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Abstract

Differential-difference equations satisfied by the Voros coefficients at the unit are given for
the generalized hypergeometric differential equation for 3 F» with a large parameter.

§1. Introduction

The Voros coefficients are primarily introduced for second-order ordinary differential
equations with a large parameter [2, 5, 8, 10, 11, 13]. Explicit forms of them for Gauss
hypergeometric differential equation and its confluent differential equations have been
obtained in those articles. Recently they are introduced for some higher-order ordinary
differential equations [3, 4, 12]. The authors has defined them of the origin and the
infinity for the generalized hypergeometric differential equations and obtained the ex-
plicit forms [3, 4]. In this article, we consider the Voros coefficients of the unit for the
generalized hypergeometric differential equation for 3F5 with a large parameter positive

n:

(1.1) 3 Pot) = 0,
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where we set
(12) 3P =0 (P +b)(Wa + 52)0 — (W + 02)(V + 02) (9 + a5) )

d d

836 = d—, ’l}r = CL‘d—, a; = Q50 —|—CLZ'177 (Z = 1,2,3) and bj = bj() -+ bj177 (j = 1,2) The
x x

generalized hypergeometric series (or function)

Gy, az,as = (a1)k(a2)k(a3)k k
F: e | = x
° 2( by, ba ) kZ:O (b1)k(b2) k!

is a solution to (1.1). The generalized Riemann scheme ([9]) of (1.1) can be written as

x=0 r=1 r =00
0 [0](2) a

1—-0; a

1—b2 bl+b2 —aip —ag — asg as

(1.3)

We may define the Voros coefficients of the unit for (1.1) in a similar way to the case of
the origin and the infinity. Computation of their explicit forms contains several difficul-
ties which come from the multiplicity of the eigenvalues of the local monodromy at the
unit. However, we have obtained the local behaviors at the unit of the WKB solutions
of (1.1) and derived the systems differential-difference equations which characterize the
Voros coefficients at the unit. These are main results of this article (Lemma 2.2, Theo-
rem 2.3). To solve them and obtain the explicit forms of the Voros coefficients are our
next problems.

§ 2. WKB solutions and Voros coefficients

The total symbol o(3%)(x,&) of 3 is, by definition, a polynomial obtained by
replacing 0, by a variable £ in (1.2) and it is written in the form

3

o(3P2)(x,8) = > 0 For(sPa)(x, (),

k=0

where we set ¢ = ¢/n ([1, 6]). We call og(3P)(z,() the principal symbol of 3P,. The
explicit formula for og(3P2)(z, () is given by the following:

00(3P2)(z,¢) = (¢ + b11) (¢ + ba1) — (¢ + a11)(z¢ + a21) (2 + as1)
=2%(1 — )¢ + (b + ba1 — 2 (a11 + a1 +az1)) ¢

+ (b11b21 — x (a11021 + az1a21 + arras1)) ¢ — ajrazas;.
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A point x, € C is called a turning point of 3% with the characteristic value (, if

00(3P2) (T4, () = 0co0(3P2) (24,() =0

([1, 6, 7]). The turning point x, is said to be simple if 8?00(3]32) (z4,C«) # 0 and
0:00(3P2) (z4,(x) # 0. In this article, we assume that all turning points of the equation
(1.1) are simple. Equation (1.1) has four simple turning points under suitable assump-
tions ([3]). Outside the turning points, there are three roots of the cubic equation
00(3%)(z,¢) = 0 in ¢, which are denoted by {; (¢ = 1,2, 3) and called the characteristic
roots of 3P,. For a simple turning point x, there are two numbers j, k € {1,2,3}, j # k
such that (j(z.) = (x(x4). Then we say that x, is a simple turning point of type (j, k)

([1, 6]).

Definition 2.1. The characteristic roots of 3P, are numbered so that dl) él) and

él) which have local behavior as
b11b21 — a11a21 — as1a31 — as1a11 + D
§1) _ 011021 11021 21031 31011 1 L 0@ —1),
2(a11 + a1 + agr — bip — b21)
bi1bo1 — aj1a01 — as1a31 — asiaiy — VD
2(1) _ Onb2 11421 21031 31411 1 L0 —1),
2 (a1 + a2 + ag1 — big — ba1)
bi1 +bo; —ay; — —a
?()1) _m 21 - 1_11 a1 31 +0(1),

where
2
Dy = (a11a21 + ag1a31 + asia;; — b11ba)
— 4aqiaz;1a3; (an + a9 +az; — by — b21)-

Note that the leading terms of Cfl) and Cél) are the roots of the following quadratic
equation:

(a11 + agy + as; — byy — bay) ¢2 + (a11a21 + as1a31 + as1a11 — biibor) ¢+ ajrasiasz; = 0.

The characteristic variety Ch(sP;) = {(z,() | o0(3P2)(x,{) = 0} can be regarded as a
compact Riemann surface . There is a natural projection

m: % — Pg,

which is a 3—covering map. By using the Riemann-Hurwitz theorem, the genus of 3
equals 0.
A WKB solution 9 of 3Pt = 0 is a formal solution of the form

1/J=eXp</de), S=nS 1+So+n 1S +-.

The leading term ¢ = S_; satisfies the cubic equation o¢(3P)(x,() = 0. We choose
S_1 from og(3P2)(x,¢) = 0, we obtain S; (j > 0) recursively outside the turning points.
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Lemma 2.2. Let S) = > e n‘jSJ@) (¢ =1,2,3) be the formal solutions to (1.1)
such that the numbering are consistent with that of the leading terms given in Definition
2.1:

Y 9

1 1 2 1 3 1
s =, s% =g, sY ="

Then the formal solutions S (¢ = 1,2,3) have the following local behaviors near x = 1:

biby — ar1a9 — azas —asay —a; —as —az — 1 ++D

2.1 S = +O0(z — 1),
( ) 2(a1+a2+a3—bl—bg+2) (CE )
biby — aias — G203 — az3a] — a1 — Ay — az — 1 — /D
99 g(2) _ 0102 102 203 301 1 2 3 4 O(z—1),
( ) 2((11—|—G2—|—(I3—b1—bg+2) ( )
(23) @ liFbezaizaaTas g,
r—1
where

D = (&10,2 + asas + asa; + a1 + as + az — blbg + 1)2
—4ajasagz (a1 + ag +as — by —ba + 2).

Proof. We consider expanding S; (j > 0) in a Taylor series around = = 1, which
denotes

Sj = siw(r =1~
k=0
By using the equation og(3P:)(z,S_1) = 0 and recurrence relations to determine S
(7 > 0), we have
(24) _8—170(2A38—1,0 + Al) - _A382_170 + aiiagiasy,
_8070(21433—1,0 + Al) - A232_1’0 + A4S_1’0

(2.5)

+ ai1a21a31 + aj1a21a31 + a11021a031,
(2.6) —51,0(2435_1,0 + A1) = 2A250,05-1,0 + A38(2),0 + Ays0,0 + Ass_1,0

+ a11a20a30 + @10a21a30 + A10G20031,
2.7) —52,0(2A35_1,0 + A1) = Aa(s5 o + 25-1,051,0) + 24380,05-1,0 + Aas1,0

+ Ass0,0 + aipa20a30,

—550(2A35_10+ A1) = Ay Z 5k,05m,0 + As Z Sk,05m,0
—1<k,m 0<k,m

(28) k+m=j—2 k+m=j—1

+ Aysj_10+ AsSj-2,0 (7 >3),
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where

Ay = a1a21 + ag1a31 + az1air — bi1baa,
Az = a1 + ago + azo — bio — bao + 2,
A3z = a1 +az +az; — by — bay,
Ay = ai1 + a1 + asr — biibzo — biobar
+ a1 (az0 + azo) + az1 (azo + ao) + as1 (a2 + a1o0)
As = aig + ago + azo + aipazo + a20a30 + azoaio — biobzo + 1.

We multiply both sides of (2.4) by 771, both sides of (2.6) by 7, both sides of (2.7) by
n?, both sides of (2.8) by 77, and then consider their sum. Then we obtain

(2 9) —8(21438_170 + Al) = 7772142824-7’]71143(8 — 778_170)2

+n M Aus + 2 Ass — ns? | gAs + 1 2arazas,

where s = Z;i_l s;0m 7. Equation (2.9) can be simplified into the following quadratic
equation:
(a1 4+ as + az — by —bz+2)82
+ (a1a2 + as2a3 + azay +ay + a2 +asg — blbg + 1) S+ ajasas = 0.

Hence we have (2.1) and (2.2). Similarly, we obtain (2.3). O

The Voros coefficient of type (j,k) at x = 1 is defined by

Gk _ 1y _ _
Vot = 211}_}1111 . (S—nS_1— Sy dx

([3]). Here 7, denotes a path on ¥ starting from = = 1 on the j-th sheet, going to and
detouring turning point 7 counterclockwise and coming back to # = 1 on the k-th sheet.

Theorem 2.3. Let
S — bibs — ajas — asas — aga; — ay — as —az — 1 +v/D
2(ay + a2 +as — by —ba +2)

s — blb2—a1a2—a2a3—a3a1—a1—ag—ag—l—\/ﬁ
2 (a1 +as +az — by — by + 2)

3(3):1)14—1)2—@1—@2—@37

Y

)

where

D = (alag + asasz + azay + a1 + as + az — brby + 1)2
—4dajaqa3 (a1 4+ as +az — by — by + 2) .
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Then VU J = 1,2) satisfies the following differential-difference equations
1

(3)

(4:3) _ S ,3 C_
28@1‘1Aai1vlj - 8a¢1 lOg m + Abmlgg‘zl ) (Z = 1, 2, 3),
. 3(3) .
. ,3 . S 3
20,,, Db, 4 1(] ) = —0b,,, log m + Abmlgl()znl) (m=1,2).
Here A, = en 0 — 1 (p = a1, az1,...,b21), 50 = s (t=1,2,3,m=
. b'ml_>b'm1+n_1
1,2) and gﬁ(f’g) (p = aq1,a91,...,b21) is a linear functions of .

a system of differential-difference equations which characterizes Vl(j 3

The idea of the proof of Theorem 2.3 is similar to [3, Lemma 3.6], i.e., we derive

) with respect to

a11,0a21,...,bo1 by using ladder operators and formal differential operators of infinite

order.
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