The stable Albanese homology of the IA-automorphism groups of free groups

Mai Katada

Faculty of Mathematics, Kyushu University

1 Introduction

The automorphism group $\operatorname{Aut}(F_n)$ of the free group F_n of rank n is a fundamental object and appears in various fields such as group theory, representation theory, topology, geometric group theory, and functor homology. An important normal subgroup of $\operatorname{Aut}(F_n)$ is the inner automorphism group $\operatorname{Inn}(F_n)$ of F_n consisting of conjugations of elements of F_n . We will consider another normal subgroup IA_n of $\operatorname{Aut}(F_n)$, which is called the IA-automorphism group of F_n . The definition of IA_n is given as the kernel of the map between the automorphism groups induced by the abelianization map of F_n , that is, we have a short exact sequence of groups

$$1 \to \mathrm{IA}_n \to \mathrm{Aut}(F_n) \to \mathrm{GL}(n, \mathbb{Z}) \to 1. \tag{1}$$

If n=2, then the inner automorphism group $\mathrm{Inn}(F_2)$ is equal to IA_2 , and if $n\geq 3$, then $\mathrm{Inn}(F_n)$ is a proper subgroup of IA_n . Magnus [14] proved that IA_n is finitely generated and explicitly gave a finite set of beautiful generators. Krstić-McCool [11] proved that IA_3 is not finitely presentable. However, for $n\geq 4$, it is still open whether IA_n is finitely presentable or not.

Cohen-Pakianathan [4], Farb (unpublished) and Kawazumi [9] independently determined the first homology of IA_n by proving that the *Johnson homomorphism* for $Aut(F_n)$ induces an isomorphism

$$H_1(\mathrm{IA}_n, \mathbb{Z}) \xrightarrow{\cong} \mathrm{Hom}(H_{\mathbb{Z}}, \bigwedge^2 H_{\mathbb{Z}}), \quad H_{\mathbb{Z}} = H_1(F_n, \mathbb{Z}).$$

Bestvina-Bux-Margalit [1] proved that $H_2(IA_3, \mathbb{Z})$ has infinite rank, but it is not known whether or not $H_2(IA_n, \mathbb{Z})$ has finite rank for $n \geq 4$. As a $GL(n, \mathbb{Z})$ -representation, $H_2(IA_n, \mathbb{Z})$ is finitely generated by Day-Putman [5].

By the short exact sequence (1), the homology of IA_n admits an action of $GL(n, \mathbb{Z})$. We will study the $GL(n, \mathbb{Z})$ -representation structure of the rational homology of IA_n . Since the structure of the rational homology of IA_n is quite complicated for small n [18], we will consider the rational homology of IA_n for sufficiently large n with respect to the homological degree. Moreover, we will restrict our attention to the *Albanese homology* of IA_n , which is a quotient representation of the rational homology of IA_n . There had been several literatures on the notion of the Albanese homology of IA_n but the terminology

was introduced in [2]. The Albanese homology $H_i^A(\mathrm{IA}_n, \mathbb{Q})$ of IA_n is defined as the image of the map between homology induced by the abelianization map of IA_n . Therefore, the Albanese homology of IA_n is an algebraic $\mathrm{GL}(n, \mathbb{Z})$ -representation.

In [6], Habiro and the author studied the whole rational cohomology of IA_n and obtained a conjectural structure, which implies that the rational cohomology is generated by the Albanese (co)homology and the $GL(n, \mathbb{Z})$ -invariant part of the rational cohomology. We proved the conjecture under the assumption that the rational cohomology of IA_n is algebraic for sufficiently large n with respect to the cohomological degree. This is why we consider the Albanese homology of IA_n as an essential part of the whole rational homology of IA_n . In this report, we will exhibit our recent results on the Albanese homology of IA_n .

2 Preliminaries

Here, we will recall the previous results on the Albanese homology of IA_n . The second Albanese homology was determined by Pettet [16] and the third Albanese homology was determined in [7]. Moreover, in [7], the author detected a large subquotient $GL(n, \mathbb{Z})$ -representation of the Albanese homology of IA_n in higher degrees, which we will observe below.

Set $H = H(n) = H_1(F_n, \mathbb{Q})$. Let $U_* = \bigoplus_{i \geq 1} U_i$, $U_i = \operatorname{Hom}(H, \bigwedge^{i+1} H)$ for $i \geq 1$. Let $S^*(U_*)$ denote the graded-symmetric algebra of U_* . Let $W_* = \widetilde{S}^*(U_*)$ denote the traceless part of $S^*(U_*)$, which consists of elements that vanish under any contraction maps between distinct factors of $S^*(U_*)$. (See [7, Section 2] for details.) One of the main results of [7] is the following.

Theorem 1 ([7, Theorem 6.1]). We have a morphism of graded $GL(n, \mathbb{Z})$ -representations

$$F_*: H_*(U_1, \mathbb{Q}) \to S^*(U_*)$$

such that $F_*(H_*^A(\mathrm{IA}_n,\mathbb{Q})) \supset W_*$ for $n \geq 3*$.

Moreover, in [7], the author made the following conjecture on the structure of the stable Albanese homology of IA_n , which was known to hold for $i \leq 3$.

Conjecture 2 ([7, Conjecture 6.2]). Let $i \geq 1$. For $n \geq 3i$, we have an isomorphism of $GL(n, \mathbb{Z})$ -representations

$$F_i: H_i^A(\mathrm{IA}_n, \mathbb{Q}) \xrightarrow{\cong} W_i.$$

3 Main theorems

3.1 The stable Albanese homology of IA_n

In the appendix of [13], the author proved the statement of Conjecture 2 for $n \gg i$ by using Theorem 1 and [13, Proposition 6.3]. Furthermore, in [8], the author improved the stable range to prove Conjecture 2.

Theorem 3 ([8, Theorem 2.5]). Conjecture 2 holds.

As a corollary, the Albanese homology of IA_n is representation stable in $n \geq 3i$ in the sense of Church-Farb [3].

3.2 The relation between the Albanese homology of IA_n and the cohomology of $Aut(F_n)$ with certain coefficients

The stability of the (co)homology of $\operatorname{Aut}(F_n)$ with coefficients in $H^{p,q} = H^{\otimes p} \otimes (H^*)^{\otimes q}$ was shown by Randal-Williams–Wahl [17]. Moreover, recently, the stable (co)homology was determined by Lindell [12] and the stable range was improved in [15]. On the other hand, it follows from Theorem 3 that the $\operatorname{GL}(n,\mathbb{Z})$ -invariant part $H_A^*(\operatorname{IA}_n,H^{p,q})^{\operatorname{GL}(n,\mathbb{Z})} := [H_*^A(\operatorname{IA}_n,\mathbb{Q})^* \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})}$ stabilizes. In [8], the author obtained the following relation between the stable cohomology $H^*(\operatorname{Aut}(F_n),H^{p,q})$ and $H_A^*(\operatorname{IA}_n,H^{p,q})^{\operatorname{GL}(n,\mathbb{Z})}$.

Theorem 4 ([8, Theorem 3.8]). The inclusion map $IA_n \hookrightarrow Aut(F_n)$ induces an isomorphism of $\mathbb{Q}[\mathfrak{S}_p \times \mathfrak{S}_q]$ -modules

$$i^*: H^*(\operatorname{Aut}(F_n), H^{p,q}) \to H_A^*(\operatorname{IA}_n, H^{p,q})^{\operatorname{GL}(n,\mathbb{Z})}$$

for $n \ge \min(\max(3*+4, p+q), 2*+p+q+3)$.

In the proof of Theorem 4, we used the wheeled PROP structure of the stable cohomology of $Aut(F_n)$ with coefficients in $H^{p,q}$ that was constructed in [10], and the 1-cocycle that was constructed in [9].

3.3 The stable Albanese homology of IO_n

We consider the analogue of IA_n to the outer automorphism group $Out(F_n)$ of F_n . Since $Inn(F_n)$ is a subgroup of IA_n , the group homomorphism $Aut(F_n) GL(n,\mathbb{Z})$ in the definition of IA_n induces the group homomorphism $Out(F_n) GL(n,\mathbb{Z})$. Let IO_n denote the kernel of the group homomorphism, that is, we have a short exact sequence of groups

$$1 \to IO_n \to Out(F_n) \to GL(n, \mathbb{Z}) \to 1.$$

The Albanese homology $H_*^A(\mathrm{IO}_n,\mathbb{Q})$ of IO_n is defined in a way similar to IA_n . The first Albanese homology of IO_n is isomorphic to the first homology of IO_n , which was determined in [9]. The second and the third Albanese homology of IO_n was determined in [16] and in [7], respectively. The author also made a conjectural structure of the Albanese homology of IO_n in [7] and proved the conjecture in [8]. Let $U_*^O = \bigoplus_{i \geq 1} U_i^O$, where $U_1^O = \mathrm{Hom}(H, \bigwedge^2 H)/H$, $U_i^O = U_i$ for $i \geq 2$. Let $S^*(U_*^O)$

Let $U_*^O = \bigoplus_{i \geq 1} U_i^O$, where $U_1^O = \text{Hom}(H, \bigwedge^2 H)/H$, $U_i^O = U_i$ for $i \geq 2$. Let $S^*(U_*^O)$ denote the graded-symmetric algebra of U_*^O . Let $W_*^O = \widetilde{S}^*(U_*^O)$ denote the traceless part of $S^*(U_*^O)$. Then the structure of the Albanese homology of IO_n is the following.

Theorem 5 ([8, Theorem 3.3]). Let $i \geq 1$. For $n \geq 3i$, we have an isomorphism of $GL(n,\mathbb{Z})$ -representations

$$H_i^A(\mathrm{IO}_n,\mathbb{Q}) \cong W_i^O.$$

Acknowledgements

The author was supported in part by JSPS KAKENHI Grant Number JP24K16916.

References

- [1] Mladen Bestvina, Kai-Uwe Bux, and Dan Margalit. Dimension of the Torelli group for $Out(F_n)$. Invent. Math., 170(1):1–32, 2007.
- [2] Thomas Church, Jordan S. Ellenberg, and Benson Farb. FI-modules and stability for representations of symmetric groups. *Duke Math. J.*, 164(9):1833–1910, 2015.
- [3] Thomas Church and Benson Farb. Representation theory and homological stability. *Adv. Math.*, 245:250–314, 2013.
- [4] F. Cohen and J Pakianathan. On automorphism groups of free groups, and their nilpotent quotients. in preparation.
- [5] Matthew Day and Andrew Putman. On the second homology group of the Torelli subgroup of $Aut(F_n)$. Geom. Topol., 21(5):2851–2896, 2017.
- [6] K. Habiro and M. Katada: On the stable rational cohomology of the IA-automorphism groups of free groups, arXiv:2211.13458. (2022), to appear in J. Math. Soc. Japan.
- [7] Mai Katada. Stable rational homology of the IA-automorphism groups of free groups. arXiv preprint arXiv:2207.00920, 2022.
- [8] Mai Katada. The stable Albanese homology of the IA-automorphism groups of free groups. arXiv preprint arXiv: 2404.15901, 2024.
- [9] Nariya Kawazumi. Cohomological aspects of magnus expansions. arXiv preprint math/0505497, 2005.
- [10] Nariya Kawazumi and Christine Vespa. On the wheeled PROP of stable cohomology of $Aut(F_n)$ with bivariant coefficients. Algebr. Geom. Topol., 23(7):3089–3128, 2023.
- [11] Sava Krstić and James McCool. The non-finite presentability of $IA(F_3)$ and $GL_2(\mathbf{Z}[t,t^{-1}])$. Invent. Math., 129(3):595–606, 1997.
- [12] Erik Lindell. Stable cohomology of $Aut(F_n)$ with bivariant twisted coefficients. arXiv preprint arXiv:2212.11075, 2022.
- [13] Erik Lindell. The walled Brauer category and stable cohomology of IA_n . arXiv preprint arXiv: 2404.06263, 2024.
- [14] Wilhelm Magnus. Uber n-dimensionale Gittertransformationen. $Acta\ Math.$, $64(1):353-367,\ 1935.$
- [15] Jeremy Miller, Peter Patzt, Dan Petersen, and Oscar Randal-Williams. Uniform twisted homological stability. arXiv preprint arXiv:2402.00354, 2024.

- [16] Alexandra Pettet. The Johnson homomorphism and the second cohomology of IA_n . Algebr. Geom. Topol., 5:725–740, 2005.
- [17] Oscar Randal-Williams and Nathalie Wahl. Homological stability for automorphism groups. Adv. Math., 318:534–626, 2017.
- [18] Takao Satoh. On the low-dimensional cohomology groups of the IA-automorphism group of the free group of rank three. *Proc. Edinb. Math. Soc.* (2), 64(2):338–363, 2021.

Faculty of Mathematics Kyushu University Fukuoka 819-0395 JAPAN

E-mail address: katada@math.kyushu-u.ac.jp