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Abstract

This is a summary of our preprint [5]. We give a time-asymptotic expansion with pointwise
error bounds for solutions to 1D barotropic Navier—Stokes equations. The leading-order term of the
expansion is the well-known diffusion wave and the higher-order terms are newly introduced family
of waves which we call higher-order diffusion waves. These waves provide accurate description of
the long-time behavior at the “tail” of the diffusion wave, that is, around the origin x = 0. They
complement the diffusion wave approximation and provide a precise description of the long-time
asymptotics of the flow. The remainder estimate of the expansion is given in a pointwise manner
similar to the work by Liu and Zeng [6]. In particular, the expansion is valid locally around = = 0
and also in the LP(R)-norm for all 1 < p < oco.

1 Introduction

We shall consider the motion of a one-dimensional viscous compressible fluid. Let v =
v(x,t) be the specific volume (the reciprocal of the density p) and v = u(x,t) the flow
velocity. Here ¢ is the time and x is the Lagrangian mass coordinate which is related to
the Eulerian coordinate X by z = fOX p(X',1)dX'. We consider barotropic flow, that is,
the pressure p = p(v) is a function only of the specific volume and does not depend on
the temperature. Here we assume that p/(v) > 0 and p”(v) # 0 for v > 0. We also assume
that the viscous coefficient v > 0 is a positive constant. Under these settings, the flow is
described by the following 1D barotropic Navier—Stokes equations:

v — Uy = 0, reR, t>0,
up + p(v)e = V(U /)y, reR, t>0, (1)
v(x,0) = vo(x), u(z,0) = up(z), x€R.

The first equation is the conservation of mass, the second is the balance of momentum,
and the third equations are the initial conditions.

1.1 Long-time behavior of the flow and the diffusion waves

The objective of our study is to obtain a precise understanding of the long-time behavior
of the solution (v, u) when the initial data (vo, ug) is a small perturbation of the steady
state (vs,us) = (1,0). We note that for the purpose of describing the long-time behavior,
it is more convenient to consider
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instead of (v,u). Here ¢ = y/—p/(1) is the speed of sound for the state (vg,ug). These
are Riemann invariants of the inviscid and linearized counterpart of (1). A well-known
fact about the long-time behavior is that u; has the nonlinear diffusion wave 6; as its
asymptotic state. Here 6; is the self-similar solution to the following convective viscous
Burgers’ equation:

D40; + Ni0y0; + 0,(07/2) = %339% xeR,t>0,
> (3)
tl\l(IEll Oi(x,t) = </_OO wi(x,0) dw) d(x), xze€R.

Here \; = (—1)""'c and §(z) is the Dirac delta function. An explicit formula for 6; is
obtained by the use of the Cole-Hopf transformation:
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We wrote above that the diffusion wave 6; is the asymptotic state of the solution w;.
Let us make precise what we mean by this. By the explicit formula above and by the
results in [6], we have

16:( )l S VP2 and [(u; = 0) (- t)l|ze S ETEETVPE (1< p <o) (5)

These decay estimates are optimal. Therefore, #; describes the leading-order asymptotics
of w; in the L”(R)-norm for 1 < p < oo. The key to prove the decay estimate above—
especially for 1 < p < 2—is the pointwise estimates of Green’s function (the fundamental
solution) of the linearization of (1) around (vs,us) = (1,0); see [6, 7, 9]. Using the
pointwise estimates for Green’s function, they obtained the following pointwise estimates
for the solution itself:

g = 0 D] S [ = At + 1) 4+ (4 D] 4 [+ A+ D+ (041772 (6)

By an integration in the spatial variable x, we get the LP-decay estimates (5) above.

1.2 Long-time behavior at the “tail” of the diffusion waves and time-asymptotic
expansion of the solution

We now turn our attention from the decay estimates in the global LP(R)-norm to local
decay estimates. Fist, we note that 0;(x,t) ~ ¢t~/ for x = \;t+O(1) unless M; = 0. Next,
from the pointwise estimates (6), we see that |(u; — 6;)(z,t)| < t73/* for z = M\t + O(1).
Therefore, the diffusion wave 6; describes the leading-order asymptotics locally around
the characteristic line x = A\;t. However, as can be seen by (4), the diffusion wave 0;
decays exponentially fast around the origin x = 0. And 6; provides almost no information
about the long-time behavior around x = 0. In this sense, the origin x = 0 lies at the
“tail” of the diffusion wave 0;.

We then set the goal for the current study as follows: obtain a clear picture of the
long-time behavior around the origin x = 0. We note in passing that this problem has



some implications to a fluid-structure interaction problem (see [2, 3, 4]). The difficulty
lies in the fact that, as we explained above, the origin is at the tail of the diffusion wave
;. To resolve this issue, we need new waves describing the long-time asymptotics of the
flow. A natural direction is to investigate higher-order asymptotics of the solution. In
fact, van Baalen, Popovi¢, and Wayne constructed a time-asymptotic expansion in an
L2-framework [8], and it turned out that the first higher-order term beyond the leading
order term 6; decays as ¢t~/ around the origin. This higher-order term is then expected
to describe the long-time behavior of the flow around x = 0. Unfortunately, we cannot
conclude that the solution u; is asymptotically equivalent to this higher-order term. The
reason is because the remainder estimate of the expansion is given only in the H!(R)-
norm; this implies a far from optimal decay estimate around x = 0. To overcome this
problem, we construct a time-asymptotic expansion with pointwise error bounds for the
remainder. We explain our results in the next section.

2 Time-asymptotic expansion with pointwise error bounds

2.1 Higher-order diffusion waves

We first define higher-order diffusion waves &;., (n > 1) which consist of the higher-order
terms in our time-asymptotic expansion.

Let (v, u) be the solution to (1) and define u; and 6; by (2) and (3), respectively. We
set &0 = 0;/2 and define &, inductively by the equations:

{atgi;n + /\zaﬂc&,n + Ox(ezgz,n) + aa:(ei’gi’;n—l) = gazgz,m T e R,t > O: (7)

gi;n($70) = 07 X e R,
where i =3 — ¢ (1I'=2and 2’ = 1).

Although we do not have a simple explicit formula for &;,,,, we can still understand the
long-time behavior of &;,, quite well. To explain this, we set
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and
a2, 15 0) = [( = At + 1)) + (L + 1)] 772,
Uzt A) = [lz = A+ 1) + (£ + 1)%] 7,
Wisn(2,1) = (2,15 A5) + P, 8 Ar).

Then we have the following decay estimates for &;.,,.

Proposition 2.1. Let n be a natural number. If ff‘; u;(x,0) dz is sufficiently small for
both j =1 and 2, we have

‘8££i;n(x7 t)| < Cn,k(t + 1>_k/25n+1\11i;n—1(557t) (k > 0)

for some positive constant Cy, .



We conclude in particular that
i (2, 1) SV for 2 = O(1).

This decay estimate is optimal. In fact, we can also write down a simple asymptotic
formula for &, around = = 0. We refer to our preprint [5] for the precise statement.
Also note that by setting n = 1, we get |&.1(z,t)] < 732 for & = O(1). This is the
decay rate obtained by setting = 0 in (6). Thus it is expected that &1 describes the
leading-order asymptotic behavior around the origin x = O(1). This is rigorously justified
by the theorem in the next section.

2.2 Main theorem and its consequences

We now state our main theorem. To state the assumptions of the theorem, we set ug =
(vo — 1,up) and denote its anti-derivatives by u3:

wpo) = [ wln)dy, wls) - / " aoly) dy.

—00

Theorem 2.1. For ug = (vg — 1,up) € H*(R) x H(R), let (v,u) be the solution to (1)
and define u; by (2). Further, we define 0; and &, by (3) and (7), respectively. Set

U1 = 572;1 + ’Yi’axeiﬁ Uim = gi;n + A/i’a:vgi’;n—l (’I’L > 2)

Here, i' = 3 —i and v; = (=1)'v/(4c). Then for n > 1, there exist positive constants 6,
and C,, such that if

6 = [Juolle + Stelﬂg[(\m\ + 1) |uo ()| + (2] + 1)°* fug(x)|]

+sup|(|z] + 1) (Jug (—2)| + Jug (2)])] < 0,

>0

the solution (v,u) satisfies the following pointwise estimates:

‘ (u — 0, — Zn: uk) (z, t)‘ < 0T (2, 1) 8)

k=1
forallx € R and t > 0.
Let us now discuss some consequences of the theorem.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have the optimal LP-decay

estimate
‘ (10 = Y v ) 0
k=1

Remark 2.1. By the Corollary above and Proposition 2.1,
n=1
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< Cuo(t + 1)V (1 < p < o00).
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is a time-asymptotic expansion in the LP(R)-norm for every 1 < p < co. Note that
Hui;n(.7 t) HLP 5 t_(an—l_l/p)/Q_

This is in contrast to the result in [8]: due to the lack of pointwise estimates, their
asymptotic expansion is proved to be valid only in the LP(R)-norm for 2 < p < co.

As we stated in the introduction, our goal is to obtain a clear understand of the long-
time behavior around x = 0. For this, we have the following answer.

Corollary 2.2. Under the assumptions of Theorem 2.1, we have the optimal decay esti-

mate
‘ (Ui — (97; — Z U@k) (CU, t)
k=1

< Cpot

for x = O(1).
Remark 2.2. By the Corollary above and Proposition 2.1,

)
n=1

is also a time-asymptotic expansion locally for = O(1). Note that
i (2, )] ST

In particular, we see that u; is asymptotically equivalent to &;; around the origin = = 0.
As we wrote soon after Proposition 2.1, we have a simple asymptotic formula for &;,, for
z = O(1). Therefore, we now have a very precise understand of the long-time behavior of
the flow around the origin.

We give a remark on comparison of our time-asymptotic expansion and the one in [8].

Remark 2.3. The higher-order terms in the expansion constructed in [8] and the higher-
order diffusion waves &;.,, are closely related although defined in seemingly different ways.
One crucial difference between them is that the higher-order terms in the former are in
self-similar form but ours are not. In fact, ., resembles ¥;,_; and it has two waves
moving with speeds A; and —)\;; see Proposition 2.1. Thus we cannot approximate §;.,, by
a single self-similar wave. The higher-order terms in [8] are essentially the higher-order
diffusion waves §;., with the “—\;-part” neglected. The neglected part is higher-order in
the LP(R)-norm for 1 < p < oo but is important for the pointwise estimates.

We finally remark on the limit n — co.

Remark 2.4. The sum Y~ | u;, is actually convergent but the constant C,, on the right-
hand side of (8) diverges as n — oco. It seems plausible that if we add a log(t 4 1)-factor
on the right-hand side, the pointwise estimates are also valid in the limit n — oo. To go
beyond logt¢/t-order, we need to identify the logarithmic correction. This was done for
scalar generalized Burgers’ equation in [1] and is an open problem for our system.



2.3 Possible extensions

We discuss some possible extensions of our theorem.

First, it should be possible to extend the theorem to general quasilinear hyperbolic-
parabolic systems of conservation laws considered for example in [6]. Another possible
extension is the corresponding theorem for the hyperbolic balance laws considered for
example in [10].

Another natural direction is its extension to initial-boundary value problems, for ex-
ample, to the free-boundary problem considered in [2]. We hope to present such results
in the near future.

2.4 QOutline of the proof

The proof is a higher-order analogue of the Green’s function method in [6]. We refer to
our preprint [5] for details.

The first step of the proof is to write down an integral formulation of (1) using Green’s
function (the fundamental solution) of the linearized system. Then, with the ansatz that
u; satisfies the conclusion of Theorem 2.1, we estimate the convolutions in the integral
equation. Roughly speaking, if we could show that all the convolutions in the integral
equation also satisfy the same ansatz, we can show that the ansatz is true. The convolu-
tions are bounded using pointwise estimates of Green’s function in [6, 7].

The important part of the proof is to understand how one should define the higher-
order terms in the expansion, namely, &;.,. We explain this in the next section.

2.5 Heuristics behind the definition of the higher-order diffusion waves

Define Z; as the infinite sum of the higher-order diffusion waves (&;.,)5°,, that is,

n=1s
n=1
Then by (7), we see that
{atzi + NOEs + Oy (62/2 + 0,5, + 0,5,) = gagzi, reRt>0,i€{1,2},
Zi(z,0) =0, reRie{1,2}.

Note that the equations for =; and =, are coupled. We shall see below that these equations
arise naturally from (1).
We first note that (1) can be written in vector form as

00 0
u; + Au, = <0 V) Upy + (Nac> , (10)

where




The matrix A has

pll(l) pl/(l)
I, = -1 1/c ly = 1 1/c
1 Ac ( /(’) ) 2 Ac ( /F)
as left eigenvectors corresponding to eigenvalues \; = ¢ and \y = —c.
Let w; = u; —60;. We investigate the differential equation satisfied by w;. First, multiply
l; to (10) from the left and apply Taylor’s theorem to the nonlinear term N. Then we
obtain

v
Oru; + NiOpu; + Op(uy — ug)?/2 = §a§(u1 + ug) + 3, 0(Jul? + |u||0u|).
Next, subtract (3) from the equation above. We then observe that w; satisfies

(11)

The terms w? and w? decay as t=3/2 in the L>°(R)-norm by (5). So these are compatible
to O(|ul® + |u||0,u|) and are expected to be negligible. Next, the term ujus is a product
of waves of different family. Consider a similar example, namely, the product 6,605. This
decays exponentially fast as can be seen from (4). By a similar reason, ujus is negligible.
Finally, the term 0%uy is indexed by 4’; such term has lesser contribution compared to
waves belonging to the index i (cf. [6, Lemma 3.4]). Dropping these terms from (11), we
get the equation for Z;, that is, (9).

From the consideration above, we see that w; approximately satisfies (9). So w; —=; =
u; — 0; — =; should decay faster compared to w; = u; — 6;. This heuristically explains
why w; — 60; — > "7 | &.n, appears in Theorem 2.1. A more detailed analysis reveals that
Yir Oz (0 + 307 &) s also needed. Nevertheless, the argument above at least gives a
heuristic explanation of the definition of the higher-order diffusion wave &;),.
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