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Abstract

In this report, we formulate a conjecture for a Gauf.-Manin connection of any hyperplane
arrangement. The formula relates cohomology intersection form to GauBi-Manin connection.
We report that the conjecture is true for a hypergeometric system of contingency table. We
also obtain a new formula for the cohomology intersection form.

§1. Introduction

A number of studies on Gaufi-Manin connections for hypergeometric integrals have
been published. An important class of such is Gau-Manin connection of a hyperplane
arrangement ([13]). The description of the Gau-Manin derivative is given in [13, The-
orem 12] in a complicated formula. When the hyperplane arrangement is generic, a
formula employing cohomology intersection form is obtained in [5]. An advantage of
such a formula is that it does not depend on a choice of a basis of the de Rham coho-
mology group. In this report, we provide a conjectural formula that generalizes the one
obtained in [5] for any hyperplane arrangement (Conjecture 2.3). Moreover, we report
that there is a particular class of hyperplane arrangements in which the conjecture is
true: hypergeometric system of contingency table. Proofs of the results in the last sec-
tion are based on studies on integral representations of GKZ systems developed in [6, 7]
which will be made available in a separate paper.

§ 2. Gauf-Manin connection of a hyperplane arrangement

§2.1. Orlik-Solomon algebra

We recall some terminologies from [11]. Let V be a finite dimensional complex
vector space and let @« = (aq,...,q,) : V — C" be a linear injection. We write
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H; = Kera; C V for the hyperplane defined by «; € V*. Let L be the intersection
lattice of o/ and we set L(«/) = L\ {O} where O is the unique maximal element of L.
An element e € L(«) is called a dense edge if @ = {H € &/ | e C H} is irreducible.
The symbol D(&7) denotes the set of dense edges. Let E := A(C™) be the exterior
algebra of the vector space C™ and let {e;}_, be the standard basis of C". We write
E = &" (E' for the graded decomposition of E. Let us define a linear map 0: E — E
by the relations 91 = 0, de; = 1 and

P
(2.1) ey N+ Ney) Z e, Ao NEg ANy, (p>2).
For an ordered tuple S = (i1,...,4,), we set es := e;; A---Ae;,. The Orlik-Solomon

ideal I = I(7) C E is a graded ideal generated by {des | NS # & and S is dependent}.
Note that .« is a central arrangement.! We set A := A(«/) := E/I(&/) and call it Orlik-
Solomon algebra.

For a fixed element H € <7, we set

(2.2) AV(oiH) = P AP(a) — AP()
e€L(«), e¢ H

Note that the relation
(2.3) AP(o/ H) ~ AP(dy o)

holds where dy.«7 is the decone of &/ along H. Let us fix an index 0 and write Hy
for the corresponding hyperplane. Since 7 is a central arrangement, a relation 91 C I
holds and we can set A = A(«7) := Ker (9: F — E). It is readily seen that A(«/) C A
is a graded subalgebra.

1—60)/\

Lemma 2.1. The correspondence A(dp, /) > es = e, N+ Ney, — (e
~ A(d).

- A(ei, —eg) € A() gives rise to an algebra isomorphism A(dg,.</)

Proof. A simple computation shows that an identity es = (e;, —eg) A~ A (es, —
€o) +eo AOeg holds. Thus, the map is a surjection. Injectivity is clear by definition. O

Recall that A is isomorphic to the Brieskorn algebra B generated by dlog forms
dlogag, N--- Ndloga;, € HY(V \ & QV\Q{) over C. Under this identification, it is
easy to see that A is isomorphic to a subalgebra of B generated by differential forms
ws = dlog(ai, /ai,) A -+ ANdlog(ai, /ey, ) (S = {io,...,ip}). Note that any element

IFor an arrangement ¢/ which is not necessarily central, the Orlik-Solomon ideal is an ideal of E
generated by {es | NS = @} U {0es | NS # & and S is dependent}.
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of A defines an element of H*(P(V \ &), Q;(V\m))‘ Hereafter, we often identify eg with

wegs.

§2.2. Formal Gaufl-Manin connection on combinatorial strata

Let k < n be a pair of non-negative integers and let Gryy1,41 denote the (k + 1)-
Grassmannian variety of C**! = CI%"], Here, we set [0,7] := {0,1,...,n}. We con-
sider a realization of Gry11,»+1 as a moduli space of arrangements. Let Zj 41 5,41 be the
set of complex (k+1)x (n+1) matrices z = (z;;);; which has rank k+1. For each element
% € Zk41,n+1, the i-th column vector a; can be regarded as an element of the dual space
(Ck+1)*. Thus, 2 gives rise to a linear embedding z : C¥*! = Spec C|x, .. ., z,] — C"*!
which in turn defines a matroid M, on [0,n]. Namely, a subset B C [0, n] is a basis of
M., if and only if {c; }s¢ g is a basis of (C*T1)*. Let us consider a left action of the general
linear group GL(k+1,C) on Zj41,n+1 given by the left multiplication of a matrix. The
Grassmannian variety Gryy1,,+1 is identified with the quotient GL(k + 1, C)\ Zk4+1,n+1-
Clearly, any representative z of & € Grgy1n+1 = GL(k + 1,C)\Zg41,n+1 defines the
same matroid M, for which we write M¢. For a matroid M on [0, n], we set

(2.4) R(M) = {€ € Gryy1p1 | Me = M}.

Note that M is linearly realizable if and only if R(M) # @. The combinatorial stratifi-
cation of Grg41,n+1 introduced in [4] is the following decomposition:

(2.5) Grppimgl = U R(M).

M: linearly realizable matroid on {0,...,n}
Note that each stratum R (M) is a constructible subset of Gry41 n+1 in Zariski topology.
However, R(M) can be highly non-trivial due to the universality theorem of Mnév ([10]):

Theorem 2.2 ([10]). Given any affine algebraic variety V. over Q, there exists a
rank 3 realizable matroid M whose projective stratum R(M)/H is isomorphic to V.

Let us take a basis set M of a linearly realizable matroid without any loop on [0, n].
Let R(M) C Zgy1mi1 be the preimage of R(M) by the quotient map Zj 1,11 —
Gri+41,n+1. For a subset T C [0,n] of cardinality k + 1, we set Cr := {z € Zj4+1,n+1 |

det (2j)i—o,... = 0}. Let the symbol ([[184_"1]]) denote the set of subsets of [0,n] with
€T

J
cardinality k + 1. It is easy to see that the identity

(2.6) RM)= () Cr\ |J Cr

TG([[;SIEH)\M TeM

holds. Moreover, setting Dy := C7 N R(M) one has an identity

(2.7) R(M)\R(M)= | J Dr.
TeM
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For any z € R(M) and j € [0,n], we set £;(z; z) := Zf:ol ziji. Let R(M)™# denote
the smooth locus of R(M). We set X = {(z,2) € R*2(M) x P¥ | £;(x;2) # 0}. Let
7 : X — R(M)™8 denote the natural projection. We may assume that M defines an
essential arrangement, otherwise the identity R(M) = @ holds. We write A = A(M)
for the corresponding Orlik-Solomon algebra. For any element B € M, we write zp =
det(zi;)i=o,

,,,,,

JjEB
that Ag+ -+ A, =0.

For an element e € D(M), we set Ao := ).
integer, the result of [3] (see also [12]) shows that the natural morphism

. For each index i € [0,n], we associate a complex number A; € C such

Ai. If none of A, is a non-negative

(2.8) AR jy A AR S HE (Pk \ i, (QI;,,C\MM,VA)) = HEL (M, \)
is an isomorphism where V) :=d, + wyA. For any z € ﬁ(M)7 the linear morphism

(29) Ap+1 = Cig--ip T Wig--ip S HO (Pk \%, ng\dz)

is well-defined. Note that the following identity holds true:
Wig.wni, = g log(lyy (23 2) /i (x5 2)) N -+ Ndy log(ls, (25 2) /i, (5 2)).

Let Q!(log Dys) denote the vector space spanned by {dlog 25} pear. One can define
the GauB-Manin connection associated with 7 : X — R(M )™ in a combinatorial way.
We set A[A] := A(M) ®c C[)\] and wy = 31", \iw; € AY(M)[A]. The result of [13]
shows that there is a formal GauB-Manin derivative VM 1 AF[A]/wy A AF=1[N] —
(flk [A]/wx A flk_l[/\]) @cpx Q' (log Dyy) which has the following expression:

(2.10) VM = Z fpdlog zpA,
BeM

where fp € Endcpy ([lk [A]/wx A A¥=1[A]) is a certain endomorphism determined by
the combinatorics of M. Note that d, log(g - z)p = d.log zp for any g € GL(k + 1,C).

§ 2.3. Cohomology intersection form and a universal expression of
Gauf3-Manin connection

We formulate a general conjecture of a general form of Gau-Manin connection. To
this end, let us briefly recall the construction of the cohomology intersection form. For
details, the readers may refer to [1, 8, 9]. Let R be a ring obtained from C[A] by inverting
polynomials A, —j (e € D(M),j € Zsp). We set Hig (M; R) = ([1’@“/&;A A Ak) Rcp)
R. One can define a canonical bilinear pairing

(2.11) (o,8)en : HEL (M R) g HAR (M R) — R.
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Given a tuple of complex numbers A € C"** such that A\, & Z>( for any e € D(M), one
can define an evaluation morphism

(2.12) ev(X) : HE (M R) — AR+ Jus A A*.

Moreover, the construction is compatible with the ususal cohomology intersection form
defined over C ([8]):

(o,0)ch

(2.13) Hip (M; R) ©p Hijp (M; R) —= R
lev(%@ev(—i) ‘M_K)

<’x'>ch

HE (M, \) e HF (M, —\) =2 ¢

The image of a cohomology class [w] € Hky (M; R) by evy (resp. ev_,) is denoted by
[w] (resp. [w"]) omitting A\. We conjecture that the following universal expression is
true:

Conjecture 2.3. The endomorphism fp of (2.10) takes the form
(2.14) fB(8) = Ap(e, [wg])enlwn],
where A = HieB Ai and (e, @) is the cohomology intersection form2.
The simplest case of the conjecture above is the following result.

Theorem 2.4 (Theorem 3.12 of [5]). Conjecture 2.3 is true for generic strata
R(Ukt1,n+1) where Uxy1 ny1 @8 the uniform matroid of rank k + 1 on [0,n + 1].

§ 3. Hypergeometric System of Contingency Table

§3.1. Hyperplane arrangement and contingency table

From this subsection, we fix a pair of non-negative integers k < n. Let the symbol
[k,n] denotes the set of consecutive integers between k and n, i.e., [k,n] = {k, k +
1,...,n}. For a subset Q C [0, k] x [k + 1,n + 1], we associate a bipartite graph whose
vertex set is [0,n + 1] and whose edge set is . In order to simplify the notation, we
write 45 for an element (,7) € Q.

2We normalize the intersection form by (27y/—1)F. This is a good choice when we deal with the
field of definition.
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0 |=03=0| Zo4 | 205 0 3

1 Z13 |=14=0| Z15 =1 4

2 223 | %24 |#25=0 2 5
3 4 5

A bipartite graph € is spanning if any ¢ € [0,n + 1] is a vertex of Q. In the
followings, we assume that the graph of 2 is connected and spanning. For any pair of
subsets I C [0,k], J C [k + 1,n+ 1] such that |I| = |J|, a bijection m : I=J is called
a matching if (i,m(i)) € E(G) for any ¢ € I. A pair (I,J) is called a matching pair if
there is a matching m : I ~ J. For any (¢,7) € [0,k] x [k+1,n+ 1]\ Q, we set z;; = 0.
We set z = (2i) (i,j)e[0,k] x [k+1,n+1]- For any pair of subsets I C [0,k], J C [k+1,n41]
such that |I| = |J|, the symbol z; ; denotes the (I, J)-subdeterminant of z. If we treat
non-zero z;; as an indeterminate, z;, y is non-zero if and only if (I, J) is a matching pair.

We set Z = Z(Q0) = CQ\H(I,J): matching pair{ZLJ =0}, li(x; 2) == a; (i € [0, k]) and
li(x;z) = Ef:o zi;%; (j € [k+1,n+1]). The GauB-Manin connection of a contingency
table is associated with a family of arrangements 7 : P* x Z \ {(z, 2) | H?:OI li(z;2) =
0} — Z. Let us state it more clearly. We identify z € Z with a [0, k] x [0, n + 1] matrix

1 Z0k4+1 " Zon+1
(3.1) 5=
Lzkkt1 0 Zrnyt

Clearly, any z defines the same matroid M as long as z € Z and therefore, we obtain
an open embedding Z 3 z — [2] € R(M)™8. This embedding naturally induces a
GauB-Manin connection on Z whose fiber is given by A* Jwa A Ak-1,

Theorem 3.1. Conjecture 2.3 is true on Z. More concretely, the formal Gauf-
Manin connection takes the form

(32) ng = Z )\[;J<O, [w}fﬂ)ch[wj,‘]]dlog zr,g N

(I,J):matching pair

Here, we set A1,y = [Ticporp i [jes Nis wig := w(porpnyus-

§ 3.2. matching formula of the cohomology intersection form

Given a subset S C [0,n + 1] such that |S| = k + 1, we set Sp := S N [0, 4],
S; =SN[k+1,n+1]. In view of the identity |S1| = k + 1 — |So|, setting I :=
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[0,k] \ So and J := S1, we have |I| = |J|. For I = {igp < --- < 4} C [0, k], we set
1e=[0,K]\I = {il < --- < }. We set sgn(I°, I) := _Srcher _ S0 e /%

eg/N\---Neg e\ Aeg

A simple computation shows the identity

Hz‘el l;
[Les 4

(3.3) wr,g =wg =sgn(I, Iz s wp-

Let us fix a generic weight vector w on variables (2;;);jeq. A matching m corresponds
to a monomial 2™ := [[;; 2im@). Note that zr; = >, iching S80(M)2™. Here sgn
is the signature of a matching regarded as a permutation. We always align elements
of I,J in increasing order. For a given matching pair (I,.J), a matching m : [ ~ J
such that inc(z7 ) = £2™ is called the w-minimal matching. When I, J comes from
a subset S C [0,n + 1] of cardinality k + 1, we write mg for the w-minimal matching.
We set M(S) := {(i,ms(i)) }ier. Note that M(S) =@ if I = @.

Let {e(i)}?1; be the standard basis of ZI®"*1 ie. all the entries of e; but the
i-th one is zero and the i-th entry is 1. We set a(i, j) = e(i) + e(j) (¢,7) € 2. For any
spanning tree o C (2, the equation

k n+1 k n+1
(34) Z Z Vij (el- + ej) = Z )\iei — Z )\jej
i=0 j=k+1 =0 j=k+1

has a unique solution v = v(o; A) under the condition v;; = 0 ((4, ) ¢ o). If we regard
A ={a(i,j)}ijen as a lattice configuration of ZI*"+11 any simplex ¢ in the convex hull
of A is a spanning tree and vice versa.

For a given vector w = (w;;) € R, one defines a w-weight of a monomial 2¢ =
Hije&'l 2% by Zije&l wj;€;5. For a given polynomial f in z, let the symbol in,, (f) denote
the w-initial term of f, that is the sum of monomials with minimal w-weight. Finally,
for a generic vector w € R%, let T,, denote the regular triangulation of A determined
by w ([2, Chapter 5]). The following formula expresses the cohomology intersection
number in terms of combinatorics of a regular triangulation.

Theorem 3.2. Let S1,S2 C [0,n + 1] be subsets such that |S1| = |S2| =k + 1. Fiz
a generic weight vector w and set M, := M(S,) (o = 1,2), T(S1;52) = {0 € Ty |
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My UMs C o}. Then, the following identity holds:

<[w51]7 [w52]>ch
(A1) (“Ansn)
ien(-2)) (Tjen(=2))

=sgu(l7, I) sgn(l3, Ir) sgn(ms, ) sgn(ms, ) ( X

H(iJ)eMMMQ vi i (03 A)

(3.5) '
O’ET(Sl;Sg) H(i,j)ea\(MluMg) 'UiJ((T, )\)
paa) - (=,
=sgn(I{, I) sgn(Is, I) sgn(mg, ) sgn(msg,) (Z k1) +1) X
(e 3) (Ten (3))
H v;,5 (o3 A) H v (03 A)
(3.6) Z (4,5) €M1 (i,5)E M2
0T (51352) H vi (o5 A)
(i,5)€0

Here v; j(o; ) is the ij-th entry of v(o; ). In particular, the intersection number
([ws,]; [wss])en s zero if T(S1;S2) = @.
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