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Abstract

We briefly report the results of [15], in which we consider the Neumann version of the
spherical mean value operator and its variants in the spaces of smooth functions, distributions
and compactly supported ones. The notion of u-convexity for supports and singular supports
is essential in our argument. Our treatment of it in the present paper is slightly more general
than that in [15]. In §7, we calculate the Fourier transform of the kernel of the spherical mean
value operator for the sake of completeness.

§1. Introduction

Convolution equations are natural extensions of linear partial differential equations
with constant coefficients. Many authors studied convolutions equations in various
function spaces in the real or complex domains. See Malgrange [13]|, Ehrenpreis [3],
Hormander [5], Korobeinik [9], Kawai [10], Ishimura-Okada [8], Abanin-Ishimura-Khoi
[1], Langenbruch [11] and the references therein.

General theory has been the center of research on this topic and inspiring concrete
examples are rarely mentioned. An important exception is the paper by Lim [12], in
which the author studied the spherical mean value operator on Euclidean space.

In [12], the spherical mean value operator involves Dirichlet boundary values on
spheres. In the present paper, we study the surjectivity of the Neumann mean value
operator on Euclidean space and its higher order variants. The main result is that they
are surjections on the space of smooth functions and that of distributions. Moreover,
we give a characterization of the ranges in the case of compact supports.
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§ 2. Distributions, convolution and the Fourier transform

Recall that the surface area of S(0,7) = {z € R"; |x| =r} is 0,7 ! | where

2ﬂ_n/2
Op = ——.

I'(n/2)
The spherical mean value operator M, is defined by

Slulr =) tuletn}  (n=1)

Myu(x) = —1,.-n+1
Op T u(y) dSer(y) (n=2),
S(z,r)
where dS; , is the surface area measure of S(x,r) = {y € R"; |y — x| = r}. Let dg(o,r)
be the distribution defined by dg(o,): C*(R") — C, u(x) — M,u(0). Then we have
<5S(O,r)7 1> =1 and M,u(z) = dg(o,r) * u(z), where x denotes convolution.
Let n = n, be the outer unit normal of S(x,r) at y € S(z,r). The Neumann version

of the spherical mean value operator and its generalization are defined by

¢
MO u(z) = o pmt! /S ( )(i) w(y) dSur (3)

ony

aé
:agl/ —u(z +rw)dSp 1 (w
so) I ( ) dSo,1(w)

for a smooth function u on R™ and a non-negative integer /. We have

_ Poswoun

(2.1) MOu(z) 50 u(x)

for a smooth function v on R™ and a non-negative integer /. The convolution operator
MY = (0%65(0,r)/0r")* can be defined as endomorphisms on C*°(R"), D'(R™), £'(R™)
and Cg°(R™).

By convention, the Fourier transform of a compactly supported distribution w is
defined by

u(§) = <u(x), o~ iT.8) >

in the present paper. In some cases, it is denoted by (u)".

§ 3. Invertibility

The notion of invertibility of a kernel plays the central role in the theory of convo-
lution equations.
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Definition 3.1 ([7, Definition 16.3.12]). We say that an element u of &'(R™) is in-
vertible if there exists a constant A > 0 such that we have

sup {|@(¢)]; ¢ € C,[¢ — &| < Alog(2+ [€])} > (A+1¢))~*
for any & € R"™.

We employ the normalized Bessel function j,(z) defined by

jxazr@+n(§ydxa v 1,

where J,(2) is the usual Bessel function of the first kind of order v. We have

~D)T (v +1) 2k
k'F (k+v+1) (2) 2el

and it is an even entire function.
For v > —1 and ¢ > 0, there exist constants Cyj = CZS’”,Q such that

(¢
Z Conz? 5, 11(2) (¢ : even),
k=t/2
(3.1) 30 =
Z Conz®* 5, 10(2)  (£:0dd).
k=(+1)/2

On the real axis, the dominant term as x — oo is the one corresponding to k£ = ¢ in
either case. Fix r > 0 and n > 1. Let v = n/2 — 1. Then there exist constants A, B > 0
such that

(32) s { IS0 € R In— ¢l < Alog(2+ €]} > (A+ g4
for any £ € R™ with |¢| > B.
Theorem 3.2. For any £ € R", we have
(3.3) ;S\S(O,r) (&) = Jnja—1(rl€]).
For £ >0, the Fourier transform of 8(5%(0’7,)/87“5 s

550\
(3.4) (—g§i><@=KVSélma>

¢
Z C&kr%_g|§|2kjn/2—1+k(7°|§|) (¢ : even),

k=0/2
¢

S Coar® U a1 n(rlE)) (£ odd).
[ k=(¢+1)/2
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Proof. By [4, Introduction, Lemma 3.6],

~ Inja— .
(3.5) 3s00,() = 2”/2—1r(n/2>|g|+2(_'§') — Jusa1(€1):

For the convenience of the interested reader, we give a proof of (3.5) in §7.
For general r» > 0,

55(0,7«) (&) = /

R™

= [ e 05101 (5) dy = (0,17 = /a1 ]

e 8650 () d:c:/ e g0 1) (w/r) da

n

The formula (3.3) has been proved and (3.4) follows from (3.3) and (3.1). O

Proposition 3.3. The distribution 8*6go,)/0r" (¢ > 0) is invertible.

Proof. The proposition follows from (3.2) and Theorem 3.2. O

§4. pu-convexity for supports and singular supports

We introduce the notion of p-convexity for supports of a pair of open sets (X1, X3).
When p € &'(R™), we set

() = u(9), p(z) = ¢(~2),
where ¢ € C§°(R") is a test function. In some cases, & is denoted by (p)V.

Definition 4.1 ([7, Definition 16.5.4]). Assume p € £'(R™). Let X; and X2 be
non-empty open subsets of R™ satisfying Xy — supppu C X;. We say that (X, X3) is
pu-convex for supports if for every compact set K1 C X; one can find a compact set
K5 C X5 such that suppv C K if v € C§°(X3) and supp i x v C K.

We will need the case of X; = X5 = R" only. The condition Xs — supppu C X is
trivial in that case.
Propositions 4.2 and 4.5 below are generalizations of Lemmas 2.11 and 2.11 in [12].

Proposition 4.2. Let i be an arbitrary compactly supported distribution with p # 0.
Then the pair (R™,R™) is u-convex for supports.

Proof. Recall that

chsupp u; * us = chsupp uy + ch supp us
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holds for any uy,us € E'(R™) ([6, Theorem 4.3.3]), where ch denotes the convex hull. Tt
implies ch supp u; C chsuppu; * ug — chsuppus if us # 0.

It is trivial that g is a compactly supported distribution.

Let K1 C R™ be an arbitrary compact set and assume that v € C§°(R"™) satisfies
supp it x v C K1. We have

suppv C chsupp fi x v — chsupp ji
C ch Ky — chsupp fi.

Recall that the convex hull of a compact subset in R™ is compact. Therefore Ky =
ch K71 — chsupp /1 is a compact set independent of v. Ol

Definition 4.3 ([7, Definition 16.5.13]). Assume p € £'(R™). Let X, X2 be non-
empty open subsets of R™ satisfying X5 — singsupp u C X;. We say that (X, X5) is
pu-convex for singular supports if for every compact set K1 C X7 one can find a compact
set Ko C X5 such that singsuppv C K if v € £'(X3) and singsupp i * v C K.

Theorem 4.4 ([7, Corollary 16.3.15]). Assume that u € E'(R™) is invertible. Then
we have

chsing supp v C chsingsupp (u * v) — chsingsuppu, v e & (R").
The following is an analogue of Proposition 4.2.

Proposition 4.5. Assume that a compactly supported distribution p is invertible.
Then the pair (R™,R™) is p-convez for singular supports.

Proof. The proof is almost the same as that of Proposition 4.2. We can use Propo-
sition 3.3 and Theorem 4.4. O

§5. Surjectivity

The following two theorems give sufficient conditions for surjectivity in the spaces of
smooth functions and distributions.

Theorem 5.1 ([7, Theorem 16.5.7]). Assume p € E'(R™). Let X7 and X3 be non-
empty open subsets of R™ satisfying Xo — suppu C X1. Then the following two state-
ments are equivalent.

(i) The convolution operator pux: C(X1) — C*(X2) is surjective.

(i) The distribution p is invertible and the pair (X1, X2) is p-convex for supports.
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Theorem 5.2 ([7, Corollary 16.5.19]). Assume p € E'(R™). Let X1 and X2 be non-
empty open subsets of R™. Assume Xo—supp pu C Xi1. Then the following two statements
are equivalent.

(i) The convolution operator px: D'(X1) — D'(X3) is surjective.

(i) The distribution u is invertible and (X1, Xs3) is p-convex for supports and sin-
gqular supports.

The following two theorems are our main results about surjectivity.

Theorem 5.3. Let » > 0. The convolution operator 8555(0’,,)/87“@*: C*(R™) —
C>*(R™) is surjective.

Proof. Apply Theorem 5.1 and Propositions 3.3 and 4.2. O

Theorem 5.4. The convolution operator 86g(q ) /Or'<: D'(R™) — D'(R™) is sur-
jective.

Proof. Apply Theorem 5.2 and Propositions 3.3, 4.2 and 4.5. O

§ 6. Range characterization

In this section, we restrict our consideration to the cases of ¢ = 0,1 and n > 2.
The endomorphisms 805, /Orfx: E'(R™) — E'(R™) and 80g(g,,/0r+: C§°(R™) —
Ci°(R™) are not surjective. We characterize their ranges in terms of the zeros of Bessel
functions.

Theorem 6.1. Assume ¢ = 0,1 and n > 2. Then we have the following characteri-
zation of the range of the endomorphism 8Z55(07r)/8r£* on &' (R™).

(6.1) range ((‘3565(07”/(‘37“5*: E'(R™) — E'(R™))
{we &' ®R); w(¢) =04f ¢ =ai/r? 23 /r?,23/r?, ...} ({=0),
{we&'RY);w(¢) =04f¢?=0,a3/r? 33 /r*, 35/r%,...} (L=1),

where +x; and £%; (j = 1,2,...) are the zeros of Jy,jo_1(2) and J,/2(z) respectively.
For the case { =0,n > 1, see Theorem 2.17 of [12].

Theorem 6.2. Assume { = 0,1 and n > 2. Then we have the following characteri-
zation of the range of the endomorphism 955 ) /0r* on C§°(R™).

(6.2)  range (0°05(0./0r *: C5°(R™) — C°(R™))
{we ™), w(() =0if* =ai/r?a3/r? a3/r? ...} (£=0),
{weCR); w(() =0if¢?=0,83/r?,23/r*, 53/r%,...} (=1),
For the case £ = 0,n > 1, see Theorem 2.23 of [12].
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§ 7. Appendix

In this appendix, we give a proof of (3.5).

First, we calculate the Fourier transform of the indicator function of a ball. Let
B(0,7) be the ball {x € R"; |x| < r} (r > 0) and V;, be the volume of B(0,1). We have
V,, =72 /T'(n/2 +1). We denote by XB(0,r)(z) the indicator function of B(0,r).

Proposition 7.1. X?(E) (&) = (277)"/2|§|_"/2Jn/2(|£|).

Proof. The Fourier transform of a radial function is also radial. We have only to
evaluate X/B(a) (pen), where p >0, e,, = (0,0,...,0,1). We get

1

exp(—iz,p) = / Vio1(1 — 22)"=Y/2 exp(—iz,, p) da,,
—1

(71) oD (ven) = /

o<1
(n=1)/2

— m /_1(1 — gn’i)("_l)/2 exp(—ipzy) dx,

By [14, 10.9.4], we have

_ o 2(z/2)n
- 2T ((n 41
(2/2)"/

! 2\(n—1)/2 -
= —7ap (1 D/2) /_1(1 —t%) exp (—izt) dt.

(7.2) Jn/g (Z)

1
172) /0 (1 —t2)"=Y/2 cos (2t) dt

By (7.1) and (7.2), we have
X500 (pen) = (2m)"2p™"2 0, 15 (p) -
Therefore, we get
XB0,1)(€) = 2m)"2[€72 T, o ([€])- m

Proposition 7.2.
Xp0.)(€) = 2m)" 2 2g[ T2 0 o (rE]).
Proof. Set x = ry,n = r£. Then we have
(7.3) X/B(;) &) = / e T dy = / e MY dy
B(0,r) B(0,1)

=1r"Xg0o.0 1) =" XB(01)(rE).

It immediately follows that Xp (0. (§) = (271')”/27“”/2|£|_”/2Jn/2(r|§|). O
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Next, we calculate the Fourier transform of dg (). Recall that 45, is so normal-
ized that <55(0’T), 1> = 1. For a continuous function ¢(z) on R™, we have

/ o(x) dSor = our™ L (Bs 0.y 0(x))
S(0,r)

where dSp , is the surface area measure of S(0, 7).

Proposition 7.3. 659, (&) = jn/2—1(r[¢]).

Proof. Let ¢(x) be a test function in C§°(R™). Since

(XB(o.r): #(x)) = / () d = / ds / o(@)dSo.s,
|z|<r 0 S(0,s)

we get

0 n—
(7.4) Hy XB(O.r) = OnT '55(0.0-

Notice that (7.4) can be proved in a more sophisticated way: it is essentially the pull-
back of Y'(s) = d(s) by the mapping (R™\ {0}) x Rsg > (z,7) — r — |z|] € R.
The formula (7.4) gives, by Proposition 7.2,

— 0
(7.5) onr" (0. (€) = (@m)" 2 {rm 2|2 5 (e }

Recall the formula - {s".J,(s)} = s”J,_1(s) ([14, 11.6.6]). By setting s = r|¢|, we
obtain

0

0
> {r”/Qlfl_”/an/z(ﬂfD} = |f|_”+1$ {Sn/2Jn/2(S)}

= (€72 a0 (8) = R T A T ().

(7.6)

By (7.5) and (7.6), we have

o n/2
Totom(€) = 2l /g (el
n/2 I n/2
@ (i) = T2 @OV )

~ on(rlehn2

2n/2—11’\ 9
- W/(?—/l)u’n/z—l(ﬂﬂ) = Jnja_1(r[é]). -

27Tn/2 (T|€|)n/2—1
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