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Abstract

In this paper, we organize the ordered set theoretical works which have been done so far on
extending the Birnbaum importance measure[4] for a single component in a binary-state system to
a group of components in a multi-state system, and present stochastic bounds for criticality and
Fussell-Vesely importance measure in the same situation, when the joint performance probability of
the components, in other words, the probability on the product ordered set of the state spaces of
the components is associated.

1 Introduction

An idea of an importance measure of a component in a system plays a crucial role for determining the
maintenance priority of the components and has been examined so far, so much.

When components and a system composed of them are assumed to have binary-state spaces, i.e.,
possibly normal and failure states, the system is called a binary-state system, for which various ideas of
importance measures are proposed, Birnbaum importance measure[4], criticality importance measure[5,
7], Fussell-Vesely importance measure([8, 28], risk reduction worth[6], availability importance measure[1,
9], and are applied to practical issues[26, 27], among which the concept of a critical state vector is the
basis, and so a main problem in the examination of the importance measures for a multi-state system
is how to generalize the concept of the critical state vector. These works about importance measures
for binary-state systems are summarized by [10] and also refer to [3] for a total theory of binary-state
systems.

The idea of the availability importance measure[l, 9] tries to define a joint importance measure
of two components and is considered to relate to our importance measure of a group of components.
However the relation is not cleared.

For binary-state systems, [14] presents a necessary condition for a state vector to be a critical vector
in terms of minimal path and cut sets, and [11] shows the sufficiency of the necessary condition. Our
work is a generalization of this if and only if condition to a group of components in a multi-state system,
but the condition is somewhat modified and may be directly used for constructing an algorithm deriving
critical state vectors.

The states of components and systems are not practically restricted to normal and failure, and have
various intermediate states between normal and failure, so to say, deteriorating states, and so a theory
of a multi-state system is required and has been examined so far from the ordered set theoretical point
of view[12, 13, 15, 17, 18].

In this paper, we organize our works which have been done so far about importance measures of a
group of components in a context of the multi-state system[19, 20, 21, 22, 23, 25] and present multi-
state version of the criticality and Fussel-Vesely importance measures for a group of components and
stochastic bounds for these measures.

In the sequel of this section, we use some symbols which are precisely described in the next section.

For a multi-state system (¢, S, ), A C C, an increasing subsets U C Q4 and V' C S, examinations
of importance measures of a group of components start with the following definition of an A-U-V-critical



state vector[23, 25] : a state vector @ e € Q4c satisfying the next condition is called an A-U-V-critical
state vector and U is called a V-contributing set of x 4c.

e(Ua,wac) EV, p(Uj, xac) EV©. (1)
On the other hand, we may define a critical state vector as the following formula :
Jda €Qa, FbEQu, plag,xa) €V, o(bg,xac) € VE. (2)

Tae € Qe satisfying (2) is called an (A; V)-critical-state vector of the group A for V. The formula
(2) is intuitively understandable and denotes that the state of the system is changed from V to V¢
along with the change of the states of the components A from a to b at the state vector 4. of the
components outside A, in other words, . may be interpreted as an environmental condition for the
group A of the components to have the deciding vote for the state of the system. We may show an
equivalent definition with the idea of a contributing set, which is finally shown to be uniquely the inverse
set ©(-a,xac) " H(V).

We note here that for the definition of a critical state vector, we have two logical streams starting
with a V-contributing set and a critical state vector itself which are shown to be equivalent in the section
3, where Birnbaum and other importance measures are defined. In the section 4, when the probability
on the product ordered set of the state spaces of the components is associated[16], we give stochastic
bounds for criticality and Fussell-Vesely importance measures for a group of components of a multi-state
system. Stochastic upper bounds for Birnbaum importance measure are shown in [24, 25].

In [2] the mean of the Birnbaum importance measure along with time axis has been given as a
stochastic dynamical importance measure for a binary-state system. This dynamical idea has been
generalized to the multi-state case by [19, 20, 21, 25], but, is not mentioned in this paper because of the
restriction of the number of the pages.

Following the original definition of the Birnbaum importance measure for a binary-state system[4],
which is defined to be a difference between two kinds of conditional probabilities, we give an extended
Birnbaum importance measure for a group of components by using conditional probabilities in the
subsection 3.2. The detailed examination of this formulation is remained for the future work.

2 A Multi-State System

We first present a definition of a system, following [15, 17, 18].

Definition 2.1 (A definition of a system) A multi-state system, which is sometimes simply called "a
system @” or "a system”, is a triplet (e, S, @) satisfying the following conditions:

(1) C is a nonempty finite set, denoting the set of all the components of which the system consists.

(2) Q; (i € C) and S are ordered sets, not necessarily totally ordered sets, denoting the state space
of the component i and the system, respectively.

In the context of the reliability theory, it is natural to assume the state spaces to have the maximum
and minimum elements, each denoting the perfectly normal and failure states. In this paper, however,
these special states are not assumed to exist.

(3) Q¢ is the product ordered set of Q; (i € C), i.e., Qo = [[;cc - An element © € Q¢ is written
in detail as * = (x1, o, -+ ,T,), where x; denotes the state of the component i and an element of €;.

(4) ¢ : Qc — S is an increasing surjective mapping and called a structure function. |

The symbol £ is commonly used to denote all the "order” in this paper.

When Q; = {0,1} (: € C), S = {0,1} and the order is defined as 0 < 1, the system is called a
binary-state system. In this case, each state space is a Boolean lattice.

Generally, for an ordered set W, MI(W) and M A(W) denote the sets of minimal and maximal
elements of W, respectively.



For a subset A € C, Q4 = [[;c 4 Qi is the product ordered set of Q; (i € A). An element of Q4 is
written as ¢ 4. For x4, y4 € Qa4 :

TaSyy = Vi€ A xSy,
Ta=Yy < Vi€ A z=y,
TAa<yy, <= Vi€eA z;Sy,andIje Az, #vy; .

For example, for C' = {1,2,3,4,5} and A = {1,3,4} € C, Q4 = Q; x Q3 x Q4 is the product ordered
set of Qy, Q3 and Q4 and x4 = (21, x3,74) € Q4 is the combination of x; € Qq, z3 € Q3, x4 € Q.
As long as the index numbers are specified, it makes no sense how to arrange them. For example,
(23,4, 21) is the same to (x1,x3,x4). For subsets A and B € C, when AN B = ¢, xaup = (x4, TB).
Generally, for subsets E and F' € C, xpur = (Zp\p, TEnF, Tp\E)-

Definition 2.2 (A4 definition of partial structure function) For a non-empty subset A S C such that
A¢ = C\A # ¢ and any fized T s € Q4e, a mapping

(p(-A,:BAc):QA%S (3)

is defined as the following :
.’IZAEQA, (p(:EA,:BAc)ES, (4)
which is called x ac-restricted structure function and is sometimes written as ox ,.. Furthermore, a

system (Qa, S, 0(-a,Zac)) may be defined, which is not examined in this paper. |

A state vector 4. € Qe of the components of A° denotes an (inner) operating environment for
the components of A. The formula (3) signifies how the group of the components A contribute to the
system’s performance on the environment x 4c.

The following notations are used for an image and an inverse image with respect to p(-4, ) :

for US Qa, @Ua,xac) = {p(xa,xac) |2 U},
for |4 g Sa @('A;mAC)_l(V) {mA | gp(mAvac) S V}

{za| (xa,2a0) € o7 (V)
i.e., the section of ¢~ 1(V) at @ 4c.

The index A of Uy is intended to emphasise U € 4, however, sometimes omitted when there is no
confusion.

Definition 2.3 (A definition of an increasing set) A subset X of an ordered set W is called an increasing
set, when for every x andy € W,

zeXandxSy=—yeX

holds, and then, for an increasing set X, we have X = UmEMI(X)[I7 —).
Z S W is called a decreasing set, when Z¢ is an increasing set, i.e.,

yeZ, z<y = xz€Z (5)
and then, when Z is a decreasing set, we have Z = ¢ pra(7)(¢ 7). [ ]

It is easily proved that (5) and the increasing property of Z¢ are equivalent, and so the proof is
omitted.

Incidentally, since ¢ is increasing, for an increasing subset VS S, o=1(V) € Q¢ is an increasing set
and then we have the following :

e (V) = U [, ), ¢ 1(Ve) = U (¢ ]. (6)

TeMI(p~1(V)) TeMA(p=1(Ve))



where, for example, [z, —) = {z|x < z}, denoting an interval. The formulae of (6) tell us that an
increasing mapping ¢ is determined by the minimal elements of inverse images of increasing subsets.

The restricted mapping (-4, € 4c) defined by the formula (4) is increasing, since ¢ is increasing.
Then we have the following theorem:

Theorem 2.1 (i) For an increasing subset V.S S, o(-a,xc) "1 (V) is an increasing subset of Q4.
(ii) For a decreasing subset V.C S, ¢(-a,2ac)"H(V) is a decreasing subset of Q4. ]

For a group of components A € C, an increasing subset V € S and & 4 € Q4¢, we have the following
theorem for a relation between MI (¢=*(V)) and M1 (p(-a, @)~ (V) of which proof is omitted:

Theorem 2.2 We have the following equalities for x sc € Qpe:

MI (p(-a,4e)" (V) = MI{ma | meMI(p"(V)), mac S@ac },
MA(p(-a,2a)" (V) = MA{ My | M e MA(¢ ' (V)), ®ac £ Mae }. L

3 A Critical State Vectors for a Birnbaum Importance Measure

3.1 A Critical State Vector

Definition 3.1 Supposing A C C to be a subset of components of a system (Q¢, S, @), for an increasing
subset V.C S such that V # ¢ and V¢ # ¢, a state vector x e € Qae stisfying the following condition
is called a (A;V)-critical state vector :

Jda € QA and 3b € QA) <P(aA7mAC) € V7 gp(bAvac) € Vca (7)

which is a directly extended version of the critical state vector for binary-state systems[3]. The set of
all the (A; V)-critical state vectors is written as Cr(A; V). |

Theorem 3.1 For a system (Qc, S, @), a state vector x ac € Qpe is an (A;V)-critical state vector if
and only if

3 an increasing subset U S Qy s.t. U #£ ¢ and U° £ ¢, o(Un,xac) SV, p(UG,xac) SV, (8)

where U¢ = Q4 \U. U is called a contributing set at an (A;V)-critical state vector x e, and is actually
U= gp%ic (V). Then, the contributing set at the critical state vector T sc is uniquely determined, if it
ezists.

Another necessary and sufficient condition is the pair of the following conditions:

vz, (V) # ¢ and ¢z (V) # 0.
Proof : Setting U = <p§,ic (V), the theorem is clear. [ ]

We use a notation Cr(A,U; V) to denote the set of all the critical state vectors having a contribution
set U S Qy, ie.,

Cr(A,U:V) = {zac | U=pz,.(V)}, 9)
then we have clearly the set of all the (A; V)-critical state vectors as
Cr(A;V) = U Cr(A,U;V), (10)

U:an increasing subset of Q4

of which union is a disjoint union with respect to the increasing subset U.
In the sequel, we show a characterization of a critical state vector by M1 (¢~ *(V)) and M A (cp_ ! (Vc)) ,
which plays a crucial role for constructing an algorithm to derive the critical state vectors.
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Figure 1: (-, @ 4c) is a (A, V)-critical state vector.

Following Theorem3.1, we examine the ordered set theoretical structure of Cr(A; V). Fora € MI(U)
and b e MA(U®), we have

(p(aawAC) € ‘/7 (,O(b, wAC) S VC? (11)
and then by the property of a finite ordered set,

Im € MI(p~H(V)), m < (a, Tge), (12)
IM € MA(¢~'(V9)),  (b,xac) < M. (13)

Hence, the following inequalities hold :
mAC§mAC§MAcv mA§aa b§MA; (14)

from which noting the following inequalities,

A

m = (ma,xac) = (a,zac), ©(m) = p(ma,zac) = p(a,zac),

o(ma,xae) € V holds, since V is an increasing set and ¢(m) € V. Thus my € U, and then by the
minimal property of a, i.e., a € MI(U), m4 = a holds by the second inequality of (14). The equality,
M 4 = b, similarly holds. Arranging these examinations, we have the following theorem :

Theorem 3.2 x 4. is an (A;V)-critical state vector if and only if

Va € MI (gz" . (V)) and Vb c MA (oz.(V)), (15)
dm e MI (¢~ (V)) and IM € MA (¢~ (V°)) such that m e < M 4e, (16)
mAcgwAcéMAc7 mpg = a, MA:b. (17)

For m and M of (16), ma £ M 4 is derived from mac £ M ac, and furthermore,
ma € MI (¢, (V)), Ma€ MA(¢g),.(V)),

of which belonging relations are derived from that € < is an (A;V')-critical state vector, i.e., the essential
relation is (17) from which we may construct a rough algorithm to derive Cr(A; V). |

Theorem 3.3 Cr(A;V) is given by using the following formulae:
P(A = {(m, M) meMI (o "(V)), MeMA(e " (V)), mae <My}, (18)

O’I"(A,V) = U [mAc,MAc]. (19)
(m, M)HeP(4;v)



Proof : From Theorem 3.2, Cr(A; V) is clearly a subset of the right hand side of (19).

Assuming that xac is an element of the right hand side of (19), there exist m € MI(o~'(1)) and
M € MA(p=1(0)) such that mac < xac < Mac. Then, m < (ma,xac) and (M a,xac) < M hold
and satisfy the condition of the Definition 3.1, we finally have x4 € Cr(A4; V). |

Definition 3.2 Supposing A to be a group of components of a system (¢, S, ) and P to be a probability
on Qg¢, for an increasing subset V.S S, P\ a(Cr(A; V) is called an (A; V')-importance measure of the
group A with respect to' V' and a straight extention of the Birnbaum importance measure for a binary-state
system to a multi-state and group case. |

From the above examination, (A;V)-importance measure for a system (Q¢, S, ) are given by the
following procedure:

Step 1 : The calculation of P(A; V), the formula (18).

Step 2 : The calculation of Cr(A4; V), the formula (19).

Step 3 : The calculation of Pcy 4(Cr(A;V)) by, for example, the inclusion and exclusion method.
It is, of course, an issue to develop effective calculation methods at each step of the above rough
procedure.

Stochastic bounds for the Birnbaum importance measures of a component are introduced in [24].

Using an element (m, M) of P in a manner looser than the Birnbaum case, extended criticality
and Fussell-Vesely importance measures are defined. In this paper, we present definitions of them for a
group of components of a multi-state system and stochastic bounds for them.

3.2 An Alternative Definition of Birnbaum Importance Measure

Following the original definition of the Birnbaum importance measure for a binary-state system[4], which
is defined to be a difference between two kinds of conditional expectations, we try to define (A,U;V)-
importance measure for a group of components of a system (Q¢, S, ¢) by using conditional probabilities
as follows:

PT{(p(XA,XAc) eV ‘ X EU}—PT{QO(XA,XAc)EV | XAEUC}. (20)

Pr is a probability on a probability space on which the random vector (Xi,---, X,,) is defined and each
X is valued in ©; (i € C).

When the system is a binary-state system, the state spaces are {0,1} and a meaningful increasing
subset is uniquely {1}. Then setting A = {i} and U = {1}, we have the following formulation from (20)

Prip(ly, Xovgy) = 1| Xi =1} = Pri{p(0;, Xoyiy) =1 | X; =0}
= Elp(li, Xcvgy) | Xi = 1] = E[p(0;, Xengiy) | X = 0],

which is the original Birnbaum importance measure[4] of a component, and also when X; (i € C') are
stochastically independent,

the above formula = Pr{Xec\ gy € Cr({i}, {1};{1})}

The formula (20) implies the Definition 3.2 for a binary-state system, but not for a multi-state system,
so to say, (20) and P(Cr(A,U;V)) are not directly related with each other. The precise examination
of this formulation (20) is remained for the future work.

4 Criticality and Fussel-Vesely Importance Measures

4.1 Critical State Vectors for the Criticality Importance Measure
Critical state vectors defining criticality importance measures are given as follows :

UCI(A4;V) = {x|ImM)ePAV), maSaxs, mac S xac S Mach, (21)
LCI(A;V) = {z|3I(m,M)eP(A;V), £a S M4, mac S Tpe S M ye}. (22)



UCI(A;V) and LCI(A;V) may be written as the following formula :

UCI(A;V) = U [ma,—) X [mae, M 4], (23)
(m,M)eP(4;v)

LCI(A;V) = U (4=, M 4] X [mae, M 4c]. (24)
(m,M)eP(4;v)

4.2 Criticality Importance Measure

Supposing P to be a probability on ¢, two kinds of criticality importance measures are defined as the
following conditional probabilities :

P{UCI(A; V) }

P{ UCI(A,V) | 90_1(V) } = P{ (,0_1( ) } ’ (25)
PLLOIAY) o700} = TEEAEE) (20

Noting UCI(A;V) € Q4 x Cr(A4;V), we have the following relations among the Birnbaum and
criticality importance measures :

PUCI(A;V)) £ Pae(Cr(A;V)), P(LCI(A;V)) < Pac(Cr(A;V)) .

4.3 Stochastic Bounds for a Criticality Importance Measure

At the formula (23), setting

A;i = [ma,—) S Qu, an increasing subset,
Bi = [muac,Mac] S Qu,
I; = [mac,—) < Qac, an increasing subset,
D, = (+, MAC] C Que, a decreasing subset,
then
B; = I,ND;, an intersection of an increasing and a decreasing set,

UCI(A;V) may be written as the following :

and A; x B; is written as
AiXBi (A XQAc)m(QAXB)
= (A XQAc)ﬂ(QAX( ﬁD))
= (A XQAc)m(QAXI) (QAXDl) (28)
= [m,—=)N (24 x D), (29)

and then (29) is also an intersection of an increasing and decreasing set.
When P on Q¢ is associated, taking the probability of (29), we have

P(AiXBi) § P[m,—))P(SZAxDl)

Plm,—) - Pa(D;)
= Plm,—) - Pae(+, M s] (30)



and then

P(UCI(A;V)) < > P(Ima,—) x [mac, M)
(m,M)ep(A;v)
< > P[m,—) - Pge(<, M ). (31)

m,M)er(A;V)

When P on Q¢ is the product probability of P; on Q;, (i € C), i.e., the components are stochastically
independent, from (28), we have

P(A; x B;)) = Pa(A;) Pac(B;), (32)

furthermore, when P; (i € C) are associated,
S Pu(A) - Pac(l;) - Pac(Dy) (33)
= Pim,—)  Pyc(+, M 4], (34)

which is the stochastic bound same to the (31). Anyway, the critical state vectors and the stochastic
bounds are determined by M1 (¢~'(V)) and MA (¢~ 1(V*)).

We notice that every probability on a totally ordered set is automatically associated. And then,
when the state spaces of the components are totally ordered sets, the probabilities used for the reliability
theoretical examinations are associated.

4.4 A Note on an Exact Calculation of Criticality Importance Measure by
the Inclusion and Exclusion Principle

We here give a note for an exact calculation of (28) by the inclusion and exclusion principle.
[mxléb_” X [mhckac]ﬂ[m?Aa_}) X [micvMQC] (35)
= [sup{ml}, m%}, =) x [sup{ml., m?.}, inf{ M., M?.}], (36)

then, we may consider a non-empty condition similar to the case of the Birnbaum importance measure[24].

4.5 Fussell-Vesely Importance Measure

Definition 4.1 For a system (a4, S,¢), a group of components A C C and an increasing subset V.C S,
Fussel-Vesely critical state vectors are defined as the following four types :

FVUAV) = {z|3Im M)ecPAV), m<zx )} = U [m, —), (37)
(m,M)ep(A;V)
FVUA(A; V) = { (a,@ac) | 3I(m,M)ePA;V), m<a} = U [mae, —),
(m,M)ep(A;V)
FVLAV) = {x|3I(m M)ePAV), <M},
FVLA(A; V) = { (a,xac)|3I(m,M)ePAV), 2 <M},

each element of which is respectively called as

Fussell-Vesely upper critical state vector,
Fussell-Vesely upper alternative critical state vector,
Fussell-Vesely lower critical state vector,

Fussell-Vesely lower alternative critical state vector.

The conditional probabilities of the above events given as the following are generically called as the
Fussell-Vesely importance measure or precisely as group multi-state Fussell-Vesely importance measure.



P(FVU(A;V))

P(FVUAV) e (V) = P ) (38)
I -
P(FVLAV) ¢ '(V)) = %,
Pa ( FVLA(A; V) | {(-a,zac)lz € o (VO)}) = P, (FVLA(A;V)) .

PAC{(-A,wAc)|:c (S (p_l(VC)}.

Following the examination similar to the case of the criticality importance measure, we may have
a stochastic bound for the FVU(A;V)-importance measure (38) as the following : supposing P to be
associated, noticing that [m, —)° is a decreasing set,

P U m,—)| = 1-P N [m,—)°| <1- 11 P(jm,—)),

(m, M)eP(A;V) (m,. M)eP(A;V) (m,M)eP(A;V)
_ P(FVU(A;V)) 1
P(FVUAV Ly = < 1— P([m,—)°
( ( ) | 2 ( ) ) P (‘P_I(V» = P((p_l(V)) H ([ ) )

m,M)er(A;V)

We may have similar stochastic bounds for other Fussell-Vesely importance measures.
For a binary-state system, FVU(A;V)-importance measures are reduced to the usual Fusselle-Vesely
importance measures.
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