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1 Introduction

1.1 Problems and background

This article is to summarize our recent work [12] joint with Shih-Hsien Yu and Xiongtao
Zhang on the well-posedness theory of 1-D compressible Navier-Stokes equations for initial
data having small total variations. It is an extension of [8] from isentropic gas to the full
system including the energy conservation law. Consider 1-D compressible Navier-Stokes
equations in Lagrangian coordinates,

v — Uy = 0,
_ uux)
Ut + Dg ( v ). (1)
1
(e + §u2)t + (pu), = (g@x + %uux)x

Here t denotes time, x denotes the Lagrangian coordinate which labels the fluid element in
terms of mass, v is the specific volume, u is the velocity, p is the pressure, e is the specific
internal energy, 6 is the temperature. p and k are the viscosity and heat conductivity
coefficients, respectively, and are assumed to be positive constants. For the derivation of
this system from the usual Eulerian form, one is referred to [11]. We consider the ideal
gases

p(v,0) = @, e = c,0, (2)

v

where K, and heat capacity ¢, are both positive constants. System (1) can also be written
in terms of (v,u,0):
v — Uy = 0,

Uy
Up + Py = (MU ) s

Ht—l—ﬂuz—i(uz)Q: ( m 9$> .

Cy CyU CpU

When the motion is adiabatic, one has the isentropic gas, and the pressure p is a
function of v only, p = v™7, where ~ is the adiabatic exponent and v > 1 for usual



medium. In this case, the first two equations in (1) form a closed system, called p-system,

vy — Uy = 0,

s + py = (u;ix>x (4)

The main purpose of this article is to study the well-posedness and time asymptotic
behavior of system (3) with initial data being a rough perturbation around a constant
state. Without loss of generality, the constant state is assumed to be (v,u,6) = (1,0,1).
The initial data (v, u,0)(x,0) = (vg, ug, o)(x) is given to satisfy

oo = 1y + Noollgy + luolly + luoll gy + 160 — Ly + oll gy <5 <1, (5)
where L! denotes the L' norm in the space variable x, and || - ||py denotes the total
variation,

1fllv = sup Do @) = flrim)l. (6)

2: partition of R z,c»

The well-posedness theories for compressible Navier-Stokes equations are established
by Nash [10] and Itaya [4] for Holder continuous initial data. The equations are rewritten
into a nonlinear parabolic system for velocity and temperature, where the fundamental
solution for variable coefficient parabolic system played a key role. For Holder data, the
classical frozen coefficient and parametrix method are sufficient for the construction of
fundamental solution. Based on the local existence, Kanel [5] and Kazhikhov-Shelukin
[6] derived a priori energy-type estimate and thus obtained the global solution for 1-D
system. The energy method is then generalized to compressible Navier-Stokes equations
in 3-D to obtain the global existence by Matsumura and Nishida [9] for initial data in high
order Sobolev’s space, where a local existence theory is also provided based on estimates
of constant coefficient linear parabolic system.

On the other hand, the quasi-linear and hyperbolic-parabolic nature of (1) allows the
initial discontinuities in specific volume v to propagate in later time. Nash and Itaya’s
theory are not applicable due to the coefficients in equations of u and 6 cease to be Holder
continuous. Later, the construction of weak solution are studied by Hoff [2, 3|, Lions [7]
and Feireisl [1], etc. The piecewise energy estimate is carried out and total variation
estimate is obtained by Hoff [2]. The construction in [7] and [1] are applicable to more
general data, for example, in the presence of vacuum. There is no well-posedness theory
for the weak solutions obtained by these approaches.

Liu-Yu [8] initiated a new approach to establish weak solutions in a constructive way
and obtained the well-posedness theory as well as properties of the solution for the isen-
tropic Navier-Stokes equations (4). It is based on the construction of the fundamental
solution to the heat equation with BV coefficient:

{(@ — Oup(z, )0, )H (2, 195 1) = 0,
H(z,0;y; 1) = d(z — y).

With sharp estimates of heat kernel, the classical iteration scheme [4] originally for Holder
coefficient can be applied to BV coefficient, thus establishing the constructive proof of local



well-posedness theory for isentropic Navier-Stokes (4). Precisely, the following Theorem
is obatined in [8]:

Theorem 1 ([8]) Suppose that the initial data for (4) satisfies
[ = 11 + [[voll v + [[uoll Ly + [[uoll By < 6 (7)

for 6 < 1. Then there exist ty > 0 and Cy > 0 such that the weak solution (v,u) for (4)
exists for t < ty and satisfying for t € (0,t),

loC,8) = L + oG Ollsy + Viue (-, )] 2= < 208,

Moreover, suppose that two initial data (v$,ul) and (v§,ub) satisfy (7). Let (v* u®) and

(v°, uP) be two weak solutions of the isentropic Navier-Stokes equations (4) constructed as
above, then

sup (o) =20+ (o) = o) o ) < (g — vl + g — o).
o<ty

The heat kernel with BV coefficient plays a crucial role in local existence since it
accurately captures the quasi-linear nature of the system (4). Concerning large time
behavior, the hyperbolic-parabolic structure is important, which is, however, not reflected
in heat kernel. A new ingredient, Green’s function for linearized system around constant
state, is introduced. An interpolation of BV heat kernel in short time and Green’s function
in long time, yields an “effective Green’s function”, which respects both quasi-linear and
dissipative structure of the system. With this, one represents the weak solution of equation
(4) in terms of an integral form, then a priori estimate concludes the time asymptotic
behavior of the solution:

Theorem 2 ([8]) Consider the initial value problem for Navier-Stokes equations (4) for
the polytropic gases p(v) = Av™7, 1 <y < e. Suppose that the initial data (vo(z),up(z))
satisfies (7). Then, there is a positive constant C, such that for sufficiently small 9, the
solution exists global-in-time and satisfies

[0 =)0l + [IVE+ 10 =D Ol + (0 = D8y
b t)llze + IVE+Tul )l + [Veua () o + luC Oy < C8, > 0.

1.2 New difficulties and novelties

We now turn to the full Navier-Stokes equations (1). Compared to isentropic gas (4),
there are several new difficulties for (1).

The noteworthy one is the regularity issue. The second equation in (4) is a diffu-
sion equation for u. As the equation is given in a conservative form, when using Green’s
function as a test function, the weak formulation automatically yields an integral repre-
sentation of (v,u), which are convenient for transferring the derivative between Green’s
function and nonlinear source term, and thus for investigating the time-asymptotic be-
haviors.



However, for full system (1), it is a problem to choose whether (v,u,e + u?/2) or
(v,u,0) as unknown functions. Considering the diffusion term in the third equation of
(3), temperature # would be a good candidate, while a non-conservative form is not
convenient for studying time-asymptotic behaviors. If the solution is only constructed in
distribution sense, one does not have equivalence between (1) and (3), and there is a gap
between local theory and global existence.

The problem is resolved by a careful investigation on the regularity of the weak solution
for (3). We develop some new estimates for heat kernel and show that 6 is Hélder continuos
in time, which helps us to prove u; is in L> N L. Interestingly, this in turn improves
0 from Holder continuity to differentiable in time. With this regularity, the function
(v,u,c,0 + u?/2) is a weak solution to conservative form (1). This serves as a basis
towards the global stability. It is also worth mentioning that Holder-type estimates are
crucial even in the construction of weak solution for (3) due to the pressure term p(v, 6),
unlike isentropic gas, which is not needed.

Another novelty of this article is the uniqueness of the solution. In Theorem 1.2 of [8],
the authors proved that the constructed weak solution for isentropic model depends on
initial data continuously. In this article, from the regularity result, we identify the function
space of the constructed weak solution to (3), and prove stability of the solution in this
function space, which in turn yields that given any weak solution in distribution sense, it
must be identical to the one we constructed as long as it belongs to the aforementioned
space.

These results largely rely on various quantitative estimates of fundamental solution for
heat equation with BV variable coefficient, which captures the quasi-linear structure of
the equation (3), and represents the solution accurately.

The analysis for global existence is done in a similar framework as that of [8]. One
follows its procedure to replace the Green’s function for a linearized 2 x 2 system by a
3 x 3 system to build “an effective Green’s function”, derives an integral representation,
and performs a priori estimates to conclude time asymptotic behavior. The regularity in
time of velocity v and temperature 6 also plays a role in the a priori estimate.

1.3 Main results
Our main results for full Navier-Stokes equations (3) are stated as follows:

Theorem 3 (Local existence and regularity, [12], Theorem 1.1) Suppose that the
initial data for (3) satisfies (5). Then, there exist positive constants ty and Cy such that



the system (3) admits a weak solution (v,u,8) fort € (0,ty) satisfying

(3)
{Hu Dz Nl Ol s NuaC Ol \/iHux(-,t)HLgo,}Qcé
V(D 1) -
{H@ ) = Ulpas 10C,8) = Ulpee s 1020501 s \/EH@x(wt)HLgo,}QC(S
VA0 s 16058 -
mw{m v, v(-.t) - 1hpIWbﬂ—1hgv¢waﬂmg}§2%d
v—1=uvl+v; vz, t)= Z [v] (2)h(z — 2), v} is continuous,

2<x,2€9D
v(-,t) < 2|u5(+) , ZE€9D,
L r=z" r=z"

where h(x) is the Heaviside step function, 9 is the discontinuity set of vo; Moreover, the
fluzes of w and 0, (i.e. 2= —p and .0, — I? <§uz -4 (uz)2> dz ), are both globally

—0o0
Lipschitz continuous with respect to x for any t > 0; and the specific volume v(z,t) has
the following Holder continuous properties in time for 0 < s < t,

t = s)llog(t - 5)

lo(8) = v )l < 2056 el =,

t—s
NG
Jo(-,8) = v, )l < 2C38(¢ — 5).

Theorem 4 (Stability and uniqueness, [12], Theorem 1.2) Suppose there are two
weak solutions (v, u®, 0%) and (v°,u®, 6°) to the Navier-Stokes equations (3) with the reg-
ularity properties stated in (29), and for a small d, their initial data both satisfy

[o(-,8) = v, 8)llzoe < 2G40

[voll v + lluollsv + (|00l By + llvo — 1[Ls + [Juollzs + 1160 — LIy < 6.
Then, there exist t, > 0 and C, > 0 such that for 0 <t < t,,

lo® = oz + [lu = u’llzy + 116° = 6%]l2s < Cb(HHS — ol + 1105 — G5l
+ g — wgllzge + llug — ugllzy + lvg — vgllzy + 1§ — wollzz + v — USHBv)-

Theorem 5 (Global existence, [12], Theorem 1.3) There exist 6* > 0 and € > 0
so that for any initial data (vg,uo,6y) of (3) satisfying

o = Uy + looll gy + luoll g + ol gy + 160 = Ly + 6ol y < = < 5,

the solution constructed in Theorem 3 satisfies
|viFTe.n -1 Lt |ViFTu( 1) i |viFioe,n -1
ol + i

L

5 < e fort e (0,400).



1.4 Organization

The rest of this paper is organized as follows. In Section 2, we demonstrate the main
ideas and steps for constructing BV coefficient heat kernel. In Section 3, we construct
local solution using heat kernel and prove its regularity and stability. In Section 4, we
give the pointwise estimate of Green’s function for system (1) linearized around constant
state (1,0,1). In Section 5, we represent the solution in terms of an integral equation by
using “effective Green’s function”, and derive a priori estimate to conclude global well-
posedness. In last section, we give an outlook for the possible future development of our
approach.

2 Heat kernel for BV coefficient

We will demonstrate the main steps for construction of heat kernel with BV coefficient.
This section is mainly based on [8], and some estimates are from [12].

Consider the following equation for heat kernel H with the coefficient p(x,t) being a
BV function with respect to z,

{ (at - aﬂcp<x7t)am) H<x7t;yat0; P) = 07 > t07
H($>t0;yat0; p) = 6($ - y)u

where the BV coefficient p(z,t) satisfies the following properties,

1
16C) = Flls < 60y llo(s8)llmy < 6. Hpt(-,t)Hooéé*maX<%,1>, 0<6 <1,

2 = {z | p(z,t) is not continuous at z} is invariant in t.

(8)
Here p(z,t) plays the role as 1/v(z,t) in the Navier-Stokes equations (3).

To construct H(x,t;y,to; p), the strategy is as follows: we first treat the case that pis a
step function in space and independent of time; then we use step function to approximate
a general BV function (still time-independent); lastly, we use time-independent solution
and time-frozen technique to construct the heat kernel for time-dependent BV coefficient.

2.1 Step function coefficient

One considers
{ (0r — Oppi(2)0,) H(w,t;y,t0; 1) =0, T > 1o,

H(‘r7t07y7t07:u) = 5($ - y)u

where p(z) is a step function satisfying the following properties,

(7 = {2|[1W(2) # 0} = {mili € Z},  [p(2) = p(z +0) — u(z - 0),
wz) = ki, 2z € (Ti,7i1), €L,
lim z; = o0, inf{|z;y — 24,7 €Z} > 0.,

i—+oo

lulley = (=)

z2€9




Since the equation is time homogeneous, the solution depends only on the time difference
t —tg, so we may write the heat kernel as H(x,t;y; u). It is easy to check H(z,t;y; p) is a
weak solution of (9) if and only if (0; — O,p(x)0,)H (2, t;y. ) = 0 at any continuity point
x of p(zx), and
H(z,tiy.p),  p(2)0:H(z, ty, 1) (10)

are continuous across any jump point z of u(x).

Assume that y € (zg,21) and = € (z;j,x;41). Take Laplace transform of (9) with
respect to time,

CIH] (2, 559, 1) = / e~ H (£, ),
0

one has
(s — Dppi(2)0,)LIH) (2, 55y, 1) = 3w — ).

In particular, for z € (z;,xj11),
(s — 1;02) L[H|(x, 53y, 1) = 8j00(x — y),

where 9;; is the Kronecker symbol, ¢;; = 1 when ¢ = j and ¢;; = 0 when ¢ # j. Therefore,
we have, for z € (z;,xj41),

s/ki(x—x; —r/8/Kki(x—x; 5‘0 —+/s/kolx—
LIH](r.s5.0) = VTR0 g, ) + VTS84 SOVl
(11)

for some functions U;y; and S;. The continuity condition (10) at x = z; implies that the
coefficients U; and S; satisfy

(54
eVl S e~V s/rolro—y| _ U \[A]S J1—+/s/kolz1—yl
j+1 + + —— 2\/@ +e 2\//{/_036 )

S
\/Kv_j (e_\/gAj-H Uj+1 _ Sj + 2406—\/5/f-c0|:vo—yl) — m <UJ \fAJS

041~ \/sTmolar—yl
VEos ’

j1
1=
4= 2./KoS
Tj—Tj-1

A

J

\ Rj-1

The above identities can be written as

(s7) = (s )” )l

R, = 0 Ry R_,=Y9l= VY V ST =R+l
O T__‘_,] > /K /_ ’ s
L. = T+*,j 0 R _ \/ \/
7 — . ) ++,0 —
Rii; 0 \//43_1 + \/

eVs/ko(z0—y) e
%(T+—U7R++O) lf.] = 07

where

T j=Rii;+1,

(U5,S)) = § S50 (R, Toy) i j =1
0,0) if 50,1,



Here R, and T, can be viewed as reflection and transmission coefficients at the jumps.
This yields an infinitely many algebraic equations for (U;,S;), j € Z, which is difficult to
solve directly. We construct (U;,S;) by recurrence,

yntt _ ur A ur
(S%H) = VYR, (S’]?_1> +e VPRI, (5%“) :
J Jj—1 j+1

Then U; = Y~ U? and S; = > 7 | S% give the solution to (12) whenever they are
convergent. This recurrence relation looks like a random walk starting from xy and ;.
Plugging them into (11), we obtain

m[fy]e_\/gL['Y]
ClH|w sy )= Y D —
YEQy sz 2 5ko

Here €2,_,, denotes all the discrete paths starting from y and ending at :

(13)

Q. = {7 =7(7) |7 a continuous path y — z, and |7/(7)| = 1 when () is not in 2},

where Z is the discontinuity set of p(x). For each v € Q,_,,, there exists 0 = 75 < 71 <
Ty < +++ < T < Tt such that

Y0) =y, v(r)=n€Z, - Ywm)="m € Z. V(Tm+1) =z,
. (14)
(75, Tix1)) N2 =0 for i =0,1,--- ,m.
For a path v given by (14), the phase-length of path L[] is defined as

¥ ' '
Vily) V() p(y(rr))  Va@)
For ~ given by (14), at each v;, i = 1...m, there occurs reflection and transmission, and
we define
R if path v reflects at 7; from the left,

R}, if path « reflects at +; from the right,

&
Il

T, if path v passes at ; from the left,
T7  if path v passes at ; from the right.

The measure m[y] is then defined by

1 itm=20
_ ) 16
mp {H:”l d; otherwise. (16)

Using the fact of Laplace transform

2

e_\/g“} e~

L} ,
s—t |: 2\/5 /47Tt




one formally obtains from (13) that

LM2

H(z,t;y, )
qeszzy:_,z \/477/1

It is shown in [8] by some combinatorics argument that when H,LLH pv is sufficiently small,
the series actually converges uniformly. Therefore, one can obtain the following estimates
of heat kernel and its derivative from (13):

Proposition 6 ([8]) When step function u satisfies that
I12) = filloo << 1, ond [, < 1 a7)

the heat kernel for step function coefficients satisfies the following estimates: for all x,y €
R

(

Vart
2
(’v m)

e Dt

t i

H(z,ty:1) = (14+0() ||l av) &

0. H (.t y; )|, [0, H (2, 8y )| = O(1)

<f:c dz )2
A\ Ve
Dt

(&
0cH (o, 8555 )] 100y H (2, 3 )] = O(1) ——5 75—
)
latIH(l‘7t;y;M)‘ 7‘8tyH(‘r7t;y;//’)‘ = 0(1) 2

Given two steps function u® and u’ satisfying (17), consider the following identities,

t
0= / / H(x,t —7;2,4%) (0- — 0.4°(2)0:) H(z, 75y, 1°)dz=dr.
0 JR

Using integration by parts and heat kernel estimates, one obtains that

2
(1 —=t7—)
VET(R)VA/ ub(2)
[H (w, t;y; 1) = H(w, 5 1°)| < OQ)[|® = i [loct ™ e = . (18)
The comparison estimates for derivatives are much more subtle, straightforward dif-
ferentiating the integral equation will induce non-integrable time singularity. One has to
do delicate estimate for each path in the summation on the Laplace level, then invert it
to physical variable. See [8] for details.

2.2 Time-independent BV coefficient

Now consider coeflicient p(z) is a general BV function. The idea is to construct a sequence
of step functions p*(x) to approximate u(z) in the following sense

M lsv < 2llullsy, 1" = pllo <275 =0, as k — oo



For each step function u*(z), one can construct the heat kernel H(z,t;y; u*). Then it is
shown from (18) that klim H(x,t;y; p*) exits, which gives a heat kernel for BV coefficient
— 00

wu(x). Moreover, the derivatives estimates follow from taking difference estimates.
Proposition 7 ([8], Theorem 3.6) Suppose ||u||py < 1 and inﬂg,u(z) > > 0. Let u*
ze -

be the step functions constructed as above. Then

H(z,ty;p) = lim H(x, t;y; 1) exists.

H(x,t;y; 1) is a weak solution of
{ (Or — Opp(2)0;) H(z, t;y; 1) =0, >0,
H(z,0;y; 1) = 6(z — y),

and satisfies similar estimates as in Proposition 6.

2.3 Time-dependent BV coefficient

Let p(x,t) be a function satisfying

1
1) = Al < 60y lloCDllav < 6, ||pt<~,t>||oo35*max(—,1), 0<6 <1,

Vi
2 = {z | p(z,t) is not continuous at z} is invariant in t.
(19)
We are now in the position to consider the Green’s function H(x,t;y, to; p) to the following
equation,

{atH = aﬂc (p(l‘,t)axH) ’ t> to, (20)

To establish the estimate for H(x,t;y,to; p), we shall represent it by an integral equa-

tion using time-independent coefficient problem. We denote H (z, t;y, to; p) by H(z,t;y,to)
for the simplicity of notation. For fixed T > 0, set u(z) = p(z,T) and consider

t
0= / / H(z,t; 2,05 1) (&,ﬁ(z,a; y,to) — 0, (p(z,a)@zﬁ(z,a;y,to))) dzdo.
to /R

By the fact that H(x,t; z,0; ) and pu(2)0. H(x, t; 2, 05 1) are continuous in z, one performs
integration by parts to get the representation of H(z,t;y,ty),

t
H($7t7y7t0) = H($,t,y,t0,ﬂ)+/ /HZ(:EJt?Z7O-7 ,u)(p(z, T)—p(Z,U))ﬁZ(Z,O',y,tg)dZdO'
to YR

Differentiate with respect to z to yield the integral equation for H,,

t

Hz($7 t? Y, tO) = Hﬂﬁ(wa t? Y, tO? /’L)—’_/ / sz(wa t? Z,0; /'L) (p(z7 T)_p(27 O-))ﬁz(z7 a3y, tO)dZdU
to YR

Setting 1" = t to cancel the time singularity in H,., and solving the above integral equa-

tion, one has the estimate of H,(x,t;y,to; p). It then follows the estimate of H (x,t;y, to; p).
In a similar spirit, other derivative estimates of H(x,t;y,to; p) can also be derived.

10



Proposition 8 ([8],[12]) Suppose the conditions of p in (19) hold. Then, there exist
positive constants C. and ty < 1 such that the weak solution of (20) exists and satisfies
the following estimates for t € (ty,to + t3)

H(z, by, to: p)| < C T
Z,15Y, o, = YUxT o —
| ( Y,lo p)' m

__(@—y)?
e Cx(t—tg)

t—ty

_ _(z—y)?
e Cx(t—tg)

(t—to)?

|Ho (2,85, t0; p)| + [Hy(z, 85y, p)| < C.

|Hoy (2,159, t0; p)| + | He(w, 85y, t0; p)| < Cl

_ _(@—y)?
e Cx(t—tq)

(t —t9)?"

In addition to the estimates of heat kernel H(z,t;y,to; p) and its derivatives, we also
need the comparison estimates of them for construction of local solution, which are fol-
lowed by comparison estimates of time-independent problem and time-frozen techniques.
For the details, see [12].

|Hyy(z, 5y, t0; p)| < Ci

3 Local well-posedness

In this section, we will take advantage of time-dependent coefficient heat kernel H (x, t; y, to; p)
and Picard-type iteration scheme to construct the local solution and show its uniqueness.

3.1 Existence

Consider the following iteration scheme motivated by (3)

rvtn+1 _ U;H—l — 0,
- (fi—;) = —p(1+ V", 146",
ot _ ( KO ) :_p(1+V”,1+(~)”) " L ( ;1)27 (21)
c(14+Vn) /), Co ¢ (1+Vn)
(VLU @) = (v, 05) = (vo — Lo, B — 1),
L(V°,U°,8°% = (0,0,0).

The last equality in (21) means that we choose the initial step to be the unperturbed
constant state. Thanks to the BV coefficient heat kernel, we can apply Duhamel’s principle

11



to construct the weak solution (V" Un+l @ntl) to equation (21) as follows,
t
Ut = [ (et ) i)y + [yt Vak L )y,
R 0 JrR\2

t
O™ (2, 1) = / H (2, £, 05 57) 65 (y)dy + / / H (2t 5 £ N7 (y, 5)dyds,
R 0 R

t
Viti(pt) = v () +/ Urt(x, 7)dr,
0

(22)
where
MHEHLV”’ N (z,t) = =0,p(1 + V", 1+ O"),
K p(l1+V" 140" I 2 (
= J(x,t) = — ur Uum-.
K CU(1+vn), N2<I, ) Co Z+CU(1+V7Z)< :E)

The integral representations (22) yields a weak solution of (21).
By refined estimates of heat kernel, we can show that (V" U" 0") forms a Cauchy
sequence in an appropriate topology and conclude the following local existence result:

Theorem 9 ([12]) Suppose the initial data (vo, ug, 0o) satisfies the condition (5) for small
0. Then there exists a positive constant ty such that, equation (3) admits a weak solution

(v,u,0) = (V" +Lu", 0" +1), t<ty,
satisfying the following estimates

(0 >0, 0<t<ty<l,

maX{H“('i)\hp [l )l e s Nz Dl \/ZHUZ('J)HLgo} < 2G40,
maX{H0<'vt) - 1HL}E ) H9<7t) - 1||Lg° ) Hew<vt)||Lg1£ ) \/EHQQ»’(vt)HLgO} < 20ﬂ57
mase {0 Ol gy 060 = 1lgg . 1060 = s VE Dl b <266 (22)
P
vt =l 4y, vz, t) = Z v*‘ h(z —z2), w; is continuous,
2<x,2€9 z

SQUS() ) ZE.@,

Tr=z

or some positive constant Cy, where h(z) is the Heaviside step function. Moreover, the
2] tant Cy, where h s the Heaviside st ti M th

fluxes of u and 0

fuz of u=""_p  fuzofo= "9, - / <£uz K (u2)2) dz, (25

v CyV Cy Cy

—00

are both continuous with respect to x.

12



Indeed, we introduce the following functional of the iteration difference,

Z [Vn+1 _ V‘n7 Un+1 _ Un, @n+1 _ @n] (26)
= [Vt = Vel + IV = vl + vt = vl s,

n+l _ 7rn n+l _ 77 \/7_— n+l _ 7rn U;:H_l — U;:L
el =l o ol + | - o+ | ||
(._.)n-i—l —o" an+1 Qan \/F an+1 ey @;’1_‘—1 — @;’L
i R R et R ey
| Vg
ur - Ur = Uy -Uy K )
H HOgT‘ ( x ac) . Oilq-lgtﬁ HOgT’ ( @ q;)( T) .
and similar for other ||-||| norms. We show the contraction property for sufficiently small
0 and ty,

Z [Vn+1 _ V*n7 Un+1 _ Un7 @n+1 _ @n}

i 1
<G, (o + /h|log ty] + w) F[Vr—vrlur—urh et —enl].
#

3.2 Regularity

From Theorem 9, we have obtained the first order regularity with respect to x and the
continuity of the fluxes for the weak solution (v,u,0) to system (3). However, a weak
solution to (3) is not necessarily a weak solution to the original system in conservative form
(1) due to nonlinearity, unless some more time regularity estimates can be established.

By exploring more estimates of heat kernel, we first show 6 is Holder continuous in
time, then use it to show wu; is well-defined. Lastly, we revisit the integral equation of 0
and apply time differentiability of u to prove 6, is also defined.

Theorem 10 ([12]) Suppose the initial data (v, us, 05) satisfy the condition (5) for small
5. Let (v,u,0) be the corresponding local-in-time weak solution constructed in Theorem 9.
The following assertions hold:

(1) In addition to the estimates in (24), there exists a positive constant Cy such that when
t € (0,t4), the solution satisfies

maX{\/fHut(»t)lm st w0 e s \/%H@t('»t)HL; ;1 H0t<'7t)||Lg°} <200, (27)

(2) The fluzes of uw and 0 (defined in (25)) are both globally Lipschitz continuous with
respect to x fort > 0.

(3) The specific volume v(x,t) satisfies the following Hélder continuity in time properties

13



for0<s<t,

51— 5)[log(t = 5)
Vi
t—s (28)
e
o) = o, )l < O3t - s).

[o(,8) = v( 8)l[lBy < O(1)

[o(,8) = v(-; 8)l[L= < O(1)d

From Theorems 9 and 10, we identify the function space where constructed solution
belongs to,

v(z,t) — 1€ C([0,t); L"(R) N L=(R) N BV),

u(z,t) € L (0,t; WH(R) N LP(R)),  Viug(z,t) € L% (0,4; L7 (R)),
Vitu(z,t) € L™ (0,5 L'(R)),  tuy(z,t) € L™ (0,5 L7(R)), (29)
O(z,t) € L= (0,t5 WH(R) N L®(R)),  Vi0,(z,t) € L= (0,1; L2(R)),

| Vt0:(x,t) € L= (0,t;; L (R)),  t0,(x,t) € L (0, L(R)).

Since it owns enough time regularity, one has the following proposition:

Proposition 11 For the weak solution (v,u,0) of (3), the function (v,u,c,0 + u?/2) is
a weak solution of (1) if (v,u, ) satisfies (29).

3.3 Stability

Notice that in (29), the BV norm of v is continuous in time. Therefore, given any weak
solution (v, u, #) belong to (29) with ||vg|| gy small, one can construct heat H(z,t;y, 7;1/v)
in short time and represent the weak solution in terms of integral equation. Employing
heat kernel estimates and its comparison estimates, we establish the following stability
result.

Theorem 12 Suppose there are two weak solutions (v*,u®,6%) and (v°,ub,6°) to the
Navier-Stokes equations (3) both belonging to (29), and their initial data both satisfy
the following condition for small 6.,

[voll By + lluollBv + 100l v + llvo = lx + fJuollzr + (160 — |z < 0. <1,
Then, there exist positive constant t, and C, such that, the following stability hold
F [v“ — o ut — b g — Ob]
< G110 — 08l = + 1165 — 66l s
+llug — ugllzee + llug — ugllry + 10§ — vglls + [lv§ — vgllze + o — USHBv)a

where F is the functional defined in (26). Moreover, this immediately implies the unique-
ness of the weak solution. Namely, for sufficiently small initial data, there exists a positive
constant t. such that, the equation (3) admits a unique weak solution in the sense (29)
fort e |0,t,).
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4 Green’s function

In this section, we introduce the Green’s function of system (1) linearized around constant
state (v,u,d) = (1,0,1), which is for studying time asymptotic behavior of the system
(3). For the details of construction, one is referred to [12, 13].

In order to preserve the conservative form of equation (1), we define the following state

variables,
1 E— 3’
E:6+§u27 U= (U,U,E), p(U,e(E,U)) = —QU’ <30)
v
and thus

ew=—u, eg=1.

Then, the system (1) is rewritten as the following conservation form with unknowns
defined in (30),

vy — Uy =0
Uy
Up + PyVs + Pelyly +pe€EE:E = (MU >z (31>
96 u 98

E; + upyve + (p + upeey )ty + upeep By = <H ¢ v+ ,uuux + UGEEQC> )

We can also write the system into a vector form as follows,
U+ FU), = (BUU,), < U, + F'(U)U, = (B(U)Uy,),.

where U, F, F'(U) and B are defined as below,

v —U 0 —1 0 0 0
U=\|u , F(U) = p ) F/<U) = Do —Pell Pe , B(U) =10 ‘%

E pu Potl P — peti  peu 0 (&4-—=

Now we consider the linearization of equations (31) around a constant state U. Let
U=U+V. We have

Vi + F'(U)V, — B(U)Ve = [N1(V;U) + No(V;0)]., (32)

where N; and N, are nonlinear terms coming from the hyperbolic and parabolic parts
respectively,

Ni(ViU) = =[F(U+V) = F(U) - F'(U)V], No(V;U) = B(U)-B(U).  (33)
The Green’s function G(z,t;U) for the linearized equation (32) is the solution to the

following system,

.G (z,t;U) = (=F'(U)d, + B(U)0ys) G(z,t; U), (34)
G(z,0;0) = §(2)1,

where I is the 3 x 3 identity matrix and 0(z) is the Dirac-delta function. The Green’s

function G(z,t) can be decomposed into singular and regular parts, G*(x,t) and G'(x, )
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respectively. Roughly speaking, the singular part is the short wave approximation of G,
which extracts the leading singularity from G; while the regular part dominates the large
time behavior of G.

Proposition 13 ([13]) Let G(x,t) be the Green’s function of the linearized equation of
(1) around the constant equilibrium state (v,u,0) = (1,0,1). Then, the Green’s function
G(z,t) has the following estimates fort <1,

100 art , (000
Gz —y.t)—e wto(z—y) [0 0 0 el N
r—y,t)—e #ox—y - € Ht
000 Vimul 000
efit  _@=p? 000 .
- e A0 [0 0 0] <o@)eitrlvl L o)e ol <,
4t
Cy 0 0 1
1
100 0 -0
Go(z—y,t) —e w'd(x—y) [0 0 0 +e w'd(z—y) (5 0 0
000 0 00
1
Bt w2y (000 Bt oy w0
—81:( = 6(4Mt)> 01 0+ c’ 67(4‘”) - cK—n
VAmut 00 o0) Vil 0 ok "0
Bit  _(a—p)? 000 Bst @yp? Y 0 0
_8z< 63R ¢ 46}2}t> O 63% e o 0 0 _Cvlll{—/{
Am it 001 dmet 0 —=E )
< O(De—a{;t—aolz—yl + 0<1)t€—ao|z—y|’ t <1,
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X 1 00 0 % 0
Goolw —y,t) —e #'"(x—y) [0 0 O +e w'd@—y) [£ 0 0
00 0 Lo o
K K K
w OK wp _(K,WQLK) 0 0
—e o=y || 0 e Ut 0 0 0
ey K2
w00 0 0 0
0 - 0
K

L
0 Copi—K
K K
2z 0
Bxt 2 e TR
a \/6}2 € i 0 (ccvl_(,i)2 + 52 0
471_/” ch ' 0 K2
Colt2—KL (cop—r)2
Bt (z—y)2 O O O Bt (o2 O O O
€’ BErTa e’s )
- e w00 0]+, ——m=e = ][0 0 &
T ( 47Tgt ) 00 1 T /47Tgt 0 — o K cbu—n
Copt—K
0 0 K
eﬁgt _% o K2 K(cop—rK) *
V= O, G 0 < O(1)eit=oolr=vl - O(1)te ekl <1
s 2 K? 0 o K2
K(copt—K) (Copi—r)

g (eoukse? 5 (a—y+80)?
Ze dajt A0 Za e ot ul
0 ooymagt ) & 2ymagt |
3 (z—y+8;1)2 3 (=82
O(l)e”act O(1)e- *
S/ FD P R S N T
J=1 =1 2
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<

N~—
orlx ©
o oOxTl-
o o o

(=oyt8;0)” (z—y+6;1)>
> 6_ 4ajt 3 6_ 4ocjt
-2 0 M-S "9 1
; 2 /mat J ; z 2/ma;l J
5 o(1)e e T
4C't 4C't "
< Z . 3 MJQ + Z ‘ 2 + O(l)e—aot—UOIQE—yI’ 1<t
=1 t> =
« 1 00 0 i 0
Gua(x —y,t) —e w0 (@—y) [0 0 0) +e v (x—y) £ 0 0
0 00 0 0 0
v W G 50 R
m K K
—eEsa-y [ 0 & o [T g
el 0.0 0 00
(oyt8;0? (@—y+5;1)
23: 2 6_ da it 0 23:83 6_ dajt .
_ 0; MY — 3 i
j=1 2/mayt ’ = 2/ma;t J
3 O(l) _M 3 0(1) _(z—y+f3]~t)2
€ act e 4Ct .
< MO + +0(1 e—UOt—UO|x—y|7 1< t,
DB DT 1) <

where the parameters o, B4, B are some explicit constants, M]l are some explicit constant
matrices.

5 Global well-posedness

In this section, we give sketch of proof for global well-posedness by using “effective Green’s
function” and a priori estimate.

In order to construct a new effective integral representation of v, u and 6, we introduce
an effective Green’s function G similar as in [8]. Define a smooth non-increasing cutoff
function as follows,

1, fort e (0,1],

0, fort>2. (35)

X(H) e C®[Ry), XD <0, X e, < 2 X(t)z{

Then, we choose a small positive constant 1 (which will be determined later) such that,
the heat kernel H(z,t;y,7;1) and the local weak solution (v(z,7),u(z,7), E(z,T)) for
(1) both exist when 7 € (t — 21y, t]. We interpolate the heat kernel for short time and
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Green’s function for large time via cutoff function (35), thus introduce the effective Green’s
functions as below,

G22('x7t;y77_) =X <t_7—> H<$7tuy77—7%> + (1 - X <t_7—)) GQQ(‘r_y;t_T)v

Vo Vo

t— t—
Ggg(x,t;y,T):X< 7—>ILI(1’,t;y,7';—m )—i—(l—X( T)>G33(x—y;t—7').
140} CyU IZ0)

(36)
Now we can represent the solution (v, u, F) in terms of the effective Green’s function,
which is given by (G;;) in Proposition 13 with replacing Goa by Ga2, Gss by Gss. It
captures both the local-in-time regularity and global-in-time space-time structure of the
solution.

For example, to obtain the effective integral representation of u, we multiply the vector
(Gor(z —y,t — 1), Goa(2,t;y,7), Gozg(x — y,t — 7)) to the system (1), apply integration by
parts, and split the time integral into three parts [0, — 21y], [t — 219, t — 1] and [t — vy, t]
to have

u(z, t) = / G = 3. )(0(,0) = Dy + / Gonlir. 1y, 0)uly, 0)dy

JR
3
+ / G23($ - y7t) (E(y,O) - Cv) dy + ZRyv
R =1

where the inhomogeneous remainders R; are space-time double integral corresponding to
time intervals [0, t — 2w], [t — 2w, t — 1] and [t — v, t] respectively. The interested readers
are referred to [13] for the expressions and computational details. The representations of
v and # can be derived similarly.

According to Theorems 10 and 12, if the initial data is controlled by a sufficiently small
constant ¢ as in (5), there exists a unique weak solution (v, u, ) to (3), or equivalently,
(v,u, E) to (1), for t < t;. Moreover, the solutions are kept small in the sense of (24) and
(27).

We define a stopping time as below,

T:sup{t‘g(7)<5, forO<T<t}, (37)

G(m) = VT +1(v(,7) = Do + VT + 1t 7)lloe + V7 +1(0(, 7) = Dl
+loCs ) = o + luC, 7)o+ 100, 7) = 1
+ lvC, ) = sy + [[ul, T)lsv +16¢,7) = 1y
+ IVTua ()l + V7020, )| pee.

By Theorem 10, there exists a positive constant d, (smaller than ) such that, if the initial
data satisfy

lvo = [ v + [luollsv + 60 — sy + [[vo — L[zr + [luollzr + (60 — Tlzr < 6%, (38)

then the stopping time 7' > t;. Here ¢4 is the existence time associated with 0 in Theorem
10.
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Based on the integral representations of the solution and their derivatives, we can prove
the following a priori estimate, which then yields a sharper estimates of the solution. This
is the key lemma for the proof of global existence. We refer the interested reader to [13]
for the details of proof.

Lemma 14 (A priori estimate, [13]) Let (v,u, E), t; and § be the local solution and
corresponding parameters constructed in Theorem 10. We further suppose the following
properties hold for the solution,

lvo = L[ Bv + [luollsv + 160 — 1llzv + [[vo — 1l + [luollr + (60 — 1|z < 67,

G(1) <6, forvVr <t, (39)

tﬁ > 41/07
where G(T) is defined in (37), 6* is as in (38) and vy is given in (36). Then, u(x,t) has
the following estimates for t > ty,
(-, )|l < C(o)d* + O(1) (6% 4+ /1od” + /100 + 1ed + %),

. 1
Hul’('vt)HLl < C(l/o)()* + O(l)‘ Og(VO)’(SQ + O(l)\/V_O(S,
N

1V Dl < C)5 + 0<1>'bg—¢%°)'52 eNT

§(x,t) has the following estimates for t > ty,

(110(-, 1) — 1|2 < O(1) (C(10)d" + /rod + 6%) + O(1) (C(10)0* + /g6 + 0%)?

VT E(0(-, ) — 1)1 < O(1) (C(1)8* 4+ V2o0 + 6%) + O(1) (C()6* + /i + 62,
6.0, 0) 12 < Cl)0" + o<1>%52 0(1) s
VI D) < Clos + om%&? +O(1) 7.

And v(z,t) has the following estimates fort > ty,
lo(-,t) — 1|z < Cp)d* + O(1)62,
VT4t 1) = D= < C(1)d" + O(1)0%,

o 52
[v(, ) lBv < C(1)d™ + O(l)ﬁ'
The global existence then follows from a standard continuity argument and choosing
04, 1y properly.

Theorem 15 (Global existence) Suppose initial data (vo, ug,0o) of Navier-Stokes equa-
tion (3) satisfy

lvo = 1l g + lvoll gy + llwoll g + lluoll gy + 160 = 1l 1y + 6ol 5y < 07, (40)
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for 0* sufficiently small. Then the solution constructed in Theorems 10 and 12 exists
globally in time, and there exists positive constant € such that, the solution satisfies

H\/H-_l(v(-,t) . 1)HL? + H‘/H—l“("t)HL;o + H\/H—l(e(-,t) - 1)H
il i

L

. < €6 fort e (0,400).

6 Outlook

The most important ingredient in this work and [8] is the construction of BV coefficient
heat kernel, because it accurately captures the quasi-linear nature of the compressible
Navier-Stokes system. Combining BV heat kernel and Green’s function, it is even possi-
ble to establish the space-time pointwise estimate of the solution for rough initial data.
Actually, we have the following result for isentropic gas

Theorem 16 ([14]) Suppose that the initial data (vo,uo) of (4) satisfies
e (wo = D)l + lJe ol + [lvo = 1|y, + llwollzv < & (41)

Then, there exist positive constants Dy and €q such that for e € (0,2¢) the solution (v, u)
satisfies fort > 0

oz, 1) = 1], Ju(z,1)]

- 2(137[?)? - 2(1;+€t)f
S Dog |:€ o(t+1) —I'- e o(t+1) + 1[_Bt’6t] (LU) + e—(|$|+t)/D0] :
Vi+1 VBt —z+VE+ 1Bt +z+VE+ 1

where B = \/—p'(1) is the sound speed, and 1y (x) is the characteristic function of the
interval [a,b].

This approach has potential to be applied to other problems with rough data, such as
initial-boundary value problem, perturbation around non-constant state (shock, rarefac-
tion). Moreover, it would be more interesting and challenging to see how to develop the
theory for multi-dimensional problem.
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