On 1-summability of formal solution of
inhomogeneous heat equation

By

Kunio ICHINOBE*

Abstract

We consider the Cauchy problem for the inhomogeneous heat equation, where inhomoge-
neous team is a formal power series of Gevrey order 1 with respect to t. Under the assumptions
of the 1-summability of the inhomogeneous term and a global exponential growth condition
with respect to z for its sum, we show the 1-summability of the formal solution of the Cauchy
problem by using the integral representation of the 1-sum of the formal solution which is given
in terms of the heat kernel.

§1. Introduction

We consider the following Cauchy problem for the complex inhomogeneous heat

equation
. drult, x) = 02u(t, z) + f(t,2).
(H) {u((),:z:) = ¢(x) € O,

where t,z € C and O, denotes the set of holomorphic functions in a neighborhood of
2 = 0. The inhomogenecous term f(t,z) = > im0 fi(z)t"/il is a formal power series of
Gevrey order 1 with respect to ¢ which means that all coefficients fi(x) are holomorphic
in a common closed disc D, := {x € C;|z| < o} for some positive o and there exist
positive constants A and B such that for all 7

max | f;(z)| < AB%i!?

lz|<o

and we denote it by f(t,z) € O, [[t]]r.
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This Cauchy problem has a unique formal power series solution of the form

(1) iftr) = 3 2 t”+Z<Zf<2<" O >)

n>0 n>1

=: 'ahom(t, Xy SD) + uinh(ta xZ; f)7

which is divergent in general. Exactly, we can see that a(t, z) is the formal power series
of Gevrey order 1 with respect to t.

For the divergent solution when the inhomogeneous term f (t,z) = 0, the problem
of k-summability with k£ = 1 for the formal solution @(t,x) = Upom(t, z; p) was proved
by Lutz, Miyake and Schéfke [5], where the definition of k-summability will be given in

next section.

Theorem 1.1 ([5]). Let S,(0,m;e1,0) = S;(0;61)US,(m;61)UD,, where S, (0;e1) :
{z € C;|largz — 0| < e1/2} and €1 > 0. Then the formal solution u(t,z) of the homo-
geneous Cauchy problem (H) is 1-summable in 0 direction (we denote it by a(t,z) €
Ox{t}1,0) if and only if the Cauchy data p(z) € O, satisfies the following conditions.
(i) The Cauchy data p(zx) can be analytically continued on a region S, (0,m;e1,0).
(ii) The Cauchy data has the exponential growth estimate of order at most 2 there, that

is, lo(x)] < €l (x € §,(0,7;€},0)) with some positive constants C' and § for
any closed subsector S, (0,7}, 0) C S,(0,7;61,0).

In this case, 1-sum of Upom (t,x; @) in 0 direction is obtained by

IR 2
1.2 up(t, ;) = / z+y)e Y /4
(1.2) hom (L 39) 1= o - plr+y) Y
with |t — po| < po and |x| < o for some positive py and oo(< o).

We remark that 1-sum w9, (t,z;¢) in a sector S¢(0,«, p) with some o > 7 and
p > 0 in t-space is obtained from the analytic continuation in ¢-variable by rotating the
integral path R to e’’R with |0] < £1/2.

In the following, we write the conditions (i) and (ii) by

o(x) € Exp?(S,(0, w561, 0))

and we call the conditions ”1-summability condition” or 1-S-C (with &; and o) for
short.

We consider the case that f(t,x) # 0 and f(t,x) € O,[[t]];. We may assume that
the Cauchy data ¢(z) = 0 without loss of generality. In this case, Michalik [7] gave a
sufficient condition for 1-summability of the formal solution @(t, ) = tinn(t, x; f).



ON 1-SUMMABILITY OF FORMAL SOLUTION OF INHOMOGENEOUS HEAT EQUATION 3

Theorem 1.2 ([7]). Let g(s,x) be the formal 1-Borel transform of f(t,z) which is
defined by g(s,x) =Y.~ fi(x)s"/il?, which is convergent at (s,x) = (0,0). We assume
that g(s,x) can be analy_tically continued to a sector Ss(0,¢) in s-space by some positive
and has the exponential growth estimate of order at most 1 there. Moreover, we assume
that g(s,x) satisfies 1-S-C with respect to x-variable. Then the formal solution u(t,x)
of the inhomogeneous Cauchy problem (PAI) 1s 1-summoable in O direction.

Under the above same conditions we obtain the following result for 1-sum of u(t, x)
of the inhomogeneous Cauchy problem (H) in terms of the integral representation by

using heat kernel.

Theorem 1.3. We assume that f(t,z) € O {t}o and let fO(t,x) be 1-sum of
f(t,z). We assume that there ezists a positive constant T such that fO(t,z) is ana-
lytic in ST X Eg, where Sp = S¢(0,, T) with a > w. Moreover, we assume that the
sum fO(t,z) satisfies 1-S-C with €1 and o, that is, fO(t,x) can be analytically con-
tinued to Sy(0,m;e1,0) with respect to z-variable and |fO(t,x)| < Ce’l*l® (t € Sy)
for x € S,(0,7m;¢€},0) with some positive constants C' and § for any closed subsector
S1C Sr. Then

t 00
1 2
1.3 u L (t,x; fO ::/ / e~V /45 Ot —s,x+y)dyds
( ) znh( f ) 0 \/R e f ( y) Y
with [t — po| < po and |x| < og for some positive constants po(< T/2) and oo(< o) gives
1-sum of @(t,z) in 0 direction and satisfies (H) with fO(t,z) instead of f(t,z).

This paper consists of the following contents. In section 2, we give the definition
of k-summability, and in section 3 we give related results for the 1-summability of the
formal solution of inhomogeneous Cauchy problem. We prove Theorem 1.3 in section
4, and give a proof of Lemma 4.1 necessary for the proof of the theorem in section 5.
In section 6, we give a remark on the integral representation of 1-sum in terms of heat

kernel.

8§ 2. Definition of k-summability

In this section, we give some notation and definitions in the way of Ramis or Balser
(cf. Balser [1] for the details).
Ford € R, > 0 and p(0 < p < 00), we define a sector S = S¢(d, 5, p) by

(2.1) Si(d, B,p) == {t € C;|d — argt| < 8/2,0 < [t| < p},

where d, $ and p are called the direction, the opening angle and the radius of .S, respec-
tively. We write Sy(d, 5,00) = S¢(d; 5) for short.
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A closed sector S = S;(d, B, p) is defined by S = {t € C; |[d—argt| < 3/2,0 < |t| < p}.

For k > 0, we define that o(t,xz) = > " jvn(2)t" € O[[t]]1/k (we say 0(t,z) is a
formal power series of Gevrey order 1/k) if v, (z) are holomorphic on a common closed
disk D, for some o > 0 and there exist some positive constants C' and K such that for
any n,
(2.2) max lon(z)| < CK"T (1 + %) :
where I" denotes the gamma function. Here when v, (x) = v, (constants) for all n,
we use the notation C[[t]], /5, instead of O[t];/. In the following, we use the similar
notation.

Let k> 0, 0(t,x) = >, 7 g vp(x)t™ € Oy[[t]]1/5 and v(t,x) be an analytic function
on S;(d, 3, p) x D,. Then we define that

(2.3) v(t,x) = o(t,xz) in S = Si(d, B, p)

(we say v(t, x) has the Gevrey asymptotic expansion 0(¢,x) of order k), if for any closed
subsector S’ of S, there exist some positive constants C' and K such that for any N > 1,
we have

lz|<o

(2.4) max |v(t,x) — i Vp(2)t"

N _
< CKNtINT (1 + E) , ted.

For £ > 0, d € R and 9(t,7) € O.|[t]1/x, we say that 0(t,z) is k-summable in d
direction, and denote it by (¢, z) € Oy{t}k 4, if there exist a sector S = S¢(d, 3, p) with
B> 7/k and an analytic function v(¢,x) on S x D, such that v(t,x) = 9(¢,x) in S.

In the paper, we consider the direction as 0 direction only for simplicity. Therefore
we use the notation O,{t}ro = Ox{t}.

We remark that the function v(t,z) above for a k-summable 0(t,x) is unique if it
exists. Therefore such a function v(¢,x) is called the k-sum of ¥(¢,z) in 0 direction and
we write it v0(¢, z).

8§ 3. Related results

Balser [2] gave the necessary and sufficient condition for 1-summability of the formal
solution (¢, z) = Qinn(t, z; f) of the inhomogeneous Cauchy problem (H). Here we use
the notations.

9y tj ~ x™ tj ™

it 2) = Y up(2) 5 = D len() = > tjn
; J: n! : gl n!
320 n>0 jn

Then Balser’s result is stated as follows.



ON 1-SUMMABILITY OF FORMAL SOLUTION OF INHOMOGENEOUS HEAT EQUATION 5

Proposition 3.1 ([2]). The formal solution u(t,x) is 1-summable in a direction 0
if and only if Geo(t), tu1(t) and f(t,z) are 1-summable in 0 direction.

In the above Proposition, we can’t know what the 1-summability of t.o(¢) and . (t)
mean. In the paper of Balser and Loday-Richaud [3], they tried to characterize 1-
summability of di.o(t) and @1 (t) as a property of f (t x) as follows.

For Dt_lf(t,:c) = ijlmzo Ji-1, nzj, nT,L with D, " = fot, we put
- -1z _ ) jo.n
g(t>x> = (EtEth f)(t,ll?) = Ejzl,nfj_l’nt x -,

where £, is defined by £t/ = j!'t/ and L, is also same. Moreover, for

g(t t1/2 Z fg 1 2@75‘7+£ tl/QZ f] 1 2e+115]Jr
we put
G(r) = ((B9)(8,£"%)) li=r2
which is a formal series in 7-variable. Here B is defined by B (£n+i/2) = n+i/2 /)
for © = 0,1. In this case, since we see
G(t'/2) = G (t) + tY 21,1 (1),

they gave the following proposition.

Proposition 3.2 ([3]). The series li.o(t) and G (t) are 1-summable in 0 if and only
if the series é(T) associated with f is 2-summable in the directions 0 and .

Proposition 3.1 was extended to the heat equation with variable coefficient by Balser
and Loday-Richaud [3], higher order linear partial differential equation with variable
coefficients by Remy [9, 10], semilinear heat equation with variable coefficients by Remy
[11], semilinear higher order equation with variable coefficients by Remy [12].

Balser [2] also gave the another necessary and sufficient condition for 1-summability
of 4(t, ) = Gnn(t, z; f), which was refined by Michalik [6].

Proposition 3.3 ([2, 6]). For the inhomogeneous term f(t,z) = zizofi(x)ti/i! €
O.[[t]1, we define g(s,x) and h(T) by

=D fi@)s'/ (20

which is convergent at (s,x) = (0,0) and

) =0, /0 o((r — 5)2, 5)ds,
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respectively. Then the following statements are equivalent.
i) u(t,x) is 1-summable in O direction.
it) h(T) satisfies 1-S-C, that is, h(T) can be analytically continued to S;(0,7;e1,0)
and
Ih(r)| < Ccell™, 1€ S, (0,767, 0),

for all e} < eq.

Proposition 3.3 was extended to 1/p-fractional equations by Michalik [7] and moment
partial differential equations by Michalik [8].

§4. A proof of Theorem 1.3

First, from the analytic continuation of the integral representation of u°(t,z) =
winn(t, z; f), and the assumption that fO(¢,z) satisfies 1-S-C, we can see that u%(¢, )
is analytic in a sector S;(0, a, p) X D,, with a > 7 for some sufficiently small positive
constants p and oy.

Next, we shall show that u°(¢,x) has the Gevrey asymptotic expansion 4(t,z) of
order 1, which completes a proof of Theorem 1.3(cf. [4]).

We put

w,x):z(zf@“ N ) = 3 un()t" € Out])

n>1 \1=1 n>1

For all M € N, we put

Moreover, we put
(4.1) Fu(t,z) = o>t @) — fa(t,z).

From the assumptions that f(¢,z) = Yiso filx)t'/il € O{t}1 and fO(t,x) satisfies
1-S-C, we can prove the following lemma, which will be proved in the next section.

Lemma 4.1.
(42)  |fi(x)| < C1KL2 T 1 e 5,(0,m ), 0),

(4.3) |fi(") ()] < CgKéJr”i!Qn!eS‘m'rz, € 8,(0,mel, o) (e <€&y,0 <a/2),
(4.4)  |Fy(t2)| < CsKM MMl 1 e 5,(0,m),0), t €5,
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with some positive constants Cj, K; (j =1,2,3) and 8,0 for alli,n, M. Here S; is any
closed subsector of the region {t € C; |t — po| < po}.

We have the following Taylor formula

L—-1 ¢(j) vy (. \L—1
45) filern) = Y 2 [T (0 gy
i=0

for all L
By substituting into the integral representation of u°(¢, ) the expression (4.1) with
M = [¥-1] and the Taylor formula (4.5) with L = N — 2i for 1 <14 < [#1], we have

L Y
ul(t,z) = / \/R e_y 45 )0t — s, +y) dy ds

= _y/45 t—s,x+y)+ Fylt—sox+ dy ds

N-— 21 1 (j) 00 K _oo)i—1

l !
1<i<[(N—1)/2]" Virs e J! (1 —1)!

+o00 2 N211 (N_20) (t—s)ll
" Z / \/R/ / _22 1)! fisy (x+77)d77d!/—( 0 ds

1<<[(N—1)/2]

e_y2/4SFM(t — s,z +y)dyds

+
/0 Vams
=:In(t,x) + Ry (t,2) + RA(t, ).

Then from the following lemma, we can get the desired result.

Lemma 4.2. For (t,z) € S1 x Dy, with any closed subsector S1 C {t € C;|t— po| <
po}, we have

(N D/ m
(4.6) Inttz)= ) (Zfﬁ_&"‘m(a:)) et

n=1 1=1
@7 max [Ry(L)] < CUTHYAT(N +1)/2),
N -1
@8 max Ry (t.o)] < Carcf N g0/ ([T} ; 1)
o

with some positive constants Cv,Co, K1 and Ko for any N.
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In fact, when N = 2m, since [(N — 1)/2] = m — 1, we have

with Cl < 61,02 < 02 and Kl < Kl.
When N = 2m + 1, since [(IV — 1)/2] = m, we have

In(t,x)=>  up(z)t" = ij U (€)™ + Uy ()™,

|Ry(t, )| < CLEZ ™20 (m + 1) < CLET ™ (m 4+ 1), (. |t] < 2p0)
|R?V(t,x)| < CQK;”|t|m+11“(m +1) < 62K§1|t|m1“(m +1).

Here we remark that for |z| < o

|t ()" <

= m—1 "
(Z 12 ”<x>> —

i=1

i m—i) . oy 82 [T
<3 GRE IR - DRm - e

< Co KJ'm|t|™.

From the above observations, we see that u°(¢, z) has the Gevrey asymptotic expansion
u(t, z) of order 1.
Before giving a proof of Lemma 4.2, we give a formula for ¢ > 0 and b > 0

/ e_yQ/aybdy — labLzlr (b—i__l> .
. 2 2

Let us show Lemma 4.2.
First, we show the equality (4.6). We put [;(s) := ffooo e_y2/45yjdy. When j is odd,
I;(s) = 0. When j = 2n, we have

Ton(s) = 2 / e~V /sy 2n gy — (45" H/2D(n 4 1/2).
0
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Therefore by noticing (2n)! = 22"T'(n + 1/2)n!/\/m, we have

[(N=1)/2] [(N—1)/2)—i ,(2n) -
T () (t—s)t , 4"T(n+1/2)
= Z Z 2n)! /0 (-1 ° ds NG

[(N 1)/2] [(N— 1)/2 i—1 .n
-X X ) JR =
A N I S TR
[(N—l)/Q] [(N—l)/Q} i gt

Z Z 12 )m

(N-1)/2] [(N— 1)/2

Z Z f(Q(n 1))
[(N 1)/2 n

Z Z f(2(” 1))

Next, by using the inequality (4.4), we show the inequality (4.8).
We have

r3(t, s, x) = e_y2/4SFM t—s,x+y)dy M =[N-1L
N 2
—o0

< 20K (N=1)/2]p ([ } + 1) | S|[(N—1)/2}625|x\2 /OO 6_01y2/4\s|625y2dy
0

for some positive c;, where we use the inequality |z + y|*> < 2(]z|? + |y|?). Here since
there exists ca > 0 such that ¢; — 80|s| > ¢y for sufficiently small |s|, we have

oo oo
/ e—cry’ /415l 2697 gy < / ezt /4lsl gy — M\/_E
0 0 02 2

Therefore we have

max |R3(t,z)| < CKIN- 1)/2}F ([52] +

|z|<oo

/|t s|[(N 1)/2] 4

< GRIN-D/2p ([N21] 4 1) g [(N-D/2+

Finally, by using the inequality (4.3), we show the inequality (4.7).
From the inequality (4.3), we have

Yiy—m)N-2-1 (N 2)
/0 (N —2i= 1) fizi 7@+ m)dn

< CKN 71 (5 — 1)122002"+1yl*) |y N=20

i1 (y, 2)] =
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Therefore since

o 0
<C"K'NTH = 1) s|NFD2HID (N 1) /2 —0)

with some positive constants C’,C” and K’ for |z| < 0, we have

t
/ |S|N/2—i(t _ S)i—lds
0

< C”K’N D (i = DIT((N +1)/2 — i) x [¢|N/?

max |RN(t,x |<ZC’”K’N “(i— DID((N +1)/2 — 1)

|z|<oo

< CLEN NN +1)/2).

8§5. Proof of Lemma 4.1

We give a proof of Lemma 4.1.
First, we consider the formal 1-Borel transform of f(¢,z) =}, fi(z)tt /i

gls.2) == (Bif)(s,0) = Y fila) 55,

>0

which is convergent in |s| < r and || < o for some r > 0. Then from the assumptions
that f(t,z) € O.{t}1 and that f9(t,z) satisfies 1-S-C, we can show that g(s,z) is
analytic in the region (D, U S(0;¢)) x S, (0, m; €1, 0) for sufficiently small € > 0 and has
the estimate

(5.1) lg(s, )| < Celrlsl+ozlel”

with some positive constants C,d; and d, for s € (D, x S3) and = € S,(0,7;¢},0),
where r’ < r and Sy is any closed subsector S,(0;¢).

Indeed, from the assumption that f(t, x) € O.{t}1, we see that g(s, ) is analytic in
(D, U S4(0;¢)) x D, and has the exponential growth estimate of order at most 1 with
respect to s, that is, max|, <, |g(s, )| < Cre sl for s € S.

Let us consider 1-Borel transform of fO(t,z)

< dt

0 s
(t,z)et =
27Tz/f 2 t

for s € S,(0;¢) and = € D,, where the path v denotes the path from the origin along
argt = (¢ + m)/2 to some point t; with a positive €, then along the circle [t| = |t1]
to the ray argt = —(¢ + m)/2, and back to the origin along this ray such that v C
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Sr = (0,0, T) with & > 7 + . Then from the assumptions that f(¢,z) € Oy{th
and that fO(t,z) is 1-sum of f(¢,z), we have §(s,z) = g(s,z) in a neighborhood at
(s,7) = (0,0). Moreover, since f°(t,x) satisfies 1-S-C, we see that §(s, ) is analytic in
(D, U Ss(0;¢)) x S(0,7;e1,0), and has the estimate

§(s,2)] = |g(s,2)| < Cehilsltoale”

by some positive constants C,d; and 8y for s € (D,v x So) and z € S,(0, 7€), 7).
Next, by using the inequality (5.1), we have

7! g(1,x)

21/ —1 |7|=r T+l

with some positive constant C; for € S,(0,7; ¢}, o), which gives a proof of (4.2).

Chi! 2
dr| < —1/2 %2 17|

|fi(w)/it] =1039(0, )| =

r

By using the inequality (4.2), we have

n! fi(€)
s &),
2mi %ﬁ—w|:c(w) (5 - x)n—l—l 5

for © € S,(0,m; e/, 0') with €/ < &}, 0’ < 0/2 and 5 > 0, where ¢(z) = o’ if |z] < o’
and c(x) = colx| for some ¢y > 0 if |x| > ¢’ and z € S,(0,7;¢,0’). Here, if |z| < o,
then 1/(c(x))™ = 1/0"™. If |z| > ¢/, then 1/(c(x))™ = 1/(colz|)™ < 1/(coo’)™. Therefore
we have

< nlC K1il2e /(c(z))"

RGOS

1™ (2)] < CoK it nli2e®lel
for x € S,(0,7;¢Y,0"), which gives a proof of (4.3).
Finally, we give a proof of (4.4). We put
M—-1 Si

Gu(s,z):=g(s,x) — Z fz(x)z,_g

for s € (D, US,(0;¢)) x S,(0,7m;e1,0). Then we have Gps(s,z) = D;MoMg(s, x), where
D' = [J. By using the inequality (5.1), we have

M! j{ g(T, )
— — = dr
21 |7 —s|=c(s) (7— - S)M+1

by some positive constants C1, K; and d; for (s,z) € (Dy U Ss) x S,(0,7;¢},0) with
any closed subsector Sy C S4(0;¢). Here c(s) = 7'(< r/2) if |s| < 7/, and c(s) = ¢1]s]
for some ¢; > 0 if [s| > 7/ and s € S5.

[0 g(s,2)| = < O KM pp1eh sl e

Therefore we have for s € Sy and x € S, (0, m; ¢}, 0)

S (g _ p)M—1
/O %(‘ﬁ”g(]m)dp

Gt ) = | [

1 M M—-1 . -
S/ 5] (](\Z— ?1))' Oy KM M1ebpls+oelal® g oy oM || M Bilsl el
0 - .
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We remark that Fj/(t,z) is given by the analytic continuation of 1-Laplace transform
of Gy (s, )

oo (0)
Fu(ta) = (LiGa)(ta) =y [ e Gus,a)ds
0

for |t — po| < po and = € S,(0,7;e1,0) for sufficiently small py > 0. Here the path
fooo(d) taEes from 0 to oo along arg s = d. Therefore for t € S1 C {t € C; |t — po| < po}
and z € S,(0,m;¢],0) we have

1 0o (0) . oo(— argt)
|Fa(t, )| = Z/ e tGy(s,x)ds / e "Gy (ut,x)du
0 0

S/ e_C”C’leW|vt|Me‘§1|”t|+52|‘r‘2dv (¢, 01 > 0)
0

SCleW|t|M652|$2/ e~ oMdy (¢= c—2§1p0 > 0)
0

< CLEM M= prt (G, Ky > 0).

§6. Remark on the integral representation of 1-sum

We could not obtain the integral representation of 1-sum in terms of the heat kernel
under the assumption of the inhomogeneous term f (t,x) € Oy[[t]]. However, we can
get the integral representation of 1-sum if the assumption is relaxed.

We consider the Cauchy problem

Owu(t,z) = 2u(t,z) + f(t, ),
(#) {u((),:z:) =0,

where we assume that the inhomogeneous term f(t,z) = Y.<, fi(z)t"/i! is convergent
in t-variable and entire in x-variable, and has the following estimate

(6.1) max | f(t,z)| < el zeC

[t|<p

by some positive constants p, C' and 6. Then the formal solution u(t, z), which is given
by
a@@:ZjiﬂW”%)ﬁZQQMMR
Y —1 n! N n Y
n>1 \i=1 n>1
is a convergent series in t-variable. (This holds if f(¢,z) has the exponential growth

estimate of order at most 2 instead of the condition (6.1).) In fact, from the condition
(6.1), we have the following inequalities.

fi(2)| < C1KGile’"l (2 € ©),
19 (2)| < CLE i (2 € )
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by some positive constants Cy, Ce, K1 and Ky. Therefore since |u,(z)| < CgK:?e‘s‘x' by
some C3 and K3, the formal solution (¢, x) is convergent in t-variable.

In the following, we write the formal solution u(t, x) by u(t, z).

For the solution u(t,x), which is a convergent series in |t| < p and x € C, we put

ult,e) =3 (Z fff%”‘“><x>> Nl DI S L

n>1 \i=1 i>1 \n>i

(6.2 =S 0 (S @ | = Y bt «),

i>1 n>0 ’ i>1

where D, * = fot . Here, for each i, U;(t,z) is a convergent series (in fact, entire) in
t-variable and satisfies the following Cauchy problem.

(H,) o U(t,x) = O2U(t,x),

‘ U(O,CC) = fi_l(.ill).
Therefore by restricting in the region O := {t € C; |t — po| < po} for sufficiently small
po, we have the following integral representation of U;(¢,z) in terms of the heat kernel.

Ui(t, x) J_ . 1(z +y)dy.

Then when t € Oy, we have

u(t, ) ZD “Us(t, x) Z/ Ui(s,x)ds
i>1

t—s)
;fz_l(x-l-y)ﬁdyds

|

f(t —s,x+ y)dyds.

f )
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