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Abstract
The Gauss hypergeometric differential equation with a large parameter deformable to a
Schrodinger equation with a simple pole at the origin is investigated. In this announcement

paper, the relations between the standard solutions of the hypergeometric differential equation
in the neighborhood of the origin and Borel sums of WKB solutions are given.

§1. Introduction

In this article we study a Schrodinger equation with a large parameter n:

d? 2, Qo | 502
1) (=g 5+ ))v =0
from the viewpoint of exact WKB analysis. Here
(a— B)%x + 4ap w2 -z +1
1.2 = e S

and «, 8 are complex parameters. Equation (1.1) comes from the Gauss hypergeometric

differential equation with complex parameters a,b and c:

d?*w dw
(1.3) x(l—x)W—I—(c—(a—i—IH— 1):1:)%—abw—0.
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We introduce the large parameter 7 in (1.3) as

1 1
(1.4) a=gtanb=c+pfnec=1

and have the following equation:

(15) 2= 4 (1= ((a+ B +20) % — (an + 1) (on+

dx? dx 2) =0

Moreover, eliminating the first-order term by taking
(1.6) w = x_1/2(1 _ m)—((a+ﬁ)n+1)/2¢

as a new unknown function, we get (1.1). Equation (1.1) has regular singular points at
0,1, 00 and one simple pole at = = 0 in its potential function. The equation (1.5) has
fundamental solutions at the origin:

(17) w1 = 2F1(a’7b7 ]-7‘1’)7

00 k—1
1 2
(1.8) we = oF1(a,b,1;x)logx + E k < - )xk,
— (k! —~\a+l b—|—l 1+1

where o F (a, b, ¢; x) denotes the hypergeometric function defined by the hypergeometric

series:

(1.9) oF(a,b,c;x) = Z M "

(¢)nn!

which is convergent in the open unit disk with the center at the origin in the complex
plane (cf. [2]). Here the Pochhammer symbol (a), stands for a(a + 1)(a +2)---(a +
n—1)=T(a+n)/T(a).

On the other hand, we can construct formal solutions which are called WKB solutions
of equation (1.1). It is known that the WKB solutions normalized appropriately are
Borel summable and Borel sums of the WKB solutions are analytic solutions to the
equation (1.1) (cf. [4], [6]). In [5], the relations between the standard solutions in the
neighborhood of x = 1 of (1.5) and the Borel sums of the WKB solutions (cf. [3])
are established for each topological type of the Stokes curves. Moreover, Aoki and the
authors obtained the relation between the hypergeometric function (1.9) with

(1.10) a=ag+an, b= o+ fn, c =7+

and the Borel sums of the WKB solutions normalized at the origin of the hypergeometric
equation with n (cf. [1]).
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In this report, we give a concrete form of the relations between (w1, ws) and Borel
sums of WKB solutions. Detailed discussions and proofs will be given in our article in

preparation.

§ 2. The hypergeometric differential equation with a large parameter
We set

= {(a, 8) € C* | af(a - B)(a + B) = 0},
(2.2) By = {(a, B) € C* | Rea Re3 = 0},
(2.3) Ey = {(a,p) € C* | Re(ar — B) Re(a + B) = 0}.

If (a,8) is not contained in Ej there is simple zero of Qo/x which does not coincide
with any one of 0,1,00. The (simple) zero which is denoted by 7 and simple pole
at the origin are called (simple) turning point of (1.1). Hereafter we assume that
(o, B) ¢ Ej (j = 0,1,2). A Stokes curve emanating from a = 7,0 is, by definition, a
curve defined by

(2.4) Im/x 1/%@5 0.

If (o, B) doesn’t belong to Ey U Eg, there are no Stokes curves which connect turning
point(s). Hence all the Stokes curves flow into some of the singular points 0, 1, co. WKB

solutions of (1.1) are, by definition, the formal solutions of (1.1) of the following form:

\/ﬁexp(:l:/;.sodddx),

where a = 7,0 and S,qq4 denotes the odd-order part of the formal solution

(2.5) Va4 =

(26) S($77) - Sodd + Seven = Z U_ij(I)

Jj=-1
in n~! of the Riccati equation

as
(2.7) 8 =nQ

to (1.1) having the leading term S_; = \/Qo—/x. Here the integration in the right-hand
side of (2.5) is understood as a half of the integral of \/Qo/x on a contour starting
from = in the second sheet of the Riemann surface of \/Qo—/:c, going straight to a
and going around it counterclockwise and back to x on the first sheet. Let b be the
destination of the Stokes curve emanating from the origin. Since the Stokes geometry
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is non-degenerate, b = 1 or oco. Let ny and ng denote the number of Stokes curve(s)
emanating from 7 that flow(s) into 1 and oo, respectively. Clearly n; 4+ no = 3 holds.
We set . = (b;n1,ng) and call it the type of the Stokes geometry of (1.1). We define
the sets @y (k = 3,4) of the pair of parameters (o, 3) as follows:

(2.8) @3 = {(a, ) € C* | 0 < Rear < Rep},
(2.9) @4 = {(a, 8) € C* | 0 < Rea + Refs < RepB}

and II, (k = 3,4) in C2 by

(2.10) M = | r(@w),

reG

where G is the group generated by the involutions 7; (I = 0,1):

(2.11) Lo : (o, B) = (B, ),
(2.12) ih: (o, 8) = (—a,—p).

We can classify the type of the Stokes geometry of (1.1) by 7:

Theorem 2.1. ([5, Proposition1]) (1) If (o, 8) € Il3, then @ = (1;2,1).
(2) If (o, B) € Iy, then 7 = (00;1,2).

Some examples are given in Fig.1 and Fig. 2.

Ra
A O
A 1 0o /7 1
(a,8) =(0.8,2) € w3 (o, B) = (—0.3,1.8) € @y
Fig. 1 Fig. 2

Here the triangle, the black triangle, the circle and the wavy line designate the
turning point 7, the simple pole 0, the singular point 1 and the branch cut for \/m,
respectively. Moreover, a region whose boundary consists of Stokes curves is called the
Stokes region. A region whose boundary consists of Stokes curves and the branch cut
are labeled R5 as shown in Fig.1 and Fig. 2.

The WKB solutions are Borel summable on Ry. Let @3’; (k = 3,4) denote the
Borel sums of 45 1 in Ry. We obtain the relation between (w;,ws) and (@3’1, \i}é’j)
and have
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Theorem 2.2. Suppose that (o, B) € @i (k = 3,4). Then (w1, w2) and the Borel
sum (\ifgﬁ_, ‘il(z)li) on Ry of the WKB solution (g 1,0, ) are related by

(2.13) (w1, w2) = i Ul i (023, W) (1 ;(WJ(G) S >

NG 0 0TI =i (@(a) + 9(b) + 27 + 2m)
and

(2.14)

T P ) @2 ooy o (1 —((1 = a) +4p(b) + 2y + i)
B AR G AT A AR

Here ¢(z) and v are the digamma function defined by

d

(2.15) Y(z) = ~In(l'(2))

and Fuler’s constant, respectively.
A complete proof of this theorem will be given in our forthcoming paper.
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