Study of nonlinear irregular singular differential equations
with Borel summable functions
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0 Introduction

A system of nonlinear differential equations

1+vd_Y =

v dx

Fo(z) + A(x)Y + F(z,Y) (0.1)
with an irregular singular point x = 0. There exist many works about them,
Hukuhara [8], Malmquist [11], Trjitzinsky [16] Iwano [9] [10] and many other
mathematicians (see Wasow [17]).They studied construction of formal solu-
tions and showed the existence of genuine solutions under some conditions
by classical analysis. The theory of multisummable functions in asymptotic
analysis has been developed after their studies, hence it was not used in their
researches . We study more precisely than their works, the meaning of asymp-
totic expansion of transformations and solutions by using Borel summable
functions. The theory of multisummable functions is used for differential
equations. Especially for nonlinear ordinary equations in Braaksma [1] and
for some class of partial differential equations in Ouchi [14]. In this article
we apply Borel summability to study, which is a special case of multisumma-
bility.

There is a classical important result due to Malmquist [11]. Let {\;}7™;
be eigenvalues of A(0) and distinct. Assume A" = {\;;1 < i < n'} and
N ={ \;n’ <i<n}. N and A" are separated by a straight line through
the origin in the complex plane. It is shown in [11] that there exists an n'-
parameter family of solutions in some sector corresponding to A’. It is the
main purpose that we try to have another look at this result, by applying
a new theory in asymptotic analysis. We construct transformations and
solutions more precisely and clearly in a function class with some Gevrey
type estimates. Costin,O [4], Costin,O, Costin,R.D [5] and Braaksma,Kuik
[2] treated (0.1) for v = 1 (rank 1) in a different way, by applying the
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resurgence theory due to Ecalle. In the present article we use only elementary
properties of Borel summable functions. The details of this article is in Ouchi
[15].

1 Notations and definitions

I = (a, ) an interval, I, = (e +¢,8 —€) € > 0. C* is the universal covering
space of C — {0}. S(I) = S(«,8) = {z € C*;argzx € T}.

So(I) = So(,B) = {x € S(I);0 < |z| < p(argx)}, p(t) is some positive
continuous function on /. The same notation Sy(-) is used for various p(-).
O(U) is the set of holomorphic functions on a domain U. N is the set of
nonnegative integers. Let k = (ky,--- ,k,) e N and Y = (y1.--- ,y,) € C™.
BU= Ealko! oo koly K] = 300 ki, Y =gty V] = maxicicy [yi] and

(%)k = H?:l(ai)ki-

7 < 1,
\ \\’."
| NS0, = ()
\\ \\
\ \Ja| = plarg )
\\ 5 0 \\

Q

Definition 1.1. Let k > 0, I = (o, ) with f —a > 7/k and Q = {Y €
C™ Y| < R}. A function f(z,Y) € O(So(I) x Q) is said to be k-Borel
summable with respect to x, if there exist constants M, C and {a,(y)}>, C



0(Q) such that for any N >0
N-1 N
|ﬂ%ﬂ—§:%Wﬂﬂ§Mﬂmﬂﬂg+U (2,Y) € So(I) x Q (1.1)
n=0

holds. The totality of k-Borel summable functions with respect to x on Sy(I) X
Q is denoted by O/ (So(1) % Q).

We say that f(x,Y) is k-Borel summable in a direction 0, if there
exists 0 > /2K such that f(x,Y) € O xy(So(0 — 0,0 + 5) x Q).

2 A system of nonlinear equations with irregular singularity

Y ="(y1.y2, -, Yn)
2.1
P8 ZRa) + A@Y + F(Y) 21
v is a positive integer, F(z,Y) = ‘(fi(x,Y), fa(x,Y), -+, fu(z,y)) with
F(z,Y)=0(Y|*) and F(0,Y) = 0.

1+7 _fol +Zaw Yy + fi(z,Y) i=1,2,-- ,n, (2.2)

Let I, = (0. — 6.,60, +9,) (0 < 60, < 2w, 0, > w/2y). We assume
{a’l]( Vh<igen C ﬁ{l/v}(s (Z.)) and {f;(z, Y)}1<l<n C Oty (So(L) x ),

={Y e C": Y| < R}, fi(z,Y) = O(|Y|?). Let {\i}1<i<n be eigenvalues
of A(0). We assume

( Condition 0. Eigenvalues are distinct j

Set Af = {\; — \i; i # k}, wig = arg(A; — \p) (0 < wjp, < 2m) for i # k and

(2.3)

9i7k7g = (wi,k + 271’6)/7, l e Z,
@1 :{ei’k,gli,/{?: 1, ,n,i;«ék, EEZ},

Firstly we assume Fy(x) = 0. We simplify the linear part A(z).

Proposition 2.1. (Diagonalization of the linear part) Let 0, ¢ ©;.
Then there exists a matriz P(x) with elements in Of1,3(50(1y)) and P(0) =

3



Id such that Y = P(z)Z transforms ' 779X = A(z)Y to

dz
Iy 2= — 2.4
T Az)Z, (2.4)
where A(x) = diag.(\ (), A2(x), -, \u()) is a diagonal matriz and \;(x)

is a polynomial with degree <~ and X\;(0) = \;

Hence we begin to study

(

Y :t(y1-y27 L Un)
xlﬂil—); =A(2)Y + F(z,Y)
A(z) =diag-(M(z), -, An(z))
\ F(I,Y) :t(fl(may)v tr 7fn(I7Y))7

where {\;(x) }1<;<, are polynomials with degree < v and X\;(0) = \;, F'(z,Y) =
O([Y]?) and F(0,Y) =0. Let 0 # A’ ={\;i=1,--- ,n'} C A. We give 2
conditions on A’

e Condition 1 ~

(Eq-Y)

There exist 0 < 0x/ < 27 and 0 < 0pr < 7/2 such that A’ C X = {n #
0; | argn — ‘9A’| < 5A’}-
N J
s Condition 2 ~
Z)\jmj—)\i;éo for |m|>2 and 1<i<n. (2.5)
j=1
|m| = 27,:1 mj, m = (my, - ,my) €NV
J

Remark 2.2. We note that if A = {\; # 0}, Condition 1 is obvious and
Condition 2 <= Aym; — \; #0 for m; > 2 and 2 <i<n.

Let

n n’

i=1 j=1

and L(0) = {r > 0;r¢} be a half line in a direction 6.



Lemma 2.3. There exist § and € > 0 such that L(0) N (=€) = 0 for J =

(0 — &0 +¢) and a constant C; > 0 such that for n € S(J)

lyn + Z)\ mj — XN| > Ci(|n] +|m|) |m|>2. (2.7)

Remark 2.4. (1)Let 0, = 6/~. Then L(v0:) N (=€) = 0.
(2) We can choose 0 = Oy, by changing da: if necessary.

n = £’-space

€) > m/2

~ N . '\:/" Bullets(e) are elements of —£.

We take 6, such that .

Condition 3

I=(0,—¢,.0,+¢) (e > 0) such that INO; = O and L(0) N (—L) = 0
for6el.

Let J be that in Lemma 2.3. Since Af is finite, we can take J such that



S(J) NA* = (0. Hence S(J ) (( L)UA
and T = (0 — €4,04 + €,). Then f J
satisfies Condition 3.

Let 0, = 7/2y + €, > w/2y and I = (0, — 04,0, + J,). Then we give one

of the main results

) =0, Let 6. = 6o/7, e = @/
and if £ € S(I ) & e S(J). This I

Theorem 2.5. There exists ®(x,Z) = (¢1(x, Z),--- , on(x, Z)) such that
for any small € > 0 there exists r. > 0, ¢;(x,Z) € Oy (Siy(Le) x {Z €
C";|z| < r.}) and the followings hold.

(1) ¢pi(x,Z) = 2z + O(|Z)?) for 1 < i < 0 and ¢;i(x, Z) = O(|Z)?) for
i>n'.

(2) Let S be an open set in Sy (I.) and Z(x) = (z1(x), - . 2w (2)) (2 €
S,|1Z(z)| < re) be a solution of

+7 dzi
dx

Then Y (x) = B(z, Z(2)), 5:(x) = du(a 2 (a), -+ 2(@)) (1 <7< ),
satisfies (Eq-Y) in S.

=\i(2)z, i=1,2,---,n. (2.8)

X

Remark 2.6. Theorem 2.5 means existence of solutions of (Eq-Y) with ez-
ponential series called transseries of equations,

2i(x) = Ajexp( / ' ATQ(L) dr) (1<i<n),
D+ Y CHOZEP (1i<a), yi= Y U2, (> ).

Ip|>2 |p|>2

3  Costruction of ®(z, Z) of Theorem 2.5

The system of equations to study is

dy
JZI—H/— =A(IE>Y + F<$7 Y>7 Y = t(yl'y27 e ’yn)

A(z) =diag.(A1(z), -, Ap()), (Eq-Y)
F(x7Y) :t(fl(xvy)v U vfn(gjvy))a



where {A;(x)}1<i<, are polynomials with degree < v and A;(0) = A;. Our
assumptions are

{fi(z,Y) h<icn} C Oy (Sol) x {IY| < RR}),
I=(0.—06,.0,46),1=0—e0.+¢), 6,=7/2y+e, (3.1
INO, =0, LN (L) =0 for6 1

with £;(0,Y) =0, fi(z,Y) = O(]Y|*) and (2.7) holds.

3.1 A system of nonlinear partial differential equations

We introduce the following system of nonlinear partial differential equations
which is similar to that appeared in [13] to construct ®(z, Z) in Theorem
2.5,

®(z, Z) = (<b1(:c Z), ¢2(x Z); s fnlz, 2))
1+’* +ZA ~X(@)¢; = filz,®) 1<i<n  (32)

(x,7) = (LL‘,Zl,-” ,an) eCxC”
Let Z(z) = (z1(x), -+ , zw(x)) be a solution of
alzZ
dx
If we find a nice solution ®(z, Z) of (3.2), then Y (z) = ®(x, Z(z)) (y;(z) =
¢i(z. z1(x), -+, o (x))) will satisty (Eq-Y)

=N(z)z, i =1,2,--- 0

:L,H-’Y

y(2) =27 (0uii(x, Z(@ +Zaz]¢z v, Z(w)2;(x)))

7j=1

= 2'0,¢4(, Z(x ZA 0:,i(x, Z(x)))

= Ai(2)¢i + fi(w, @) = M Dy + filw, Y (2)).

Let U(Z) = (V1(2),09(Z), -+ ,n(Z) = (21,22, , 2pr, 0, -+ ,0) and ®(z, Z) =
Uz, Z2)+9(Z), (¢3(x, Z) = ui(z, Z) + 1;(Z)). Then

- 0

(6 G+ LA = A= AU+ ). (B



There exist {g;xe(z) € Opyyy(S(I))} such that

[, U+9(2) == ) i) ZFU" + fi(x, U(2))
keN" ¢eN”,
[l+101>2,6£0

with g;0(0) = 0 (- £:(0,Y) = 0) and |f;(z, ¥(2))| < M|z||Z]?. Let

s & 9
v . Y A
—+ E-zl A2 o N, A =N (0) )
Af(x) = Ni(x) = Ny hi(x, Z) = fi(x,U(Z E hip(x

[p|>2

Then we get

ZA* T)zj—— 82 —N @)t Y Gike(@)ZFU A+ hi(z, 2).

keN™ ¢eN”,
[kl-+16>2,620

(3.4)
We introduce an auxiliary parameter ¢

ZA* x)2=— 82 — A (z))u; + € Z Gin(2)ZFU" + chy(x, Z).

EeN" ¢eN”,
[kI+161>2,6£0
(Eq'Ue>
If e =1, (Eq-U.) coincides with (Eq-U). Let
Uz, Z,e) = (u(z, Z,€), -+ yup(x, Z,¢))
ui(ma Zv 6) = Z Oi,p,q(m)Zp€q7 1 S ) S n. (35)
(p,q)EN" xN
Ip|>2, ¢>1



By substituting w;(z, Z, ) into (Eq-U,), we have
H,y ‘I' ij Ai)Cipal ZPJA* Aj(2))Cipg (@)

+ Z gzké(T)< Z HCl pligra (T

! 0.
keNm' geNn n (ijzlp )+k —p

[kl+61>2,640 ,
=1 (Zlil 1q”)+1:q
Lo
X H C2,p2*j,q2*j (':E) """" H Cn P g™ J ) + 5q lh'z p( )
j=1

3.2 Construction of C;,,(z) and convolution equations

We solve (Eq-C) by Laplace integral. Let

0029

Cipalz) = /0 e L OdE Gl dE =A@ dE (3.6)

Let us note relations about product of functions and their convolution and

use a notation Wy (&) * Wa(&) x -+ x Wx (&) = HWZ(S) We get a system of
ol v L-

*
convolution equations to C;, ,(§).
(V6" + D _piAj = 2i)Cipg ijA* R(©) * Cipam(9)
j=1
+ Z Gike(§) * ( Z
keN™ geNn noosl iy e
K+e>2.0£0 Zima ey P (3.7)

i (25 1[1”)+1=q

Hclp”q“ HCQpQ?qQJ Honpnqu ) +5q,lﬁi,p(f)-

*y



@,M(S )(|p| > 2,9 > 1) are successively determined and they are holomorphic
in ({0| < |¢| <r}US(I,)) x{|z| < R}. Moreover &7 1C;,, ,(&)(Ip| > 2,9 > 1)
is holomrphic at £& = 0. We have

Proposition 3.1. (Estimate of @-,p,q(f)) There exist positive constants
r, M;,q and c such that

Cupae)) < Mol o cpg U@y 69
T Ta/) ‘ '
and the series Y e =2 MipITPs? converges in a neighborhood of (T, s) =
qeN,g21
(0,0) € C" x C.

We apply the method of implicit functions to obtain the estimate. This
method is often used in [7]. It follows from Proposition 3.1 that there exist
A, B and ¢ > 0 such that M;,, < APIB? and

> Gz < Y, Miwal AT

pl>2,0>1 p|>2,4>1 I(a/) 59)
AP Bl ZPe] €|ireterealer
< Z eclél < (Z AlPl| z7)) 7
p>24>1 Fla/) Ipl>2 L(1/7)

which converges for any e and {Z € C"; |z;] < A7, 1 <i <n'}. {Cipg(€)} (1<
n) satisfy (3.7). Let e =1, Ci,(§,1) = >_ 5, Cipge(§) and

Cipla) = /Lw) e DG, (6,1)d8 fel. (3.10)

Then ui(z,Z) =37 ey’ p>2 Cip() 27 and we get ¢(x, Z) = ¢(2)+wi(x, Z) (1 <
i <n) in Theorem 2.5

4  Equation with Fy(z) # 0
Let us study the case Fy(x) # 0,

Y :t(yl-y%'“ ,yn)

xIH% :FO(;C> + A(az)Y + F(% Y)a

(4.1)

10



A(x) = (a;j(x))1<ij<n- Fo(z) and a; ;(z) are holomorphic in a neighborhood
of x = 0 and Fy(0) = 0. F(x,Y) is holomorphic in a neighborhood of
(2,Y) = (0,0) and F(z,Y) = O(]Y|*). {\i}i<i<n are eigenvalues of A(0).
A; # 0 and distinct. Let w; = arg \;, 0 < w; < 27. and

Oy = {(w; +270) /v, 1 <i<n,leL} (4.2)

B, U O is called the set of singular directions. There exists a unique formal
power series solution K (x) with K(0) = 0 of (4.1). Its Borel summability
follows from Braaksma [1].

Proposition 4.1. Let 0, ¢ ©¢. Then there exists K(z), which is ~-Borel
summable in the direction 0, with K(x) ~ K(x).

Let us transform (4.1) to the case we can apply Theorem 2.5.
(1) Let Y = 2W + K(z) and 0, ¢ ©y U ©;. Then

$1+7% =(A(z) =2 W + 2 ' (F(z,2W + K(x)) = F(z, K(x)))

n

"0
=3 iy (@) = Sigaywy + Z G i K + g1, W),

j=1
and we get

d
x“"Vd_W = A,(x)W + G(% W) W = t(wﬂwz? T 7wn)
T

A @) = (asy(a) = 0oyt + o (o, K@), A(0) = AD)  (43)
J
G W) ="(g(x, W), -, gu(z, W))
(2) Next we transform W = P(z)U by an invertible Linear transformation

P(x) with elements in O,y (So(1)) (I = (04 — 0, , 0, + d), 6, > 7/27) and
have

( U ="(uy.ug, -, uy)
dU
IR e —
z B(x)U + H(z,U) (4.4)

B(z) =diag. (by(x),bs(z), -+ ,by(x))).
| H(z.U) ="(hy(z,U), ho(x,U), -+, hn(,U)),

bi(x) is a polynomial with degree < v and b;(0) = A, hi(2,U) € O1/43(So(I) %
Q) with h;(0,U) = 0 and h;(x,U) = O(|U|?). B(z) depends on K (x). Thus

11



we simplify (4.1) to (4.4) by Y = K(z) + 2 P(x)U
(3) Set A" = {\;;1 <i < n'} and assume Conditions 1 and 2 hold. Consider
an n’ X n’ system of linear equations

7 ="21.20,+ , 2pr)

. U(x) =Pz, Z(x 4.5
x1+7%:bi(x)zi,1§i§n' (z) = ®(x, Z(x)) (4.5)

By applying Theorem 2.5, we have

Theorem 4.2. There exists ®(z,2) = Y(d1(x,2), -, dp(x, 2)), ¢i(x,2) €
O/ (Sqoy (L) x {z € C; |2| < rc}) with the following properties.

(1) ¢i(x,2) = 2z + O(|z|*) for 1 <i <n' and ¢;(z,2) = O(|z|*) fori>n'.
(2) Let S be an open set in Sy (1) and Z(x) = (z1(x), - . 2w (2)) (2 €
S,|Z(z)| < re) be a solution of (4.5)
Then Y (x) = K(x) + a2 P(x)®(z, Z(x)) satisfies (4.1) in S.

5 Examples

We remark that if equation (4.1) is 2 x 2 system with eigenvalue A\ Ay # 0
and arg \; = w, arg\s = w + 7, then we can apply Theorem 4.2 (Remark
2.2). We give examples. We apply Theorem 4.2 to Painlevé 2.

(P)o:y" =2y° + 1y +a. (I%)
Byt=1/s
s(szd—')zy = 2sy® + y +as (5.1)
s
(P2.1) There exists a unique formal power series solution k(s) = —as +

2(a®* —a)s*+--- to (5.1). Let y = —as+ 2. Then s(s*£)%*z = (14 6as%)z +
2(a — a®)s? — 6as?2% + 2s23 and

d 1 ,d
<85/2—>2Z T = (1 + 6@233>z + a0(5> + a2(8)22 + CL3(S>Z3.
ds

ds 2 ds
4[] e Yo )

Put u =2z, v =572z
+ 9 3
ao(s) + az(s)u? + as(s)u

= O

(5.2)

12



We have by changing z = s'/2

#£{ﬂ=<ﬁ a+ﬁﬁ;ﬂ+owﬂ{ﬂ“

2Lmﬂ+mﬁw+%wm4

Hence we can apply Theorem 4.2 to (5.3). v = 3, Ay = 2,\y = —2 and
Oy UO; ={Z;( € Z} for (5.3) and k(s) € C[[s]] is 2 Borel summable.
(P2.2). Let 2¢2+1 =0 and y = s/?(c + 2). Then

d, 3,d 3 os?

5242, 24t 2 s 2 3 3/2
(s ds)z 55 737 (6c +1+4)z—|—602 +22° +as” " + T

(5.3)

Set u =z, v =524 Then

(=15 o §re) ]

+ Llo(S) I 6(iu2 N 2u3] (5.4)

The situation of this case is the same as (P,.1) and we can also apply Theorem
4.2.

Another example is Noumi- Yamada system. This system is symmetric
and it is knowun that it is almost equivalent to Painlevé 4 (see Noumi [12]).

fo=folfi — f2) +
fi=hlfa—fo)+a  m+a+a=1 (NY)
fo = fo(fo = f1) + a2

There is a constant k such that fo + f1 + fo =t + k. We may assume k = 0.
Hence fy+ fi1 + fo =t and get 2 x 2 system

fi=—th+fi+2fifr+a
[y =tfa —2f1fo — f3 + ao.

Let fi(t) = art + g1 (1), o(t) = ast + g2(t), 1(t), g2(t) = O(1) t = o0.
Then (a1, az) = (0.0), (0,1), (1,0), (1/3,1/3) and

?

d (g o G2+ 20192 + o1 — a4
o =tA +( 5.6
G() () () e

13
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where

A — -1+ 2(L1 + 2&2 2&1
o —2CL2 1— 20,1 — 2@2

(0 (5 )6 5) (B 20)

The eigenvalues of A of is £X # 0 for each case, so conditions of Theorem
4.2 are satisfied and we can apply it to each case.
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