2,3, n-independency of tangential weights of G/K
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1. Introduction

This article is the research announcement of the progress work [KS]. In this article, we
introduce the main result of [KS].

1.1. k-independence. Let S := {a1,...,am,} C Z" be a set of vectors. The set S is said to
be k-independent for some 2 < k < n if every k vectors o, ,...,qa; € S are linearly independent
but there exists k + 1 vectors a;,,...,a;,,, € S which are linearly dependent. In this case, we
also say that the set of vectors S has the property UZ, i.e., the uniform matroid with rank k and
with m elements, see [O06].

EXAMPLE 1.1. Let S := {e1,e2,—e1 — e3,e1 + ez + e3} C R3 be the set of 4 vectors in the
3-dimensional real vector space R3, where e;, i = 1,2,3, is the standard basis of R3. Then,
one can easily check that S has the property U2, i.e., S is 2-independent. Note that the subset
{e1,e2,e1 + ea + es} is linearly independent but {e1,e2, —e; — es} is linearly dependent.

1.2. Problem and motivation. Let M be a 2m-dimensional, smooth T-manifold with iso-
lated fixed points M7T, where dimT = n. Assume that the T-action is almost effective, i.e., the
kernel of the T-action is finite. Under this assumption, the differentiable slice theorem tells us
that the inequality n < m holds.

If we choose an invariant complex structure on T, M o~ R?™ for a fixed point p € M7, there
is the following irreducible decomposition

(1.1) T,M ~ PV, .,
i=1

where V,, , is the complex one-dimensional representation of 7" with the weight vector (called a
tangential weight) oy, ; € £, ~ Z"™ for i = 1,...,m. Here, the symbol t}; represents the character
lattice of the dual of the Lie algebra t* of T

Set Sp :={ap,; | ¢ =1,...,m} C Z". Assume that S, is k(p)-inependent. By definition,
2 < k(p) < m for all p € MT; therefore, this is equivalent to that we assume M is a GKM manifold
in [GKM98, GZ01]. Notice that if k(p) = m for all p € MT, M is called a torus manifold, defined
in [HMO3]. If a GKM manifold satisfies H°% (M) = 0, we call it an equivariantly formal GKM
manifold.

Mikiya Masuda has asked the following question in the private communication:

PROBLEM 1.2. Assume that M>™ is an equivariantly formal GKM manifold with 4-independent
T"-action. Then, does the T-action on M extend to the almost effective T™ -action? Equivalently,
is M a torus manifold?

This article answers this problem for the homogeneous GKM manifolds. Roughly, the main
theorem states that k(p) can be taken only 2, 3 or n. We will prepare to describe the main theorem
from the next section.



2. Remarks from GKM theory

We first introduce the following proposition. This answers Toshio Sumi’s question during the
author’s talk in RIMS conference 2024.

PROPOSITION 2.1 (Proposition 4.3 [Kul9]). Let M?™ be a GKM manifold with T™-action.
Assume that M?™ has the extended T'-action, i.e., the restricted 7" C T* action is the original
torus action. Then, the T'-action on M?™ also satisfies the condition of a GKM manifold.

So, the GKM condition is preserved after extending the torus action.
We can construct a GKM manifold M such that there are fixed points p, ¢ € M7 with

different properties UL®) and UE® .

EXAMPLE 2.2. Let CP' be the complex projective space with the natural 7'-action. We
assume that T' C T3 is the first coordinate. Define the following symbols:

o p; : T3 = S for i =0,1,2,3 is the projection onto the ith coordinate, where pg is the
trivial homomorphism;

o ¢, =CP! xC fori=0,1,2,3 is the T3-equivariant trivial line bundle over CP' with the
T3-action on the fiber C by p; : T° — S*;

e 7 is the tautological line bundle over CP*.

Let M® :=P((y®ea Re3) B ea P ez @ eg) be the projectivization of the rank 4 equivariant complex
vector bundle over CP!, i.e., M8 is equivariantly diffeomorphic to a CP3-bundle over CP' with
T3-action (see e.g. [KS]). Then, by computing the tangential weights around 8 fixed points, one
can check that M® is a GKM manifold, i.e., for every p, the tangential weights have the property
Uf(p) with k(p) > 2. Moreover, the tangential weights on the fixed points ([1 : 0],[0:0: 0 : 1])
and ([0:1],[0:0:0: 1]) have the property U? and the property U} respectively.

In Proposition 3.1, we prove that the number k(p) does not depend on the fixed points for the
case of homogeneous GKM manifolds; therefore, we may write it by k(G/K).

For the general GKM manifold which is defined by the 1-skeleton has the structure of a graph,
there are several ways to define the axial function on edges. Here, we state the position of this
article about the axial functions in the following remark.

REMARK 2.3. Let M be a 2m-dimensional GKM manifold with the n-dimensional torus 7-
action. If there is a T-invariant almost complex structure J on M (e.g. M = G/Z, where G is a
compact, connected Lie group and Z is the centralizer of a maximal torus of G, see [KKLS20]),
then the identification (1.1) can be induced from J, see [GZ01, GHZO06]. For the case when m =
n, called a torus manifold (e.g. M = S?" ~ SO(2n + 1)/SO(2n) with the standard T™-action for
n > 2), the identification (1.1) is determined by choosing the omni-orientation of the characteristic
submanifolds in the torus manifold, see [MMPO07, Kul6]. For the other cases (e.g. M = HP™ ~
Sp(n+1)/Sp(n) x Sp(1) for n > 2, see [GL]), there is no canonical way to determine the sign of the
representations in (1.1). To avoid the sign ambiguities of the representations, we may choose some
identification (1.1) for each fixed point. These define the label on edges of GKM graphs without
sign ambiguities (called an azial function). In the purpose of works in some literature, the axial
functions are defined up to signs (e.g. this is called a pre-azial in [GHZO06]). In particular, this
definition is enough to define the graph equivariant cohomology of a GKM graph. In this article,
we define the axial function without sign ambiguities by choosing some identification (1.1) for each
fixed point.

3. The maximal torus action on the homogeneous space G/K

Let G be a compact, connected, semi-simple Lie group, T be its maximal torus, and K
be a closed, connected subgroup of G such that T' C K C G, i.e., a maximal rank subgroup
of G. In this setting, we have that the fundamental group m1(G) is finite. It is known that
the homogeneous space G/K is a 2m-dimensional, simply connected and equivariantly formal
manifold, i.e., H°¥(G/K) = 0, see e.g. [MT79, B13]. Due to [GHZ06], G/K satisfies the GKM
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condition. Below we recall the description of the tangential weights of the T-action on G/K by
following [GHZ06, Theorem 2.4], also see [ MT79, B13|.

We first recall some basic facts from the theory of Lie groups. We denote the Lie algebras
of T C K C GbytcCt C g, respectively. Let exp : g — G be the exponential map, and
A := exp~i(e) C t be the integer lattice, where e € T C G is the identity element. Then, we
have an identification 7" ~ t/A¢ and Hom(T,S') ~ A} = Hom(Ag,Z) ~ Z". The Z-module
A§ C ¥ is called a weight (or character) lattice of G, where t* = Hom(t,R) is the dual of t.
Note that if G is simply connected, then Af is spanned by the fundamental weight (see [MT79,
Chapter 5 Theorem 6.36]). If G is not simply connected, then by taking the universal covering
p: G — G and the dual dp* of its differential dp on the identities of maximal tori, we may regard
Ag C A% for two weight lattices (see [MT79, Chapter 5 Theorem 4.9] or [B13, Section 19]). Let
Ag C AL C t* be the root systems of G with respect to the maximal torus 7. Because the linear
relations among the root systems do not change by taking the finite covering of G, it is enough to
consider the case when G is simply connected for the purpose of this article, i.e., computing the
k(p)-independence for the tangent wights on every p € (G/K)T.

Assume that G is simply connected, i.e., m1(G) = 0. The set of the fixed points (G/K)? can
be identified with the finite set of the quotient W /Wi of the Weyl groups for the maximal torus
T, where Wg := Ng(T)/T and Wy := Ng(T)/T. Let po = eK € (G/K)T ~ Wg/Wk be the
coset of the identity e € G. In other words, Wg acts on (G/K)T transitively, where the isotropy
subgroup of pg is Wi . Namely, we may write

(G/K)T = {wpo | w € Wg}.

Then, one has the irreducible decomposition

T,,G/K =g/t = P Vig),
(8l
of the tangential T-representation at pg, where [8] runs over Ag /{£1} = (Ag \ Ax)/{£1}. If
one can choose a section s, : Ag x/{£1} = Ag i of the natural projection Ag x — Ag x/{£1}
such that Wg acts on Im(sp,) U —Im(sp,), called a Wi -equivariant section, then [8] may be
regarded as the weight vector s,,([3]) in Ag,x C A§ C t*. This is equivalent to choosing the
T-invariant complex structure on T}, G/K. Then, the set of the tangential weights on pg may be
regarded as A, = sp,(Ag x/{£1}) C AL =~ Z". Let p = wpo with [w] € Wg/Wgk. Then, the
tangential representation around wpq is

TwpnG/K = @ ‘/[W/B] :
[Bledg, x /{£1}
Similarly, we may define the set of tangential weights around the fixed point wpy by Ayp, =
Im(sup,) for some section Sup, : Ag,x/{£+1l} = Ag k.
Note that Ap, and Ay, for every w € W /Wi are isomorphic to Ag x/{£1}. This implies
the following proposition:

PRrROPOSITION 3.1. Let G be a compact, connected semi-simple Lie group, K be its maximal
rank subgroup and T C K C G be a maximal torus. Then, there exists an integer k(G/K) such
that 2 < k(G/K) < dimT and the tangential weights of T,,(G/K) are k(G/K)-independent for
every p € (G/K)T ~ Wqg/Wk.

This proposition shows that if we compute the k(G/K)-independence on AF\AY ~ Aq i /{+1}
for positive roots Al C Ag, then we have the k(G/K)-independence of all tangent spaces on the
fixed points of G/K. (Cf. Example 2.2) In this paper, we determine the k-independence for all
maximal rank homogeneous spaces G/ K.

3.1. Reducing to the simple cases and main theorem. If we assume G is simply con-
nected, then the standard T-action on G/K is equivariantly diffeomorphic to the following product
of the maximal rank homogeneous spaces (see e.g. [Kul0, Section 2.2]):

(31) G/KZGl/K1X"'XGr/KT,
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where G; is a compact, simply connected simple Lie group, K; be its maximal rank subgroup
and there is an isomorphism 7" ~ T} X --- x T,. such that T; € K; C G; is a maximal torus for
i=1,...,r. Moreover, we can easily show the following proposition:

PROPOSITION 3.2. The following equality holds for the splitting (3.1):
KG/K) = min{k(Gs/K:) | 1< < v},

This proposition says that to compute the independency of G/K, it is enough to compute the
independency of the simple factors G;/K;. The classification of each pair of (G;.K;) is known by
the work of Borel-deSiebenthal [BS49]. The following list shows their classification of the simple
Lie group G and its maximal, maximal rank subgroup K, where the locally isomorphic means the
Lie algebras are isomorphic.

Type A,+1: If G is of type A,41 for n > 0, then K is locally isomorphic to one of the
followings:
Case 1: A, x T';
Case 2: A;,_1 X An+l—i x T1 (1 <i<n+ 1)
Type D,: If G is of type D,, for n > 4, then K is locally isomorphic to one of the followings,
where Dl = Tl, D2 = Al X A17D3 = Ag:
Case 1: 4,1 x T
Case 2: D,,_1 x T
Case 3: D; X Dy,—; (1 <i<n-—1)
Type B,: If G is of type B,, for n > 2, then K is locally isomorphic to one of the followings,
where B; = A;:
Case 1: B, xT;
Case 2: D; X B,,—; (1 <i<n);
Case 3: D,,.
Type C,: If G is of type C,, for n > 3, then K is locally isomorphic to one of the followings,
where Cl = Ahcg = BQI
Case 1: C; x Cp,—; (1 <i < n);
Case 2: A,_1 x T
Type Eg: If G is of type Eg, then K is locally isomorphic to one of the followings:
Case 1: D5 x T;
Case 2: A x As;
Case 3: Ay x Ay x As.
Type E7: If G is of type E7, then K is locally isomorphic to one of the followings:
Case 1: Dg x Aq;
Case 2: A x As;
Case 3: A7;
Case 3: Fg x T.
Type Eg: If G is of type Eg, then K is locally isomorphic to one of the followings:
Case 1: Dyg;
Case 2: Ay x Ay
Case 3: Ag;
Case 4: Fg x Ag;
Case 5: F; x Aj.
Type Fy: If G is of type Fy, then K is locally isomorphic to one of the followings:
Case 1: O3 x Aq;
Case 2: As x Ag;
Case 3: Bj.
Type Go: If G is of type Go, then K is locally isomorphic to one of the followings:
Case 1: Ao;
Case 2: A1 x A;.

The following lemma is also useful to reduce the cases.
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LEMMA 3.3. Let H C K C G be a sequence of compact connected mazximal rank Lie groups.
If k(G/K) =2, then k(G/H) = 2.

ProoF. There is the fibration K/H — G/H — G/K. Let pp = eH. Then, there is the
following decomposition:

T,,G/H ~ g/h ~ g/t © t/h.

Because k(G/K) = 2, the subspace g/t is 2-independent. Since the lowest independency is 2, we
have the statement of the lemma. (|

Now we may state the main theorem:

THEOREM 3.4. Assume that G is simply connected, simple Lie group and K be its mazimal
rank subgroup such that rank(G) = rank(K) = dimT = n. Then, k(G/K) = 2,3,n and the
following holds:

e k(G/K) =n if and only if (G, K) is one of the following types:
Type An: (A, Ap_1 x TY);
Type B,: (Bn,Dy).

o k(G/K) =3(#n) if and only if (G, K) is one of the following types:
Type A,: (An,Az'—l X Ap_i X Tl);
Type Cp: (Cn,Ci—1 X Cri1);
Type Dn: (Dnyanl X T1)7 (DnyDifl X ani—&-l);
Type Fy: (Fy, By);
Type EG: (E@,Dg) X Tl), (E67A5 X A1)7 (E67A4 X Tl X Al),'
Type E7: (E7,A7), (E7,D6 X Al), (E7,E6 X Tl), (E7,D5 X T2), (E77A5 X A1 X Tl),

(E77A4 X Al X T2);

Type Es: (Es, Ds).

o k(G/K) =2, otherwise.

As a corollary of this theorem, we have the following characterization of the homogeneous
space by using the independence of tangential weights:

COROLLARY 3.5. Assume that G is simple and of classical types, i.e., type A,, By, C, and
D,,. Then, the following two facts hold:

o if the tangential representations on eH € G/H is more than 4-independent, then G/H =~
CP"™ or S,

o if the tangential representations on eH € G/H is 3-independent, then G/H ~ Gr(i,n; C), é'vr(z—
1,7 R), Gr(i — 1,n; H), Qap.

In [KulO], we classify all homogeneous torus manifolds. Together with this, Theorem 3.4
gives the partial answer to Problem 1.2 for the case when a GKM manifold is a homogeneous
space. In [KS], we will prove the main theorem by using the signed graphs.

REMARK 3.6. In [S023], Solomadin constructs the GKM graph which is 4-independent but
there is no extension. This may be regarded as the combinatorial counter-example for Prob-
lem 1.2. However, there is no GKM manifold whose GKM graph is the example in [S023]. Hence,
Problem 1.2 is still open.
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