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1 Introduction

This proceeding is based on a joint work [10] with Maekawa Yasunori (Kyoto University).
We consider the two-dimensional stationary Navier-Stokes equations

(1)

—Au+u-Vu+Vp=F, zeR?
V-u=0 x € R2,

Here u = (uy(x),uz(x)) and p = p(x) denote the unknown velocity vector and the un-
known pressure of the fluid at the point x = (xy,75) € R?, respectively, while F' =
(F1(x), Fa(z)) is the given external force. Here u - Vu =3, ,u;0, u.

For three or higher dimension case, the system (1) have been studied well. For instance,
Leray [9] and Ladyzhenskaya [8] showed the existence of strong solutions to (1), and
Heywood [4] constructed solutions of (1) as a limit of solutions of the non-stationary
Navier-Stokes equations. Later on, various researchers have found scaling invariant spaces
of I’ guaranteeing the existence of solutions in R?, such as Chen [1] in the Lebesgue space,
Kozono-Yamazaki [6] in the Morrey space, and Kaneko-Kozono-Shimizu [7] in the Besov
space. These theories, however, cannot be applied for the two dimension case, since it is
hard to estimate the advection term w - Vu in scaling invariant function spaces. Hence,
until now, the two dimension case has been considered independently of higher dimension
ones.

For example, Yamazaki [12, 13] showed the existence of small solutions to (1) in the
weak L? space when given external forces decay sufficiently and have some symmetric
properties, such as fi(v2,71) = fo(x1, 22) for example. Galdi-Yamazaki [?] later showed
the stability of the above solutions more precisely. For its uniqueness, Nakatsuka [11]
constructed more general theory. Recently, Guillod [2] showed the existence of a pair
(u, F') solving (1), where F'is dependent on u and is constructed around an arbitrarily
given small function k having zero integral and decaying faster than |z|~2. Moreover,



Guillod-Wittwer [3] found solutions to (1) which is scaling invariant with respect to a
rotation conversion.

In this study, we will show the existence of solutions for external forces which are not
necessarily symmetric. Let us suppose that a external force F' is divergence-free and can
be expressed as F' = V¢ := (0,6, —0,,6) with some flow ¢. Actually, by the Helmholtz
decomposition, we can write F' as a sum of the rotation-free term and divergence-free
one. Then the curl-free term is absorbed in the pressure term Vp, and the divergence-free
one is written as V+¢ if I decays sufficiently. Under such a situation, we will show that
for every small compact supported radial flow ¢, having non-zero integral and its smaller
perturbation ¢ (which is not necessarily symmetric) decaying faster than |z|=2, there exist
solutions (u, p) of (1) for F' = V*(¢p. + ¢). In our result, we also impose the smoothness
of ¢, and ¢, so that we may obtain u as a classical solution in C?*(R%* R).

The standard approach to (1) is to analyze the vorticity-streamfunction system as below,
which is equivalent with (1) in a suitable functional framework.

{ A = —w, x € R?, @)

Aw =V x (V- V(ViY)) + Ad, € R2

Here ¢ = 4 (x) is the stream function, which generates the divergence-free flow as
u = Vi, while w := V X u := 0,,uy — J,,u; is the vorticity field. In addition, we
convert orthogonal coordinates (z1,x3) to polar ones (r,6), and consider the Fourier se-
ries Y(r,0) = >,z ¥a(r)e™ and w(r,0) = 3", ., w,(r)e™ with respect to the angular
valuable 6. Then (2) is expressed as the system of ordinary differential equations of
{tn }nez and {wy, }nez with the radius valuable r. For this method, we especially refer to
Hillairet-Wittwer [5], which studied the exterior problem outside of the unit disk centered
on the origin.

This report is organized as follows. In the next section, we will define the Fourier modes
of vector fields on polar coordinates and some important function spaces of them, and we
will state our main theorem in the third section. After that, the policy of the proof and
some required propositions are stated in the last section.

2 Preliminaries

We will analyze the equations in the polar coordinates. Actually, some key structures
are found by decomposing the system (2) into the Fourier mode with respect to the
angular valuable. For later use, let us introduce the Fourier series, as

f(rcosf,rsinf) = an(r)eme, (r,0) € [0,00) x [0, 27),

nel



where f,, denotes the n-mode of f defined by
1 2T )
fu(r) = 2—/ f(rcos®,rsin@)e dg, 0<r < oo.
T Jo

In what follows, we write f = (fn)nez and f= (fn)nez oy for the Fourier mode of f.
We now introduce the following function spaces for the Fourier mode. For simplicity, we
write continuous and smooth function spaces as

C™ = C™([0,00);C), C™ = (C™)%, C™ := (C™)A\)

for m € NU{0}. Let a > 0 and x > 1. For a function f € C', define the weight function
M f] as

n;oLK

l
Mn;a,n

[A1(r) == @+ )" L+ )0 f(r)], n€Z, 1e NU{0}, I <&

We note here that « counts the decay in r and « the decay in n. In addition, the order
[ of derivative makes the decay in r faster and the decay in n slower. In this report, we
applied this weight M! for the Fourier mode f,, with the same n € Z, so that in what

n;oLK

follows, we use the abbreviation as

Mloz,/{ [fn] (7”) = Mfi;a,/{ [fn] (7”) :

In association with this weight function, we define some norms and spaces as follows. As
for spaces of the vorticity and external force, we define the norm

||f||uglh = Zsupsup/\/lfm[fn](r), fel™ meNU{0}, m<k

=0 neZ r>0

and set
Uz, = {f € €™ 1 flup, <00, fon=Ta ¥n €Z, fu(0)=0Vn' € Z\{0}}.

Here f denotes the complex conjugate of f.
On the other hand, as a space of stream functions, we set

A ~.

Vi = {F = (o, ) € Vi x Vit Ifllag, = Ifollvg + 11 Fllpp, < 00}

where

V= {fo € O™ lfollvy = Y sup Mol fo(r) < o0, fo = %} ,
=1

T_

figjﬁ = {f e C™: Hvath = Z sup sup M., [f](r) < oo, fon=faVn € Z} :

=0 MEZ\{0} >0



We note that as for f € V.., we do not consider the zero mode fy itself, but consider its
differential. In addition, each differential &' fy decays as |0 fo(r)| < (1 +7)~!, while that
of non-zero mode ' f,, decays as |0 f,(r)| < (1 4+ 7).

We easily see that the above U, is a Banach space with its norm. Moreover, there

hold the embeddings U}}', C L{g?:,{, and V', C Vg?:,{, forevery 0 < o/ <o, 1 < k" <k, and
1 < m/ < m with the estimates

kg, < WMot 17y < b,

3 Main results
Our main result now reads:

Theorem 3.1. There exists a constant 6 > 0 such that the following statement holds.
Let ¢, € C*(R*R) be a radial function expressed as ¢.(r) € C*([0,00);R) in polar
coordinates (r,0), and let R, > 1 be such that supp (¢.) C [0, R.]. Moreover, define

1 3
1+(”*)2 2+1
2

R*
fls ::/ S@.(s)ds, py = V2
0

/ S¢4(s)ds
0

_2’

Vi 1= sup + sup (1+7)%¢u(r)] + sup (147)%[0,6x(r)],
0<r<R. 0<r<R. 0<r<R.
and suppose that
e 0, RPu, <. (3)

Then for every 0 < oo < min{1/2, p.}, there exists a constant ¢ = e(R*, ) > 0 such that
for every p € C*(R*R) whose Fourier mode satisfies 16z, .., < € for some k> 1,
there exists a solution u € C?(R%,R?) of (1) for an external force F' = V+(¢, + @) having

the decay property

sup sup (1+7r)'*e
r>0 0<0<27

< 00, (4)

) = (3 [ st + pu)(e)ts)

where @o denotes the Fourier zero-mode of ¢, and ey := (—sin 0, cosf) denotes the basis
for the direction of increasing angle in polar coordinates.

Here we remark that s, is also written as (2m)~"' [o, ¢«(2)dz. On the other hand,
px = R[(4+2i11.)1/?]—2 (R[2] denotes the real part of z) appears in the partial linearization
of the system regarding to the Fourier +2 modes. The asymptotic estimate (4) implies
that the solution u behaves like the radial and rotational flow czt/|z|* with some ¢ € R
that decays in the scale-critical order O(|x|™1).



The key observation in the proof of Theorem 3.1 is that the system (2) has two aspects;
the one is related to the analysis in the Fourier £2 modes with respect to the angular
variable 6, where one needs to use the effect of the vorticity transport by the flow p.zt/|z|*
to avoid the appearance of the logarithmic loss from the scale-critical decay pointed out
by Guillod [2]. The other is related to the Fourier +£1 modes, where we find the key
cancellation property in the nonlinear term V x (u - Vu) that seems to be avairable only
by regarding the linearized term around p,z*/|z|? as the perturbation. Hence, we build
up the iteration scheme by taking this observation into account, that is, the transport
term by the flow p,2t/|x|? is incorporated as the principal term for the Fourier 2 modes,
while this term is handled as the perturbation for the other Fourier modes and we use the
smallness of p, and the cancellation property in the Fourier +£1 modes. The smallness
condition of (3) is then needed to close the linear estimate. Another advantage of our
result is that there is no restriction on ¢ regarding to its structure such as symmetry,
while the previous studies [11, 12, 13] require such structural assumptions.

4 Proof
4.1 Outline

We now fix ¢, € C%([0,00); R) satisfying supp (¢) C [0, R.] and . # 0. Since p, <
tyx < Uy, and since the smallness condition in (3) should be satisfied, we assume that
0 < p. < 1 in what follows.

In terms of the polar coordinates, the vorticity-streamfunction system (2) is expressed
as

{ Aroth = —w, (r,0) € [0, 00) x [0,2), -
Apgw =G+ Aygp, (r,0) €[0,00) x [0,27).
Here A, := 0> + (1/7)0, + (1/r*)J3 denotes the Laplacian in the polar coordinates, and
G = 50,100 + ) + (1 + R)D, (6)
where
D =ouom. Bi=20 1y

On the other hand, since
V x (VX - V(Vy)) = Vi - Vw
by V - V14 = 0, we also see that

= %(%gﬁ@rw _ Oh0pw). (7)

5



Since ¢, depends only on r, we see that

)= e = ([ [ towas, a.0)

are exact classical solutions of (5) for ¢ = ¢,. Therefore, for given small ¢ € C*(R* R),
we aim to construct solutions of (5) for ¢ = ¢, + ¢ such as

B, 0) = 0u(r) + 1, 0) = (1) + 3 7alr)e™.

nez ) 8
W(r,0) = wi(r) + w(r,0) = w.(r) + Z wy (r)e™, ®)

where (v, w) denote the perturbations and (4, @) = ((Vn)nez, (Wn)nez) are those Fourier
modes. Now let us suppose that (1, w) in (8) are smooth enough and really solutions of
(5) for the moment. Since A, pth. = —w, and A, pw. = A, g4, the perturbations (4, w)
should satisfy the following system.
Ay Y = =Wy, ner, r>0, (9)
Ar,nwn - g:L + Ar,ngpna ne Z, r Z 0.
Here ¢ = (pn)nez denotes the Fourier mode of ¢, A, := 9% + (1/7)d, — (n*/r?)1, and
1

G = Gn(th,7) = ——5 (rOy D (Wb, 7) + ina(, 7)) + (1 = n*)Du(t,5) - (10)
is the Fourier mode of G assomated with (6), where
Du(th,d) =1 > kw0 + inynOrib, nez,
k+l=n
E(nA) =~ S k=1 3 Odi — 20t n € T}
k+l=n k+l=n

On the other hand, in the notation of (7), G is also expressed as

i INOpwy Ny
*:Hn o *7/:7 0) = — k 8r —1 787” n n- 11
g, (W, wi, 7, ) TZ(% w = lwd, ) + =" —uwn (11)

k+l=n

Since f(r) = r*I" are fundamental solutions of the ordinary equation A, f =0 for each
n € Z\{0}, (¥, w) satisfying the system (9) are expressed as

Ioslwn](r) + Joy[wal(r), >0, n e Z\{0},
rq (12)
/—/two t)dtds, r >0, n=0,
o SJo

—I31Ga](r) = T [Gal(r) + @u(r), >0, n e Z\{0},

(13)
/ /tgo Ydtds + o(r), r >0, n=0.



Here we define integrations I7 and J! as

() = g/Tsl‘zf(s)ds, 2eC\{0}, 0<r<T (0<r<ooif T=00),
JHf](r) = 2zlrz /tr s'T2f(s)ds, » € C\{0}, t <r < c0.

We will mainly analyze the expressions (12) and (13) with G of the expression (10),
while we will apply (11) to confirm the non-singularity at r = 0. It should be emphasized
here that the expression (10) reveals the key cancellation for |n| = 1 in achieving the
desired spatial decay, which is difficult to see if one uses only (11). However, there exists
a problem in analysis of (13) when |n| = 2. Indeed, it is difficult to derive the decay
property lim, (1 4+ 7)?*|wie(r)| = 0 from the expression (13). Therefore, in order to
solve such a problem for n = £2, we utilize the effect of ¢, as follows. Since

(1) = 0,6.0) = 0. Bn(r) == [ son(s)ds = -
0

for every r > R,, we can rewrite the system (9) locally as
{ Ay Yo = =Wy, n €L, r> R,,
A ew, =G+ A pn, ne€Z, r> R,
where ¢, := (n? + inp,) 2, A, == 02 + (1/r)0, — (¢2/r?)Id, and
G2 :=G,(0,4) = H,(0,0,%, ). (14)
Then using the fundamental solutions f(r) = r* for A, ., f = 0, we have the other
expression of w,, such that
wy(r) = —Ié’:[gg + Ay pipn) (1) — Jgn G2+ A, npnl(r), 7> Ry, n€Z\{0}. (15)
Actually, we can find the better decay property for wyo of (15) than those of (13). Hence

in the case of |n| = 2, we set w, as

w,(r) = { I 1G() = TG + palr) + e, 0<r<h.

In

_Ig:[gg + Ar,nwn](r) - Jéi* [gg + Ar,ngpn](r) + CZT_Cnv R* S r < 00,

where ¢, co € R are constants. In this case, we should fix ¢; and ¢y so that w,, defined by

(16)

(16) becomes continuous and differentiable at » = R,, the detail of which will be stated

later.

4.2 Key estimates

First of all, let us define the linear map £ associated with (12), which has the following
property.



Proposition 4.1. Let 0 < oo < 1/2 and k > 1. For every w € Uy, , .5, define the map
L:w— 4 as
Fila)() + lwd), 7 € Z\{o,

—/ —/ two(t)dtds, n=0.
o SJo

Yn(r) :=

Then % belongs to V3 .4, and there hold

1 - R
lollvg € Ml o 15l52 S ke, o

Q

Secondly, we define the map S associated with (13) and (16) as follows. For fixed
0 < a < 1/2and & > 1, we take (0,6) € Uy y,.po X Uiy o arbitrarily, and let
4 = L(w). Then we define y = S(w, 0) as

(

~ESIG() — TGN + ou(r), 20, m € Z\{0, %2},
ynl()‘ 73 ()+Qn1[an](r) 0<r<R, n==2

Yn(r) = )+ Qnolon](r) >R, n=+2, (17)

)

yn2 -
/ /tgo Ydtds + o,(r), 1>0, n=0,
\

where each G is that of (10) or (11),
Poalr) = — I51G2)(r) — JG, [G2)(r)

r/R)" 0 [ 00 1m0
T MRT)CH {(Ga = D)0 G](RY) — 2GIE[GO(R.)}, 0 <7 < R,

Pralr) i= — IZ2G0(r) — JE1G0)(r)
r)on
* (|n|+)< {=(G = InDIZIG(R.) = 2|nlJpy[GH)(R.) } v > R,

with G0 of (14), and

Qnalon](r) =0 (r)
(T’/R
IS

QD 2loa](r) :=— 1e A, ngn]( ) — Jg* [Arn0n](r)

* (|7L| f:)gn {=(G = InDIZ[Amon](Ra) + [n]on(Ry) — RO,00(Ry) ), 7> R

{ 26,18 [Ar 0] (Ry) — Guon(Ry) — RuOp0n(Ry)}, 0 <7 < R,,

In the case |n| = 2, we see from the above expressions that if y,, ; and y,, » are well-defined
and differentiable in each domain, there hold

r—R.«40

8



and
O Qnilon](Ry) = lim 9.Q,.[c,](r), 1=0,1, (19)

r—R«+0
so that each of y.o belongs to the C! class on [0, 00).
For this solution map & with respect to the vorticity equation, we can obtain the
following key estimate.

Proposition 4.2. Let 0 < oo < min{1/2, p.} and k > 1. Then the map S : (w,6) — ¢
defined by (17) is bounded from Uy o, o X Up o o 0 Us o . Moreover, there holds

1 .
16l )

o i 1 112 N
1S (w, U)Hul+2,m+2 S RY (meHUl - V*||wHu;+2,H+2 +

@ a+2,k+2

By Proposition 4.2, there is a constant C > 0 such that

1S(@, ), ..,

< CyR?" b e U ! g

< ot (o llilly, il + el
=: Kl||w||i[¢i+2,n+2 + K2y*||w||uolz+2,n+2 + K3||&||M;+27,€+2

for every 0 < oo < min{1/2, p, }, W € Uy 5 049, and 6 € U}, 5. We should note that K,
and K3 are constants dependent on R, p,, and «, while K5 is a constant dependent only
on R, and p,. Then in advance, we set ¢, so that

1
Ry, < — =: 4,

in order to see Kyv, < 1. Moreover, let € > 0 be such as

(1 — KQI/*)Q

© T UK K,
so that

(1 - KQI/*>2 — 4K1K3H5'Hu1 >0

a+2,k+2

for every 6 € Uy 4o such that [|6[,2 , < e. We then take ¢ € C*(R* R) such that

[P lless <e (20)

a+2,K542

We note here that by continuity of ¢ at r = 0, it holds automatically that ¢, (0) = 0 for
n € Z\{0}. Therefore, ¢ automatically satisfies the condition of U}, .., at r = 0. After
that, we define the approximative sequence (1)) jen to the solution of the equation

w = S(w, ) (21)

©



as

where (@) = ($,,(4))nez is such that

Pn, n e Z\{:l:2},
D, (p) = Qn,l[tpn], n==22 0<r<R,,
Qnalen], n==2, r>R,.

Let M > 0 be as

1 - Ky, — \/(1 — Kyu,)? 4K1K3H80Hu;+2 )t
2K,

M =

Then we see that
™ |0 < Ks||@len <M,

a+2,k+2 — a+2,k+2 —

and if ||UA}(j)||u(1X+2,K+2 < M for some j € NU {0}, then

(4+1)
|69+, <

< KiM? + Kyv M + K360 = M.

a+2,k+2

Therefore, by induction, we see that the sequence ( ||w]|,

) +2) jen is uniformly bounded
(0% K

by M. Moreover, we have

[ =Py, ., < [S@Y),2) = S0 Jlawwuwwﬁg

> (2K1M + K2y*>|| Hur1x+2 f42
§QMM+KWM1M(()@—@WM@MZ
S (2K1M+ KQV*)]AJ

Since 2K/ M + Kyv, < 1, we see

[e.9]

Z A+ (j)”%%ﬁg < 00,

which and the completeness of U, .., yield that w9 converges to some W>® € U} 2.2
under the condition (20). Since

IS0, @) = S@D, Pk, ., < (KM — Kow) | =0

||Ué+2,n+2

as j — 0o, we see that w™ is a solution of (21).

10



In what follows, we fix a pair (0, ) € Ul .19 X Upyo, o of solutions obtained as
above. Then this pair satisfies

(

—I5(GA(r) = TGl (r) + en(r), 720, n € Z\{0, +2},
W1 (1) = Ppa(r) + Qnalenl(r) 0<r<R, n==£2,
wn? =P ( )+Qn2[¢n]( ) T>R*7 n = =+2,

/ml/tgo (t)dtds + pn(r), >0, n=0,

together with 4 := L() € V3, 4. Since w € Uy, 0, ¢ € C?, and since GF = H,, is
finite at r = 0, we see that each of A, ,w, (|n| # 2), A, ,w,1 and A, ¢ w,o (In] = 2) is

well-defined and continuous in each domain, and is expressed as

A qwn (1) = Go(r) + A ppn(r) . 0<r <oo, neZ\{£2}, (22)
A w1 (r) = Gh(r) + Arnin(r) , 0<r <R, |n| =2, (23)
Ay Wy o(r) = Gr) + Appon(r), R.<r1 <00, |n|=2. (24)

From (23), (24), and the connecting properties (18) and (19), we see

Ow,1(R,) = lim 8 L wno(r), 1=0,1,2,
r—Ri.—

and hence each of A, ,, w4, is also well-defined and continuous in [0, c0), and satisfies (22).
Therefore, we see that (7, w) = (L(w),w) are strong solutions of the system (9).
Using the above solutions (7, w) of (9), we set

v(r,0) = Z“/n(r)eme, w(r, 8) = an(r)eme

nez neL

for every (r,6) € [0,00) x [0,27). By the definition of V2, , and U, , .o, and the
discussion in Step 2, we see v € C*(R*R) and w € C?*(R?% R). Moreover, by summing
up Fourier modes of the system (9), we also see that (¢, w) defined by

W(r, 0) == (r) +7(r,0), w(r,0) = wr)+w(r,0).

are strong solutions of the vorticity-streamfunction system (5), i.e., (2) for ¢ = ¢.+p. We
note here that by the elliptic regularity of the Poisson equation, we see that 1) € C*(R? R).
Now let u := V+¢. Then we see u € C*(R? R). On the other hand, 9,7, is actually

expressed as
D0 (r) = _E/T[ Do(s) + 23 /:OD(>dt+ sico(s) | ds

/ Dofs d——/w()d

11




We can easily check that the modulus of this first term is bounded by (1 + r)~(@+D,
Hence together with 7 € f/(f,{ .4, We obtain the decay property (4) of u by using the
formula V* (¢, + ©o) = —0, (¢ + ©o)ep. Furthermore, this u and w satisfy

Aw=u-Vw+ A(¢. +¢), x€R?
V-u=0 T € R?,

and the decay properties
u(r, )] S (L +1)7" [Vu(r,0)] S (1+7)7% [Vw(r0)] S (1+7)7°

Hence using a similar method to Hillairet-Wittwer [5, Section 3], we see that u becomes a
classical solution of the Navier-Stokes system (1) for F' = V+(¢, + ¢) together with some
pressure p.
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