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Abstract

Motivated by a physical problem, we discuss a relation between WKB solutions and conver-
gent solutions of a particular second-order linear ordinary differential equation near a simple-
pole type turning point in this paper. By applying the confluence process, we obtain an explicit
relation between these two solutions.

8§1. Motivation

To study the mass of meson, which is an interacting particle of mass intermediate
between proton and neutron, Shigaki discusses an eigenvalue problem for the following

seond-order ordinary differential equation from the viewpoint of the exact WKB analysis

in [S]:

o o 9s2=1) | (=9N) o5 — 645 +32s0)
(1.1) ¢ - (43(1 — 53) +n 45(1 — s3) T 1652(1 — 53)2 ¢=0

where s is an independent variable, n is a large parameter and X denotes a spectral
parameter. (Eigenvalues are given by 1 + n_l;\ in terms of 5\) One peculiar point of
this problem is that (1.1) has a special kind of turning points, which is introduced by
Koike and called a ghost in [Ko2], at s = 1. Making full use of this fact that (1.1) has
a ghost at s = 1, Shigaki shows the following result in [S]: Let

1 S
exp (:I:/ Sodd ds)
Sodd
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be WKB solutions of (1.1), where S,qq denotes the odd part of the formal power series
solutions of the Riccati equation associated with (1.1), and assume that argn is con-
tained in a sufficiently small neighborhood of —7/4. Then, modulo exponentially small
terms, the secular equation for (1.1) is given by

1 1
1.3 —4+-el0-1.-2....
(1.3) At 46{, ,—2,... },
where
(1.4) = Sy d
. KR = — o S.
i dd

around s=1

On the other hand, Shigaki also computes the asymptotics of large eigenvalues nu-
merically in [S]. This amounts to considering Eq. (1.1) in the following form, that is,
with keeping 7 to be a finite parameter and regarding 2 = n\ as a new large parameter
instead of 7 :

19 (PR e )|

Note that s = 1 is not a turning point of ghost type, but of simple pole type in (1.5). To
compare these numerical computations with the above result for the secular equation
(1.3), we thus need to consider the following questions:

(1) What occurs in the exact WKB analysis of second-order linear ordinary differential
equations when a large parameter 7 is replaced by a new large parameter, for
example, v in the case of (1.1) and (1.5) ?

(2) In particular, we want to know the asymptotic expansion of % Sodd ds of (1.1) with

respect to a new large parameter v.

(3) More generally, we want to clarify explicit relations between WKB solutions ¢4 (s,7)
of (1.1) and ¢, (s,v) of (1.5).

At the present stage we do not have a complete answer to these questions. In this
paper, as the first step toward answering these questions, we discuss a relation between
WKB solutions ¢ (s, ) and convergent solutions uy (s) of (1.5) around s = 1 via the
confluence.
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§2. Preliminaries

In what follows we use £ = s — 1 as an independent variable and consider
Py 2 9 5 9(x +2)
dx? dz(x + 1)(2? + 3x + 3) 4(x 4+ 1)(z? + 3x + 3)

3225 +1922° + 480x* + 5762° + 28822 — 27 0
1622(x + 1)2(22 + 3z + 3)2 L.

(2.1)

or more generally

2
(2.2) (cile —12Q(z,v)p =0
with
(2.3) Q(x,v) = QOT(””) + v‘Qijf)

around a turning point z = 0 of simple pole type. Here Qy(z) and Q2(z) are holomorphic
functions at = 0. As is shown by Koike ([Kol], [Ko3]), one Stokes curve defined by

Figure 1 : Stokes curve (2.4). (A wiggly line designates a cut for \/Qo(z)/z.)

(2.4) s/j,/QOT(””)dx:o

emanates from such a turning point = = 0 of simple pole type and the following con-
nection formula holds on (2.4):
0 0 0
SOSF) — SOSF)‘FC%O(_)»

0 0
R

(2.5)
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where cpgg ) denote the WKB solutions of (2.2) normalized at = = 0, that is,

0) 1 ‘.
2.6 L (x,v) = exp <:|:/ So d:L‘) ,
26 == T e, S

and the Stokes constant (or connection constant) c is explicitly given by

(2.7) ¢ = 2icos <2m/r2 + }l) with 7o = (l/QCL‘QQ(x,V))

(Here, and in what follows, we assume that the branch of \/Qo(x)/z is chosen so that
4,083) is dominant over 90(_0) on the Stokes curve (2.4).) In particular, 7, = —3/16 and

= Q2(0).

Tr=

¢ = 0 in the case of (2.1). Otherwise stated, no Stokes phenomenon occurs on the Stokes
curve (2.4) for Borel resummed WKB solutions of Eq. (2.1).

On the other hand, x = 0 is a regular singular point of (2.2) and hence there exist
convergent power series solutions at x = 0. In the case of (2.1) characteristic exponents
at © = 0 are readily computed to be 1/4 and 3/4. Therefore (2.1) has the following pair
of linearly independent convergent solutions u4 (z) near z = 0:

(2.8) up(r) =231 (1+0(x), u_(z)=2"*(1+0(x)).

Here, by considering local monodromy of QOEE)(QS,I/) around x = 0, we find that the
relation

29) PP(av) = ¢ (av) = Cruy (),

o (@) + (@, v) = Cou(a)
holds with some constants C1 between gpij)(m, v) and vy (z). What we want to discuss
in this paper is the explicit determination of these constants C..

§3. Confluence

To determine the constants C. appearing in the relation (2.9), we make use of the

so-called confluence process in this paper. To be more specific, we replace the potential
(2.3) of Eq. (2.1) by

_2Q2(7)

T2

(3.1) Q) (w,v) = L Qo) +v

and take the limit p — 0. In this section we first discuss what occurs with WKB
solutions in this confluence process.
For p # 0 we consider
d?i

(3.2) i QW (a,v)p =0
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with the potential Q) (x,v) given by (3.1). Eq. (3.2) has a simple turning point at
x = p, while z = 0 is a double pole of (3.2). Let 6 = (P) denote the residue of Soda at
x =0, that is,
(3.3) é = é(p) = Res Soqq = \/7’2 + l - §pl/2.

x=0 4 4

Then the characteristic exponents of (3.2) at = 0 are expressed as 1/2 + . Fur-
thermore, letting zZJng ) (z,v) be WKB solutions of (3.2) normalized at the simple turning
point z = p, we find that the formal analytic continuation (i.e., formal local monodromy)

of ¢(p) (z,v) around x = 0 is given by

(3.4) A (x,v),

where

(3.5) A+ = exp (2m’ (% + é)) = —exp (:I:2m'§) :

Region II

A

Region I

Figure 2 : Stokes curves of Eq. (3.2) near x =0 and = = p.

Since the connection formula at a simple turning point for ¢§_f ) is well known (cf.
[KT], [V]), the analytic continuation of (the Borel sum of) ng) ) along any path can
be readily computed. For example, the analytic continuation of zpi’) from Region I to
Region II indicated in Figure 2 is explicitly described as follows:

A
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We now rewrite (3.6) in terms of differently normalized WKB solutions wf ) defined by

(0) B 1 1 / )
3.7 V) = — +— Soda dx ),
(3.7) + (z,v) Soma exp( 5 o dd ax

where the integration path () is indicated in Figure 3. The WKB solutions @Z)f ) can be

Figure 3 : Integration paths v(9) and ~(),

called “WKB solutions normalized at « = 0” as @/)ES ) = go(io ) holds for the limit p — 0.

(p)
+

Furthermore, since 1Y’ is expressed as

(p) _ 1 1
(3.8) v (x,v) = —\/m exp <:t2 /y(P) Sodd d:v)

with v(”) being also indicated in Figure 3, we have

(3.9) W (z,v) = exp(Frif) ) (@, v),
Hence, combining (3.6) with (3.9) and using (3.5), we obtain
(3.10) D s 0 4 2i cos(2m0)y

for the analytic continuation from Region I to Region II. Taking the limit p — 0, we
find (3.10) is consistent with Koike’s connection formula (2.5) & (2.7) as 6 tends to
\/m when p — 0. Thus Koike’s connection formula at a simple-pole type turning
point can be derived from the well-known connection formula at a simple turning point

via the confluence.
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§4. Comparison with convergent solutions

Finally, making use of the confluence process introduced in the preceding section,
we explicitly determine the constants C'y in the relation (2.9) between WKB solutions
and convergent solutions of (2.1) in this section.

To this end, we need a regularization of S,qq at a double pole x = 0. However, a
simple-minded regularization like

ISR

(4.1) Sodd = — + (regular part at = = 0)

is not good enough as (4.1) destroys the odd character of Soqq at © = p. Another
candidate for the regularization

0 ,
(4.2) Sodd = —4 /1 — r + (regular part at x = 0)
z\op

also has a problem in the sense that it creates a new divergent term with

(4.3) / \/:dr = log — +

(logz/(2p) is divergent when p — 0.) Having these difficulties in mind, we define the
regularization of Syqq at * =0 as

V—=3v2 = ~ . - 1
(4.4) Sodd = 23«1/ VPp—x+ Soqa Wwith p=p—

1202
by neglecting the divergent term 1/(4p) in the expression

(4.5) F \/ — —3p1?) — (% — 31?)x.

The corresponding WKB solutions denoted by psi(fg) are then defined by

(4.6) (¥ = \/ﬁexpi{ ” _23’/2 (2\/;3——93
#VAlog(v/5 Vi 1) ~ Vilog(vi+ Vi) + [ Suaads ).

Note that, since the residue at x = 0 of the first term of the right-hand side of (4.4) is
6 and coincident with that of Sodd, godd is holomorphic at = = 0.

Once a regularization of Syqq is introduced in an appropriate manner, it becomes
possible to compare WKB solutions and convergent solutions at the double pole x = 0.
As a matter of fact, computing the local expansion of Syqq at © = 0 explicitly by using
(4.4), we obtain the following
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Proposition 4.1. Let
(4.7) ul (x) = 2?0 (1 4 O(x))

be convergent solutions of (3.2) at x = 0. Then the following relations hold in a suffi-
ctently small neighborhood of x = 0:

(4.8) gb(reg)( v) = Agf))ugf) (), U (z,v) + (ezp. small terms) = AP0 (2),
where

(4.9) AV = exp (i 02 - log(4ﬁ))> .

Remark. The relation (4.8) is verified by the comparison of the local expansion of
¢£_Lreg) and that of u(ip ) at 2 = 0. However, since a dominant WKB solution w( res) g
divergent at « = 0, to obtain an exact relation we need to specify the Stokes region so
that the Borel sum of w(_]reg) may be defined without any ambiguity. This is the reason
why the second relation of (4.8) holds only modulo exponentially small terms. Note
that these exponentially small terms are constant multiple of a subdominant WKB
solution Q/JS:eg) and the multiplicative constsnt can be fixed once the Stokes region is
specified. On the other hand, since the other WKB solution Q/JS:eg) is subdominant and
Borel summable in a neighborhood of z = 0, the first relation of (4.8) holds modulo no

exponentially small terms.

Furthermore, computing / Sodd dz explicitly by using (4.4), we also obtain the
fy(P)

following relations between ¢(ireg) and a,bg:* ) (x = p or 0).

Proposition 4.2. The following relations hold:

(4.10) d)geg) (r,v) = z/)gf) (z,v) exp(£ 1) = d)f)(x, v) exp %(mifl + 1),
where
o
(4.11) I(p) = / Sodd dx.
Jo

Finally, making use of these propositions, we determine a relation between WKB
solutions and convergent solutions in Region I indicated in Figure 4, which is stable
during the confluence process. We first use the relation (4.8) in Region III which is also
indicated in Figure 4. Taking Remark after Proposition 4.1 into account and combining
with Proposition 4.2, we have

(412) Agf))u(P) w(reg) — I(p)w(P)

AP = 19 4 a8 — IO el yplp)
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Region III

Region I

Figure 4

with some constant a. Then the analytic continuation to Region I is described by
(4.13) Agf)ugf)) NN (@Z’Sf)) _ w(p)) . <eméz/)$) _ ie—wié¢(0)>
A(p)u(p) N e_f(p)z/z(p) I(”) w(p) - w}(p))
](p)_'_ﬂ-zgw(o) (€_I<p> _ iae"(p)) e_”éw@.

Thus, as u(p )( ') are convergent solutions, we have the following relation in Region I:
(4.14) APP = eI (emlp — jemmity ),
A(_P)u(_/J) I(p)-l-ﬂ'z@w(o) (e—I(p) _ iael(p)) e—ﬂ'iéw@)

We now assume that 7(?) — 0 holds when p — 0. (Although we have not verified
it rigourously yet, it is reasonable to assume this since Sodd 18 holomorphic at x = 0.)
Then, by considering the limit p — 0 and taking account of the fact that 6—1 /4 and
p — —1/(12v?%) for p — 0, we obtain

(4.15) Ajug = e’”“(gp@ — ga(_o)), A_u_ = ae”/"‘gof) + (1 —ia)e 77’/4@(_0),
where
(4.16) Ar =1im AP = 2exp + (1 41 log(—31/2)) .
p—0 2 4
Comparing (4.15) with (2.9), we find @ = —i/2 and consequently we have
g0(0) _ (0) = 2¢C0e~Ti/4y (7)),

(4.17) |
SOEB) + 90( ) _ 46_0067”/4U_(£L’)
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with
11
(4.18) Co=5+7 log(—3v2).

Thus we have obtained an explicit relation between WKB solutions go(io) and convergent

solutions u (z) of (2.1).

§5. Concluding remarks

By applying the confluence process, we have succeeded in obtaining an explicit rela-
tion between WKB solutions and convergent solutions around a simple-pole type turning
point of Eq. (1.5), or equivalently (2.1), in this paper. Although a very particular equa-
tion (1.5) or (2.1) is discussed in the paper, the argument employed here is applicable
to general equations of the form (2.2).

If we apply a similar confluence argument to Eq. (1.1) near its ghost point, it is
expected that a relation between WKB solutions and convergent solutions of (1.1) may
be also obtained. Then, by eliminating convergent solutions from these two relations, we
can expect to obtain a relation between WKB solutions of (1.1) and those of (1.5). In the
case of a ghost point, however, the computation becomes much more complicated and
we have not completed it yet. When we obtain some definite results for the confluence
process near a ghost point, we will report them somewhere else. Furthermore, it is a
very important future problem to discuss the effect of changing a large parameter in
the exact WKB analysis in more general setting.
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