier transfor-
mation on R. The following theorem concerned with the boundedness of the operator 7,
was proved by Weis [20].

Theorem 2. Let E and F be two UMD Banach spaces. Let m(§) € C'(R\ {0}, L(E, F))
and assume that

Ree,m({m(€) | £ € R\{0}}) <7
Reer({Em/'(€) | € € R\ {0}}) <y

with some constant 1, > 0. Then, for any p € (1,00), 1), € L(L,(R, E), L,(R, F)) and
[T f |y < Coroll £l ey
with some constant C,, depending solely on p.
In view of Theorem 2, we introduce the following definition.
Definition 3 (R-solver). For every A = v+ it € X ,,, there exists a map
SN Y XY XxZ =X (F,FyF)— S\ (I, By, F3) € X

such that
(i) v = S(\)(f, \/2g, g) is a solution of problem (4),
(ii) S(\) satisfies

Rﬁ(YxYxZ,X)({(T@T)ZS(A) | A€ Ben}) < 1o,
RL(YxYxZ,Y)({(Tar)z()\s()\)) | A€ Xent) <,

for £ = 0,1 with some constant r.
S(A) is called an R-solver or R-bounded solution operator of problem (4).

Before considering periodic problem (3), we consider
oi—Au=F, Ba=G forteR. (5)

Let ¢(t) € C*(R) which equals 1 for |t| > Ao+ 1 and 0 for |t| < Ao + 1/2. From (ii) of
Definition 3 ¢(7)S(i7) is R bounded, that is

Reyxyxzx){(70:) 0(1)S(ir) | 7 € R}) < 7,
Reyxyxzy){(70;) (ite(r)S(ir)) | 7 € R}Y) < 7y,

for £ = 0,1 with some constant 7. Let

S(F,G) = F2 ' p(r)S(ir) Fe[(F, A2G, G))(r)]
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where Fr and Fp ! denote Fourier transformation and Fourier inverse transformation on
R, and, AV2G = F [(ir) V2 Fe[G](7)]. Writing H, = Fg '[o(7)Fe[H](7)] for H = F and
G, we see easily that w = S(F, G) satisfies equations:

Gtw—ALD:FW Bw:CNﬂD for t € R.

Moreover, by Theorem 2, for any p € (1,00) there exists a constant C), depending on p
such that

10:S(F, G|, ) HIS(F, G|y x) < Cofol[|Foll @y +HIA Gl @ HI Gl .2

(6)

We now consider time periodic equations (3). Let Fr and F; ' denote Fourier transfor-
mation and Fourier inverse transformation on T, that is

= o [T F el = Y
2 Jo T

kEZ

Frlf](F)

where Z is the set of all integers and (ag)rez denotes a sequence. Let L,(T, X) be the set
of all L,(R) function f valued with X such that f(¢ + 27) = f(¢) for any ¢ € R and let
WXT, X) = {f € L,(T, X) | uf € L,(T, X)}. Set

27 l/p
£y = { /0 I a) "

To treat time periodic problem, we use the operator valued de Leewe transference the-
orem stated as follows:

Theorem 4. Let E and F' be Banach spaces and let p € (1,00). Let m(&) be an Lo (R \
{0}) function valued in L(E,F)) and T, is a bounded linear operator from L,(R, E) to
L,(R,F). Suppose that for all f € E the point k € Z* is a Lebesgure point of &
m(&)x, and set myf = m(ik)f. Then, (my)peza i a Fourier multiplier from L,(T? E) to
L,(T¢, F), and in fact,

||T(mk)kezd||L(L,,(Td,E),L,,(Td,F)) < ||Tm||£(Lp(Rd,E),Lp(Rd,F))-

Here,

Tomp), a1 = Fir [ Fe[f1(0)kez) (1) = > e myFu[ f1(k).

kEZ

Proof. For the proof, refer Proposition 5.7.1 in [12]. O

Now, we consider (3), and set
uy = Fp p(r)S(ir) Fr[(F, A°G, G](7))].
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Then, u; satisfies periodic problem:
(9tu1 — A’llq = Fip Bul = GSO fort € T.

Here, H, = F;'[o(7)Fr[H](iT)] for H € {F,G}. Moreover, combining (6) and Theorem
4, we have

10vn ||, rv) + Jwllnyrxy < CUEoll,myy + 1A 2Golln,my) + [|Gollz, r.2))-

Thus, problem (3) is reduced to show the existence of finite number of solutions v of
equations:
ikvy — Avy = Fr[F(ik), Buy = Fr|G|(ik).

And then,
u=u + Z vy, (7)

K|<ho+1/2

is a solution of (3). This is our strategy to solve periodic evolution problem (3).

2 A time periodic problem for the Stokes equations in exterior

domains

Detailed arguments below are refered to Eiter, Kyed and Shibata [7]. Let Q be a uniform
C? bounded domain or exterior domain in RY (N > 2) and let T' be the boundary of €.
Let L,(92) be the set of all Lebesgue measurable functions f defined on € such that

1/q
fller = { [ 1f@irar} " < oc
Q
for 1 < g < oo. And let

W () = {f € Ly(Q) | Dgf(z) € Lo(Q) (Jal <m)}, [Ifllwpi) = Y I1DS .0

a|<m
We consider time periodic problem for the Stokes equations:
du—Au+Vp=f, divu=0 inQxT, ulp=0. (8)
The corresponding resolvent equations read for the following equations:
AW—Av+Vqg=F, divv=0 inQ, v|p=0. 9)
First, we introduce the Helmholtz decomposition. Let

~

HNQ) = {u € Lgioc(Q) | Vu € L ()N}

q



We consider the weak Neumann problem:
(Vu, Vo) = (£,Vy) Ve HL(Q). (10)

Here, (f,9) = [, f(z)g(x)dz. From [10, 18] we know that for any f € L,(Q)" problem
(10) admlts a unique solutlon u € qu(Q) satisfying the estimate: ||Vul|z @) < C[/f||z,@)-
Let
Jo(Q) = {u € Ly()N | (u, Vo) =0 Ve Hy(Q)},

which is called the solenoidal space. For u € W, (), what divu = 0 in Q is equivalent to
that u € J,(Q).

Forany f € L,(2),letu € ﬁ;(ﬂ) be a unique solution of (10) and set g = f—Vu. We see
that g € J,(Q2). f = g+Vuis called the Helmholtz decomposition. Let P : L,(Q) — J,(Q)
be the solenoidal projection defined by

g = Pf. (11)

According to Shibata [17], we know that for any e € (0,7/2), there exists a positive

constant Ag and R-solvers
T(X) € Hol (S ng, L(Lg( DN, HZ(Q)Y), P(N) € Hol(Zﬁ,\O,E(Lq(Q)N,}AI;(Q))
such that for any f € L,(Q)", v = T(M)f and q = P(M\)f are unique solutions of equations
(9) and
Rﬁ(Lq(Q)N H2( ({(78 )ZT( ) | /\ € Ee)\o}) S Ty (f = 0, 1)7
Rem({T0) AT(N) [A € Bax}) < (€=0,1), (12)
RL(LQ(Q)N)({(T@T)E(VIP(A)) | )\ € 257)\0}) S Ty (f = 0, 1),

Let ¢(7) be a C*(R) function which equals to 1 for |[7| > Ao+ 1 and 0 for |7| < Ao+ 1/2,
and set

w, = Fp [T r)e(r)Felfl(7)],  pp = Fyp ' [Pir)(7) Frlf] (7).
Then, u, and p,, satisfy equations:

ou, — Au, +Vp, =f,, divu,=0 inQxT, wu,lr=0, (13)
where f, = F '[¢(7) Fr[f](7)], and the estimate:

100ag ]|z, L) + 0], mwze) < Clifollr,mr,@) < ClfllL, i@ — (14)

provided that £ € L,(T, L,(2)") and 1 < p,q < co. Thus, we have to consider the low
frequency part. Let k be an element of Z such that |k| < Ao+ 1/2. Let u, € W2(Q)V
and p, € H ql(Q) be unique solutions of the resolvent problem:

ikuk — Auk + Vpk = FT[f](kI), div u;, = 0 in Q, uklp =0. (15)



2.1 () is a bounded domain

We know that when Q is bounded, u, € W7(€2) and p; € ﬁql(Q) exist uniquely and
they satisfy the estimate:

2T
[urllwze) + Vil < CllFE]F) wz@)- < C/O 1EC )|z, dt. (16)

Combining (14) and (16), we have the following theorem.

Theorem 5. Let Q2 be a bounded uniformly C* domain in RN (N >2). Let1 < p,q < oo.
Then, for any £ € L,(T, L,(Q)Y), problem (8) admits unique solutions u and p with

uc Wpl(T7 LQ(Q)N) mLP(Tv WqQ(Q)N)ﬂ p € LP(T) qu(Q)))
which satisfy the estimate:

100al L, m, Lo (0)) + a2, wz) + VP .0 < ClEllz,m @)

2.2 () is a three dimensional exterior domain

We now continue the argument in the case where 2 is an exterior domain. We assume
that € is a three dimensional exterior domain. Let b > 0 be a large number such that
Q¢ C By, ={z € R?| |z| < b}. We will discuss the unique existence theorem of 27-periodic
solutions of (8).

We divide periodic function f into two parts as f = f, + fg, where we have set

1

T or

fo(x) /027T fz,t)dt, f(x,t)="1F(z,t)—fs(x).

Obviously, fo% fi(-,t)dt = 0. We call that f, is the oscillatory part of f and fg the
stationary part of f.

We know that when k& # 0 and |k| < Ay + 1/2, problem (15) admits unique solutions
w, € W2(Q)N and p, € H1(Q) which satisfy the estimate (16). Thus, setting

u; =u, + Z U, P =p,+ Z Pk,

1<[k|<Ao+1/2 1< [k|<Ao+1/2

we see that
u; € Ly(T,W2QM) N WHT, Ly()Y).  p1 € Ly(T, HL(Q))
and u, and p, satisfy the equations:

8tUJ_—AuL+VpJ_:fJ_, diVllJ_:O il’lQXT, UJ_ll":O.



Moreover, we have

100z, r,0) + 0Ll ewze) + VL @L0) < ClfllL,ewze)-

Let ugs and pg be the stationary part of u and p, and then ug and pg satisy the stationary
equations:
—Aug + Vpg =1y, divug=0 in (Q, uslp =0. (17)

Using the fundamental solutions:

1 5ij ;T . 1 &£
_Bw(uy+pﬁ)’ %@>_3wup7

of the Stokes equations in R? and the cut off technique, we have
Lemma 6. Let Q2 be a uniformly C? exterior domain in R3, and let 3 < q¢ < oo. Let
< g >= sup,en(l + [2])[g(2)], and
L,sp(2) ={g€ Ly(Q) | g(x) =0 for |x| > 3b}.
Iffs = divF + g such that
<divF >3+ <F >3;<00, geL,s((Q),

then problem (17) admits unique solutions ug € W7(Q)* and pg € W, (Q) satisfying the
estimate:

||115||Wq2(9)+ <ug >1 + < Vug >» +||P5||wa(m+ < Ps >2
< C(< divFg >3+ < Fg >9 +||g||Lq(Q))
It is important to investigate the asymptotic behaviour of oscillatory parts u,, espe-
cially to solve the Navier-Stokes equations. For this purpose we use the following lemma
which shows the asymptotic behaviours of the fundamental solution I'; of the resolvent

equations:
ikv —Av+Vqg=f, divv=0 inR>

Lemma 7 (Eiter and Kyed [5]). Let

_ 1 — 9z E§®E
— 1 _
f1= WWhaLmk@ |ﬂ2ﬂ'

Then, T} € Ly(R® x T) for q € (1,5/3) and VT € L,(R*xT)? for q € (1,5/4). And for

any multi-index « € N3, § > 0 and r € [1,00),

Coz,é

I1DZT (2, )|, 0m) < |z [3+el

(|z] > 9).

oo



We consider again equations:
oy —Au; +Vp, =f,, divu, =0 inQ, uy|r=0. (18)
To state the asymptotic behaviour of u,, we introduce the norm
< 2= 3 1y (1L + )

Using the fundamental solutions to the oscillatory part I'; and the cut off technique, we
have the following lemma.

Lemma 8. Let 3 < ¢ < oo and l € (0,3]. Assume that f|, = divF, + g, such that

27
/ FJ_(.L,t) dt =0, <F, >ppt+ < divF Zpp+1< 00,
0

2
/0 g (v, t)dt =0, g € L,(T, Ly(Q)?).
Then, u, satisfies the estimate:
<uy >pp+ < Vur > < C(SAivEL >0 + < Fu >pp gl @)
Summing up, we have obtained the following theorem.

Theorem 9. Let 2 < p < o0 and 3 < q < oo, and ¢ € (0,3]. For all f = fs + £, with
fs =DivGg +gs and £| = divGy + g, such that gs € Ly3,(Q)?, g1 € L,y(T, L, 3(22)?)
and

<Gg >+ <divGg >3+ <G >+ <divG >p < 00

problem (8) admits unique solutions u and p with
u € WHT, L)) N L(T,W2(Q)*), p e L(T, HX())
satisfying the estimate:
[usllwz)+ < us >1 + < Vug > +{[psllwit+ < ps >2 +HulL,cwz@)

+ HﬁtuLHLP(T,Lq(Q))+ <uy >pp+<Vug >, +HVPL||LP(T,Lq(Q))
<O<divGg >3+ < Gg >+ <divGy >, 1 + < G >y

+llgs Ly + gLl @)

3 Time periodic solutions to the Navier-Stokes equations

Since we already know Theorem 9, which tells us the unique existence of time periodic
solutions to the Stokes equations based on the maximal regularity for the high-frequency



part and the space decay properties of solutions, we can show the unique existence of
strong solutions stated as follows, which is completely different approach from [9, 14, 21,
22].

Theorem 10. Let 2 < p < o0 and 3 < q < oo. Assume that F = Fg + F with
Fs = divGg and F, = divG . Then, there exists a small constant ¢ > 0 such that if
F satisfy the smallness condition: < Fg >3+ < Gg >3+ <F| >0 + <G| >,:< €2,
then problem (1) admits unique solutions u = ug +uy and p = ps + p, with

ug € WXQ)°, uy e Ly(T, WZ(Q)°) N W, (T, Ly(Q2)*),
ps € W, (), pL € L,(T, Hy(Q))
satisfying the estimate:
<ug >1 + < Vug >3 +usllwz)+ < ps >2 +Hlpsllwa+ <ur >p1
+ < Vuy >0 H0ad L, L) + ladll,ewze) + VL@@ <€

Proof. To move u - Vu to the right hand side and using the Banach fixed point theorem
based on Theorem 9, we can prove Theorem 10 immediately. (I

We now consider the Navier-Stokes equations in a periodically moving exterior domain.

Let ¢ € CO(T, C3(Q)N) 1 C1(T, CH(Q)™) with
[éllcocr.ca@)) + 10l cor,cr () < € (19)

and €; and I'; are given by
Y ={r=y+o(t)|ycQ}, Ti={r=y+o@yt)[yel} (tcR)
Consider the Navier-Stokes equations:
u+u-Vu—Au+p=F, divu=0 inQ ulr, =0. (20)

When € is small enough and €2 is a bounded domain, Farwig, Kozono, Tsuda, and Weg-
mann [8, 11] proved the global well-posedness. Eiter, Kyes and Shibata [7] also proved the
global well-posedness by using a perturbation method based on Theorem 5. The method
in [7] is completely different from [8, 11].

Moreover, in [7], the case where € is an exterior domain of R? is treated. If we assume
that € in (19) is small enough, we have the inverse transform: y = x + ¢(z,t), and we
reduce equations (20) to the following equations:

ow—Aw+Vq=G+L(w,q) +N(w), divw=0 imnQxT, wjr=0 (21)
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with a fixed domain 2. Here, L is a linear operator of the form:

L(w,q) = a(x,)ow + Y ba(r,t)Dyw + c(x.1)Vq

<2

with [|(a, ba, €) | L@xm) < C€?, and N(w) is a nonlinear term satisfying the estimate
IN(w)| < Clw||[Vw|. Using the standard iteration argument based on Theorem 9, we
have the following theorem.

Theorem 11. Let 2 < p < 00 and 3 < q < 0o0. Assume that 2/p+3/q < 2. Assume that
G =Gs+ G, with Gg =divHg and G| =divH . Then, there exists a small constant
€ > 0 such that if ¢ and G satisfy the smallness condition:

éllcoer.c2 ) + 10:@llcor.cr ) < €,
|G L, o)+ < GL >p2 + <Hi >,1 + < Gg >3 + < Hg >5< €

then problem (21) admits unique solutions w = wg + W, and q = qs + q, with
Wi € HYT. L)) N L(T, HAQ)), ws € HX(Q)P, . € LT AL(Q). as € HL(0)
satisfying the estimate:

<WL >p1+ < VW >0 ‘l’”WHLP(’H‘,Hg(Q)) + 10wl 2, r, 2o + IVALl 2T, 20 0))

+ <ws >1 + < Vws >y +|wlmz2) + llasll o) <€
Here,
< g1 Zpe=sup gz, ), (L +z)' < gs >e==Sug|gs($)K1-+|ng
xre HAS

This theorem gives us the unique existence of periodic solutions of equations (20) for

small € when €, is an exterior domain of R3.
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