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Abstract

We introduce a Laplace transformation of a Laplace hyperfunction with a Cech-Dolbeault
representative and its Laplace inverse transformation. As an application, we show the existence
of Laplace hyperfunctions solutions for a system of PDEs with constant coefficients.

§1. Introduction

The theory of Laplace hyperfunctions of one variable was established by H. Ko-
matsu in order to consider the Laplace transform of a hyperfunction ([5] — [10]). The
theory of Laplace hyperfunctions of several variables has been established by the au-
thors ([2], [3],[4]). In the paper [11], intuitive representation of a Laplace hyperfunction
was constructed. Thanks to that, we become able to manipulate a Laplace hyperfunc-
tion like a function as it is represented by holomorphic functions of exponential type
at infinity on wedges of type. Recently, N. Honda, T. Izawa and T. Suwa succeeded
in constructing a representation of Sato’s hyperfunction by Cech-Dolbeault cohomology
groups in the paper [1]. In this note, we introduce a representation of Laplace hyper-
function by Cech-Dolbeault cohomology groups. Furthermore, we construct the Laplace
transformation and its Laplace inverse transformation. We also give its application to
PDE with constant coefficients. For the detail, we refer the reader to the forthcoming

paper [2].
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§ 2. Laplace transformation for Laplace hyperfunctions

In this section, we give a Cech-Dolbeault representation of a Laplace hyperfunction.
Moreover, we introduce a Laplace transformation and its Laplace inverse transformation.

§2.1. Laplace hyperfunctions

Let M be an n-dimensional real vector space with the norm || e || and E := M ®g C.
We denote by Dp := E LI S2"~1 (resp. Dy := M 1S 1) the radial compactification of
E (resp. M)(see Definition 2.1 [3]). Set My := Dy \ M and E :=Dpg \ E. We define
an R, -action on Dg by, for A € R, and = € Dg,

A ifx€eFE,
r fxeFE.

AL =

The R, -action on D), is defined to be the restriction of the one in D to Dj;. And we
also define an addition for a € M (resp. a € E) and x € Dy, (resp. = € Dg) by

a+xz ifxe M (resp. z € E),
a+t+zx=
x if x € My (resp. x € E).

Definition 2.1. Let K be a subset in D,;. We say that K is a cone with vertex
a € M in Dy, if there exists an R, -conic set L C Dy, such that K = a + L.

Definition 2.2. Let V be an open subset in E. We define the open subset Vin Dg

as follows.
V:i=Dg\(E\V).

Note that we sometimes write ~V instead of V. For an open subset U in M, we can
define an open subset U in D), in the same way as that in Dg.

Definition 2.3. A closed subset F' in Dg is said to be regular if F N E = F holds.

Let M* and E* be dual vector spaces of M and E, respectively. We denote by D«
and Dy~ the radial compactification of E* and M*, respectively. Set MZ = Dy« \ M*
and EX = Dg- \ E*. We also define the open subset V in Dg- for an open subset V' in
E* in the same way as that in Dg. The canonical projection @y, : B \v/—1M* — M*
is defined by

(2.1) BINA\V-IML 3 €4+ V =1 ((&n) € ST £#0) = €/[¢] € M.

Let Z be a subset in Dg.
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Definition 2.4. The subset N} .(Z) in £, is defined by
{Ce B ;Re(z, () >0 (Vz€ZNEL)}.

Definition 2.5. We say that Z is properly contained in a half space of Dy with
direction ¢ € E7  if there exists » € R such that

(2.2) Z C ~{z € E; Re(z, ¢) >},

where ( is regarded as a unit vector in E*. If a subset Z is properly contained in a
half space of Dp with some direction, then Z is often said to be proper in Dg. Note
that ¢ € N,.(Z) if and only if Z is properly contained in a half space of Dg with the

direction (.

Let OFP (resp. ﬁg);p’(p )) denote the sheaf of holomorphic functions (resp. p-forms)
of exponential type (at oc) on Dg.

Definition 2.6. The sheaf on D,; of p-forms of Laplace hyperfunctions is defined

by
%Btf,(p) — D%(ﬁg;p’(p)) Qzp,, OTDys /D

where orp,, /b, is the relative orientation sheaf over Dy, that is, it is given by 7" (Zp,).

Let U be an open subset in D,;, and V' an open subset in Dg with V Ny, = U.

Then we have

25PN (U) = Hy (V; 0527 @4, 1) orpy, m, (U).

§2.2. Cech-Dolbeault representation

In this subsection, we give a representation of a Laplace hyperfunction by Cech-
Dolbeault cohomology groups.

Let V be an open subset in Dg and let f be a measurable function on VN E. We
say that f is of exponential type at oo on V' if, for any compact subset K in V, there
exists Hy > 0 such that |exp(—Hg|z|) f(2)] is essentially bounded on K N E| i.e.,

|lexp(=Hx|2]) f(2)l|Lexnm) < +oc.

We define the set Zp, (V) as follows. A C*°-function f on V N E belongs to Zp (V)
if any higher derivative of f with respect to variables z and Z is of exponential type on
V. Then it is easy to see that {Zp,(V)}v forms the sheaf Zp,. Let 257 denote the
sheaf on Dg of (p, ¢)-forms with coefficients in Zp . Define

k. D,q
2, = P 257
pta=k
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We define the de-Rham complex 25 on Dg with coefficients in 2, by
0—25 Lol 4 Lo

and the Dolbeault complex 27° on Dy by
0— 280 25 gpl 9, 9, gpn

Set Vo =V \ Dy, Vi =V and V1 = Vo N Vi, Define the coverings

VDM = {V07 V1}7 VIB)]W = {Vl}'

We denote by 2p°(Vp,,, Vb,,') the Cech-Dolbeault complex

0 — 25°(Vn,,, Voo, ') —= 25 (Vo Vou') —2 ... =25 22" (Vo,,, Vo) — 0
which is defined by

D2 Vo, Vo) = 255 () @ 255 (V),
(€, Eo1) = (01, &1l — O601) (&1, €m) € Qﬁ’;(vﬂ ® o@ﬁ’Ek_l(Vm))-

We also denote by 28 (Vb,,, Vb,,') the Cech-de-Rham complex
0— "@I([)))E (VID)M; V]D)M/) i) Qﬂl)E (V]D)M: V]D)M,) i) Ce A) "@]12]31113 (V]D)M, VDM/) — 0,
which is defined by

25, Vs Vou') = 25, (V1) © 25, (Vou),
D(v1, vo1) = (dvi, v1lve, — dvor)  ((v1, vo1) € 25 (V1) & Qﬁgl(Vm))-

Let U =V ND,s. Then we have
Theorem 2.7. There exist the canonical quasi-isomorphisms:
Ry (V; Cpy) ~ 25, Voo, Voo ), RUy (V3 ﬁﬂei;;p’(p)) ~ 20° (Vb Vou ')

It follows from the above theorem that we have

(2.3) B (U) = B (257 (Vour, Vou)) ©za, 0, 07540706 (U).
This implies that any Laplace hyperfunction u € ,%’gj\f’(p )(U) is represented by a pair

(w1,wp1) of C*-forms which satisfies the following conditions 1. and 2.
1. wy € 2P™(V) and wo; € 2P L(V \U).
2. Owpy = wy on V\ U.
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§ 2.3. Laplace transformation

In this subsection, we introduce a Laplace transformation of a Laplace hyperfunction
with a Cech-Dolbeault representative.
Let h: E%, — {—o00} UR be an upper semi-continuous function.

Definition 2.8. Let W be an open subset in Dg+ and let f be a holommorphic
function on W N E*. We say that f is of infra-h-exponential type (at oo) on W if, for
any compact set K C W and any e > 0, there exists C' > 0 such that

el O £(0)| < Cell (Ce Kn(E*\{0})),

where 7 : E*\ {0} — (E* \ {0})/R; = EZ is the canonical projection. In particular,
we say that f is simply called of infra-exponential type if h = 0.

We define the sheaf &1~ on E*  as follows. For an open subset Q in E,, we set

ﬁg‘iﬁh(ﬁ) :=lim {f € 6(W); [ is of infra-h-exponential type on W},
W

where W runs through open neighborhoods of € in Dg«. Then the family {ﬁgf ()}
forms the sheaf &~ on E* . Similarly, we define &if the sheaf of holomrphic func-
tions of infra-exponential type on E% . We also define the sheaf Mﬁ;p of real analytic

functions of exponential type by

exp ,_ exXp
MDM = O, |DM

and the sheaf #;™P of real analytic volumes of exponential type by

._ ,(n)
%D?;;p — ﬁ&;p (n D2, OBy
M
where orp,, := (jam )« oras is the orientation sheaf on Dy, with the canonical inclusion
gy M — DDyr. Note that we have
(2.4) OTD /D @ OTDy = OTDg Dy s

where orp,, is the orientation sheaf on Dp befined by (jg)«org with the canonical
inclusion jg : E < Dg. For a subset K in Dg, we define the support function Ay (¢) :
E — {+oo} UR by

400 if K N FE is empty,

2.5 h =
(2:5) x(¢) inf  Re(z, () otherwise.
zeKNE
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Let K be a closed subset in Dy such that N, (K) # 0. Take a point & € N7 .(K) N
M and an open neighborhood V of K in Dg. Set U := D, NV and coverings

(2.6) Vi ={Vo:=V\K, V; =V} Vi = {Vo}.
For simplicity, we assume that U and V are connected. Note that we have

. pex expy\ . TN n,e /
Pr(U; By, Qe ¥p,7) =~ H @QDE(VK314¥))ZDE%U)OTDM/DEW7)Zﬁj%U)OTDM(U)-

Let
U=1uQ ap,, /Dg @ ap,, € Ik (U; %I({)J))j\f ®g¢ﬂ§;\‘; %);p),

)
E

where ap,, /p, ®ap,, € orp,, /p,(U) ®( )O’I‘]D)M(U) and let v = (11, vo1) € 2p" Vi, Vi)
Zn,, (U
be a representative of 1, i.e., & = [v]. We define the Laplace transform of u as follows.

Definition 2.9. The Laplace transform of u with a Cech-Dolbeault representative
v=(v1,vp) € QS};(VIO Vi') is defined by

(2.7) L(u)(C) = /DmE ey — /aDmE e 1.

Here D is a contractible open subset in Dg with (partially) smooth boundary satisfying
the following conditions:

1. KcDcDCcCV.
2. D is properly contained in a half space of Dg with direction &.

Then we have the following theorem.

Theorem 2.10. Assume K N M # (. Then we have L(u) € w5 (N* (K)).

pc

Let G be an R -conic proper closed subset in M and a € M. We denote by G° C E*
the dual open cone of G in E*, that is,

G°:={¢ € E*; Re((,x) > 0 for any = € G}.

Assume K = {a} + G C Dys. Then the above theorem immediately implies the follow-
ing theorem.

Theorem 2.11. Under the above situation, we have e**L(u)(¢) € O (7(G°) N
E%).
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§2.4. Laplace inverse transformation

To construct a Laplace inverse transformation, we prepare some definitions.

Let T be a real analytic manifold and set Y =T x D and Yo, = T x (Dg \ E).
Let W be an open subset in Y and f(t,z) a measurable function on W \ Y. We say
that f(¢, z) is of exponential type on W if, for any compact subset K in W, there exists
Hy > 0 such that |exp(—Hg|z]) f(t, z)| is essentially bounded on K \ Y. We define
the set £ 2y (W) as follows. A locally integrable function f(t,z) on W \ Y, belongs
to L2y (W) if any higher derivative of f(¢,z) with respect to the variables z and Z in
the sense of distributions is a locally integrable function of exponential type on W. Let
L 2% denotes the sheaf on Y of k-forms with respect to the variables in F, and let us
define the de-Rham complex £ 23 by

0— 290 P8 pol Br PR pgam

We also denote by .Z/2° . the sheaf of locally integrable functions on 7.

loc,

Let I be a connected open subset in M and a € M and let h : M¥ — {—oco} UR
be an upper semi-continuous function such that A(¢) is continuous on I and h(§) > —oco
there. Recall the definition of the map w,, given in § 2.1. We define E(C ) on EX by,

for ( =& ++/—1ne Ex ((&n) € SP7Y),

o) - 19 (¢ & vIML),
Elh(@we(Q) (€€ B\ VEIME),

Let f € ﬁg‘f -+ (w!(I)). By the definition of ﬁ}gf _ﬁ, we can find continuous func-

tions ¢ : I x [0,00) = R> and ¢ : [0,00) = R satisfying the following conditions:

1. For any compact subset L C I, the function sup (¢, t) is an infra-linear function
el
of the variable t and f is holomorphic on an open subset W, N E*, where

(28)  Wy="{(=t{+V-Ine Ene M, (€1, t>y( )}
2. () is a continuous infra-linear function on [0, 00) such that
(2.9) F(C= €+ V=Tn)| < eT KOl (Cewy nEY),

where m: M*\ {0} — M2 is the canonical projection.

Define an n-dimensional real chain v* in E* by

(2.10) Vo= {(=E+V-Ine B ne M\ {0}, € = g, (Inl) &}

where £y € I and )¢, (t) is a continuous infra-linear function on [0,00) with ¢, (t) >
¥(&,t) (t € [0,00)) and g, (£)/(1h(€0,t) + 1) = 00 (t = 00). Let T = S$"~* and
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Y = 8" ! x Dg. Define coverings
W:{W():Y\(Sn_l XDM), W1 :Y}, W/:{Wo}

with Wy, = Wy N W;. We denote by pr : Y — T (resp. pp, : Y — Dg) the canonical
projection to T' (resp. Dg). Then we have the isomorphisms
(2.11)

N(T: Lger) = T3 b Lioer) = W (Vi pp' i3 p) = H(Z25 OV, W),

where pr : pﬂgé (Dp) =T x Dyy — T is the canonical projection. Set
Q:="{(n,2) € S" ' x E; (n,Imz) >0} C Y.

Let j : Q < Y be the canonical open inclusion. We can take a specific w = (w1, wp1) €
L2% (W, W) which satisfies the following two conditions:

1. Dpyw =0 and [w] is the image of a constant function 1 € I'(T; £3;. ) through
the above isomorphisms (2.11).
2. suppy, (w1) C Q and suppy,,, (wo1) C Q.
Note that such a representative always exists (Lemma 7.0.2 [2]). Then we define the
Laplace inverse transform as follows.

Definition 2.12. The Laplace inverse transform IL is given by

Iﬁ(f) = ([I£W(fdg)] ® aDM/DE) @ VDy,

with

IL.(fdC) = (g) /y

- (52) ([ oo [ oot o).

@),y €7 F(C)C

*

Here ¢ = & + +/—1n are the dual variables of z = z + /~1y, ap,, € orp,, (D),
ap,, /np € 0rp,, /p(Dar) so that ap,, /p, ® ap,, has the same orientation as that of £
through the isomorphism orp,, /p, ® 0rp,, =~ orpy|p,,, and the volume vp,, is defined
by dz ® ap,, with dz =dz; A --- Ndz, and d( = d( A -+ A dG,.

We have the following theorem and corollary.

Theorem 2.13. Let G C M be an R -conic proper closed convex subset and a € M.
Set K =a+ G C Dy;. Then

ﬁ : FK(DM, :%HC;;E ®Q{H§XP %]D)C;(/Ip)) — e—aCﬁin;fo (]\fk (K))

pc
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and

IL: e OB (No(K)) = T (Das; ) Srsme I )

are inverse to each other.

Corollary 2.14. Let K C Dp; be a regular closed subset satisfying that K N M 1is
convex and Ny,.(K)N M3, is connected (in particular, non-empty). Recall the definition
of the map hg given in (2.5). Then

L:Tx(Du; By, Qaxe p,, ) = O " (Nyo(K))
and
pc

IL: O (Npo(K) = Tic (Dars B Qg V50P))

are inverse to each other.

§ 3. Application to PDE with constant coefficients

We show the existence of Laplace hyperfunctions solutions for a system of PDEs
with constant coefficients.

Let R be the polynomial ring C[(1, - - - , (,] on E* and let © be the ring C[0,,, - , 0y, ]
of linear differential operators on M with constant coefficients. Define the principal
symbol map o : ® — R by

DoP0) =) cad* —oP)()= >  cal"ER

|la|=ord(P)
For an ©® module M = ©/J with the ideal 3 C ©, we define the closed subset
Charg: (9M) in EX_ by
Charg: (M) ={¢ € EL; o(P)(()=0 (VP eT)}.
Let P(0), -+, Pe(0) be in ®. Set
M =2/(P1(9),---, Pr(9)).
Then we have the following theorem.

Theorem 3.1. Let K be a reqular closed subset in Dy;. Assume that K N M is
conver and N, (K)NM?, is connected, and that P1(C), - - -, Po(¢) form a regular sequence
over R. Then the condition

N,.(K) N Charg: (M) = )

p

implies
Bty (M, D (Dar, Z50) =0 (k=0,1).
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It follows from Theorem 3.1 that we have the following corollary.

Corollary 3.2. Let P(0) € ©, and let K be a reqular closed subset in Dy satisfying
that K 0 M is conver and N, (K)N M, is connected. Then the morphism

P(0)e

I‘K(D]\,{7 ‘%]IC]));E) EE— FK(DM7 %ﬂ%ﬁ))

becomes isomorphic if a(P)(C) # 0 holds for any ¢ € N,.(K).
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