On meromorphy of local zeta functions
for C'*° functions
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The purpose of this article is to announce some results in the paper [14].
Let us study an integral of the form

01) 2500 = [ 1fwpleleiny  sec,

where f, ¢ are real-valued C'*° functions defined on a small open neighborhood U of the
origin in R? and the support of ¢ is contained in U. Since the integral in (0.1) locally
converges on the region Re(s) > 0, Z(f, ) can be regarded as a holomorphic function
there, which is called a local zeta function. We will consider the following issue: how
local zeta functions can be analytically continued to a wider region.

In the case where f is real analytic, the analytic coninuation of local zeta functions
is well understood. It is shown in [4], [3] that local zeta functions can be analytically
continued as meromorphic functions to the whole complex plane by using Hironaka’s
resolution of singularities. Furthermore, Varchenko applied the theory of toric varieties
based on the Newton polyhedron of f to the analysis of local zeta functions and he
gave an algorithm to determine the location and the order of their poles under some
nondegeneracy condition. Moreover, the above Varchenko’s result can be naturally
generalized to a certain class of C>° functions, which contains the real analytic class.
However, it is known in [21] that, in the case of specific (non-real analytic) C*° functions,
the local zeta function has a singularity different from poles. Therefore, the following
new issue is naturally raised: how widely local zeta functions can be meromorphically
continued. In this article, we introduce some quantity associated with f, which is
invariant under the change of coordinates, and give an answer to the above issue by
using this quantity.

2010 Mathematics Subject Classification(s): Primary 58K05; Secondary 26E10, 14H20.
Supported by JSPS KAKENHI Grant Numbers JP20K03656, JP20H00116.
*Kyushu University, Motooka 606-8502, Japan.



2 LOCAL ZETA FUNCTIONS

Notation and symbols.

e We denote by Z,,R, the subsets consisting of all nonnegative numbers in Z, R,
respectively. For s € C, Re(s) expresses the real part of s.

e For R =R or C, R[[t]] is the ring of formal power series in ¢ with coefficients from
R. Moreover, R[[z,y]] is the ring of double formal power series.

e By (0.1), Z(f,¢)(s) is defined as an integral. When Z(f, ) can be regarded as a
function on some region, this function is also denoted by the same symbol.

§ 1. Description of our problems

Hereafter, we usually assume that f € C°°(U) is non-flat and satisfies
(1.1) £(0,0)=0 and Vf(0,0) = (0,0).

Unless (1.1) is satisfied, every problem addressed in this article is easy. As for ¢ €
C§°(U), we sometimes give the following conditions

(1.2) ©(0,0) >0 and ¢ >0onU.

In order to investigate the analytic continuation of local zeta functions, we only use the
half-plane of the form Re(s) > —p with p > 0. This is the reason why we observe the
situation of analytic continuation through the integrability of integrals of the form (0.1).
Of course, it is desirable to deal with various kinds of regions in the study of analytic
continuation and this advanced issue should be investigated in the future.

§1.1. Newton data

Let f(x,y) € R[[x,y]] be the Taylor series of f(z,y) at the origin, i.e.,
— : 1 9itkf
P — - k 3 . _,—,e—e—————
(13) f(xay) - Z Cjk.illjy with Cjk = j']{}' 8x38yk (0, O)
(4,k)€Z3

The Newton polygon of f is the integral polygon

I (f) = the convex hull of the set U{(j, k) +R% :cjp #0} in R2

(i.e., the intersection of all convex sets which contain U{(j, k) +R3 : ¢ji # 0}). The
flatness of f at the origin is equivalent to the condition I'y (f) = 0.
The Newton distance d(f) of f is defined by

d(f) =inf{a>0: (a,a) e T4 (f)}.
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We set d(f) = oo when f is flat at the origin. Since the Newton distance depends on the
coordinates system (z,y) on which f is defined, it is sometimes denoted by d(, ,,)(f).
The height of f is defined by

(14) 50(f) = sup {d(z,y)(f)}a

(z,y)

where the supremum is taken over all local smooth coordinate systems (z,y) at the
origin. Note that the height do(f) can be determined by the Taylor series f € R][z, y]]
only. From their definitions, d(f) and dg(f) roughly indicate some kind of flatness of f
at the origin (when they are larger, the flatness of f becomes stronger).

Remark 1.1. We can determine do(f) for f not satisfying the conditions (1.1) from
its definition. When f(0,0) # 0, we have do(f) = 0. When f(0,0) = 0 and V f(0,0) #
(0,0), we have do(f) = 1 by using the implicit function theorem.

§1.2. Holomorphic extension problem

First, let us consider the following quantities:

The domain to which Z(f,¢) can
(1.5) Ho(f,p) :=sup p > 0: be holomorphically continued )
contains the half-plane Re(s) > —p

(1.6) bo(f) :=inf {ho(f, ) : ¢ € C5°(U)}

It is obvious that ho(f) is invariant under the change of coordinates. We remark that if ¢
satisfies (1.2), then ho(f, ) = ho(f) holds; but otherwise, this equality does not always
hold. Indeed, there exists ¢ € C§°(U) with ¢(0,0) = 0 such that ho(f,¢) > bo(f) (see
e.g. [5], [18]).

From the form of the integral in (0.1), the relationship between the holomorphy and
the convergence of the integral implies that the quantity ho(f) is deeply related to the
following famous index:

(1.7) ¢o(f) = sup {,u S0 there exists an open neighborhood V' of }

" the origin in U such that |f|=* € L} (V)

which is called the log canonical threshold or the critical integrability index. The index
¢o(f) has been deeply investigated from various points of view. The equality ho(f) =
co(f) always holds. In fact, the inequality ho(f) > ¢o(f) is obvious; while the opposite
inequality can be easily seen by Theorem 5.1 in [21]. In the real analytic case, since
all the singularities of the extended Z(f, ) are poles on the real axis, the leading pole
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exists at s = —ho(f, ). In the seminal work of Varchenko [27], when f is real analytic
and satisfies some nondegeneracy conditions, ho(f) can be expressed as ho(f) = 1/d(f),
where d(f) is the Newton distance of f. An interesting work [7] treating the equality
co(f) = 1/d(f) is from another approach. We remark that these results deal with the
general dimensional case. In the same paper [27], Varchenko more deeply investigates
the two-dimensional case. Indeed, without any assumption, he shows that the equality

(1.8) ho(f) = 1/d0(f)

holds for real analytic f. More generally, in the C>° case, M. Greenblatt [12] obtains a
sharp result which generalizes the above two-dimensional Varchenko’s result.

Theorem 1.2 ([12]). ¢o(f)(= bo(f)) = 1/d0(f) holds for every non-flat f € C>(U).

From the above result, our holomorphic extension problem is completely understood
even in the C* case. It is important that ho(f) is determined by information of the
formal Taylor series of f only.

On the other hand, the situation of the meromorphic extension is quite different

from the holomorphic one.

§ 1.3. Meromorphic extension problem

Corresponding to (1.5), (1.6) in the holomorphic continuation case, we analogously
define the following quantities:

The domain to which Z(f, ) can
(1.9) mo(f, ) :=sup{ p > 0: be meromorphically continued )
contains the half-plane Re(s) > —p

(1.10) mo(f) :=inf {mo(f,¢) : 0 € Cg°(U)}.

It is easy to see that mg(f) is invariant under the change of coordinates and that
ho(f, ) < mo(f, ) and ho(f) < mo(f) < mo(f,¢) always hold. As mentioned in the
Introduction, if f is real analytic, then mg(f) = oo always holds; while there exist
specific (non-real analytic) C* functions f such that mo(f) < co. Indeed, it is shown
in [21] (see also [12]) that when

and ¢ satisfies the condition (1.2), Z(f,¢) has a non-polar singularity at s = —1/b,
which implies mg(f) = 1/b. Here, p is a positive real number and a,b,q € Z, satisfy
that @ < b, b > 2, 1 < g < b and ¢ is even. Note that d(f) = do(f) = b in this
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case. At present, properties of the singularity at s = —1/b are not well understood (see
Section 14.2). In order to understand how wide the meromorphically extendible region
of a given local zeta function is, we consider the following problem.

Problem 1.3. For a given f € C°(U), describe (or estimate) the value of my(f) in
terms of appropriate information of f.

In [21], the above problem is investigated in the case where f has the following form
which is a natural generalization of (1.11).

(1.12) f(z,y) = u(z,y)z*® + (a flat function),

where a, b are nonnegative integers with a < b and u(x,y) € C*°(U) satisfies u(0,0) # 0.
It is shown in [21] that mo(f) > 1/a. Note that do(f) = b in this case.

Remark 1.4. Since x%y® with a,b € Z, is a real analytic function, mg(z%y®) = oo
holds. On the other hand, my(f) = 1/b holds if f is as in (1.11). From this observation,
we see that mg(f) is not always determined by the formal Taylor series of f.

§ 2. Main results

§2.1. The quantity puo(f)

Let us introduce a new important quantity po(f), which will be used in the statement
of our main theorem.

Let f(x,y) € R[[z,y]] be the formal Taylor series of a non-flat C> function f(z,y)
at the origin. It is known (c.f. [28], Corollary 2.4.2, p.32) that f(z,y) can be expressed
as in the following factorization in terms of the formal Puiseux series
(2.1) FNy) =a™ )N Ty — 6,;6)™,

j=1

where N is a positive integer, mg is a nonnegative integer, m; are positive integers,
u(x,y) € Cl[x,y]] has a non-zero constant term and aj(t) € C][t]] are distinct (i.e.,
g_zﬁj (t) # ¢, (t) if j # k). Let R(f) be the subset of {0,1,...,7} defined by

(2.2) JER(f) < j=0 or ¢;(t) € R[[]].

The case r = 0 is possible; when f(z,y) is expressed as @(z,y)z™°, we set R(f) = {0}.
The quantity po(f) is defined by

(2.3) no(f) = max{m; : j € R(f)}.
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Remark 2.1. (1) It is obvious from the definition that the quantity po(f) is deter-
mined by the formal Taylor series of f only, as well as the height §o(f) in (1.4).

(2) We define po(f) for a C*° function f not satisfying the conditions (1.1) as
follows. When f(0,0) # 0, R(f) = {0} with mo = 0, which gives po(f) = 0. When
£(0,0) = 0 and V£(0,0) # 0, R(f) = {0} with mo = 1 or R(f) = {0,1} with mg = 0
and my = 1, which gives po(f) = 1, by the implicit function theorem.

(3) The quantity po(f) is invariant under the change of coordinates.

(4) When f is real analytic and po(f) > 1, po(f) is equal to the maximal order of
vanishing of f along the set {(z,y) € R? : |z|? + |y|*> = v} with sufficiently small v > 0.
(5) If a real analytic function f satisfies f(z,y) > 0 away from the origin, then

to(f) = 0 holds. But, in the C* case, the above implication is not true. For example,
consider the O function f(z,y) = y?* + e~1/%% with k € N. In this case, wo(f) = 2k.

§ 2.2. Main theorem

Now let us state a theorem, which gives an answer to Problem 1.3. Indeed, we show
that the meromorphically extendible region can be described by using the quantity

Mo(f)-

Theorem 2.2. Let f be a non-flat C*° function defined in a neighborhood of the
origin in R2. Then we have
(i) If po(f) = 0,1, then mo(f) = oo holds;
(ii) If po(f) = 2, then mo(f) > 1/po(f) holds.
Furthermore, when po(f) < do(f), the poles of the extended local zeta function on
Re(s) > —1/uo(f) exist in the finitely many arithmetic progressions that are constructed
from negative rational numbers.

Remark 2.3. (1) The assumption of the theorem does not need the condition (1.1).

(2)  Recalling Theorem 2.1 given by Greenblatt [12], we can see po(f) < do(f) for
f € C>°(U) by using the above theorem with the obvious inequality mg(f) < bo(f)-
The inequality po(f) < do(f) itself can be directly shown.

(3) Since the equality mg(f) = 1/po(f) holds for f in (1.11), the estimate in (ii)
is optimal in the uniform sense for f. From the obvious inclusion C*(U) C C*(U),
there are many C'*° functions f such that ug(f) > 2 and my(f) = oo (in particular,

mo(f) > 1/po(f))-

(4) At present, very few properties of non-polar singularities of local zeta functions
are known. These issues are investigated in [21], [23], [15].
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§ 3. Idea of the proof of Theorem 2.2

The proof of Theorem is roughly divided into the two parts: geometric part and
analytic part.

§3.1. The geometric part

Understanding the geometry of the variety defined by f(z,y) = 0 is crusial in the
analytic continuation of local zeta functions. When the set defined by f(z,y) = 0 is
restricted to the real space R?, this restricted set sometimes has very few information
and is not always useful for precise analysis. In the case where f is real analytic,
the defining region of f can be naturally extended to the complex region in C2. The
zero variety in C? of the extended f is so-called a holomorphic plane curve, which has
been very widely studied. Actually, many fruitful results about these curves improve
the investigation of local zeta functions associated with real analytic functions. For
example, the theory of toric varieties based on the geometry of Newton polyhedra gives
quantitative results about poles of local zeta functions ([27], [9], [10], [8], [24], [5], [17],
[18], etc.). On the other hand, when a C* function f is extended to the complex
space, the conjugate variables must be considered in general, which makes it difficult
to understand geometric properties of the zero variety of f in C2?. Therefore, we give
up handling this variety itself and instead look for an essentially important subset in it,
which is easier to deal with. With the aid of the factorization formula for C°° functions
of V. S. Rychkov [25], an important curve in the zero locus of f in C? is defined, which
will be called the decisive curve defined by f, and this curve has sufficient information
for our analysis. The decisive curve defined by f consist of branches in C? parametrized
by using the Puiseux series of one real variable. Although the singularity of this curve
might not be completely resolved by using algebraic transforms only, this curve can be
locally expressed as in almost normal crossings form via finite compositions of ordinary
blowings up. To be more exact, there exist a two-dimensional C'*° real manifold Y and
a proper map 7 : Y — R? such that f o7 can be locally expressed at any point on the
zero locus of the map 7 as

(3.1) (fom)(z,y) =u(z,y)z® (y" +e1(@)y™ "+ +em(x)),

where a, m are nonnegative integers and u, ey are real-valued C'*° functions satisfying
that u(0,0) # 0 and ¢y, are flat at the origin. Note that in the real analytic case, since
£, must be zero functions, f o 7w can be locally expressed in ordinary normal crossings
form, which implies that each local zeta function can be meromorphically extended to
the whole complex plane by using an elementary method ([1], see also Section 11).
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§3.2. The analytic part

Throughout the above geometric process, it is sufficient to deal with local zeta func-
tions associated with functions of the form (3.1), which is considered as a model in the
C case. In the case of (3.1), the analytic continuation of local zeta functions can be
effectively investigated by using real analysis methods; the most important tool is a
van der Corput-type lemma. The original van der Corput’s lemma gives an estimate
for one-dimensional oscillatory integrals, which is explained in [26]. This lemma has
been rewritten in various forms according to the purposes. Our analysis needs one of
the versions used in [6] (see also [12]). As a result, we show that the meromorphi-
cally extendible region of local zeta functions associated with (3.1) contains the region
Re(s) > —1/m. The above mentioned analysis has been essentially performed in the
paper [22].

After the above explained investigation, we give an answer to the meromorphic
extension issue for local zeta functions in the C'*° case. For this purpose, we introduce
a quantity po(f) for a given C* function f. In general, the double formal power series
has the factorization formula by using the Puiseux series. Through the above explained
resolution process, the multiplicities of real roots in this factorization formula essentially
appear in the index m in the expression (3.1). The maximum of the multiplicities of
real roots in the factorization formula is denoted by puo(f). Then we can see that the
meromorphically extendible region always contains the region Re(s) > —1/po(f). This
result is optimal in the uniform sense. Note that the quantity po(f) is an invariant of
f, i.e., it is independent of the choice of coordinates.
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