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1. Introduction

The relation between Pascal’s triangle [1,2], Newton’s binomial coefticient [3], and Fibonacci sequence [4-6] are well known
historically over the globe. The summations of right-upward diagonals show the mathematical beauty of Fibonacci sequence
on Pascal’s triangle [7,8]. In this paper, the same or similar summations on modified Pascal’s triangles are gotten to create
various sequences using the related Pascal matrices with several ideas [9-13]. To distinguish various sequences analytically,
we would like to use skipped and weighted sequences instead of calling generalized sequences. If we use the initial conditions
as 0 and 1, we would like to call the weighted Fibonacci sequence with the weights a and b in this paper. If we apply the
other initial conditions of g, and g,, we would like to name them the weighted Gibonacci sequences [4-6,14,15] with the
weights a and b in the same way. We understand that Padovan sequence should be calculated to use the summations of
knight moving diagonals on Pascal’s triangle in the same concept [16,17]. We would like to emphasize that as 1 skipped
sequence in this paper. If we consider n-Pell [18,19] or n-Jacobsthal sequences [20,21] as 1 skipped sequence such as Padovan
sequence or Perrin sequence [22-24], it is effective to compute with related and modified Pascal triangles and these matrices to
get that systematically. Based on this thinking, we extend models such as the work of the paper [17] and as k-skipped sequences
using matrices forms. In addition to that, we can clarify the reverse of the sequence as the descending order of that using some
mathematical techniques simply. Moreover, we deal with changing the initial conditions of Padovan or Perrin sequences in the
same manner. we can also find some ratios such as super-golden ratio (n = 1,j = 2) [25], super-silver ratio (n = 2,j = 2) [26],
and plastic ratio (n = 1,j = 4) [27] based on x/*' =n-x/ —1 are much more useful than we thought to create k-upward
sequences on modified Pascal’s triangles [28].

2. Visualization for weighted Gibonacci sequence using modified Pascal matrices

Generally, if we use the Pascal matrix in Figure 1, it is well known to get the Fibonacci sequence [4-6]. On the other hand, if
we modify the Pascal matrix to display the related sequences, it has not been systematized to distinguish types of various
sequences. Now, we suppose the (21 x 21) type of Pascal matrix [29-31] as follows.
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If we estimate the summations of right upward diagonals, we can get the Fibonacci sequence. In the same way, if we use the
matrix expa - A, we can get n-Pell sequence based on n = a € N. Moreover, if we apply the diagonal matrix [12]
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to the Pascal matrix such as (exp A)diag[b"] basedon b € N, we can also calculate n-Jacobsthal sequence from right upward
diagonals. Therefore, we can estimate the weighted Fibonacci sequence

Fapo=0,  Famwi=1  Fapj=a Fapj-1+b Feapj-2 (=2). (2.3)
using the summations of right upward diagonals of (exp a - A)diag[b"]. In the same manner, We think of weighted Gibonacci
sequence included n-Pell or n-Jacosthal Lucas sequences and Mulatu sequence as

Gapo =90  Gapi=91  Gap)j=a Gap)j-1+b Gapj-2 (G=2). (24)
To get the Equation (2.4), we need to use the right upward diagonals of the matrices (exp(F (@b)k+2 A))diag[(b .
F(ap)k+1)"1BG using the band matrix [9-13]
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In addition to that, we formulate k-skipped weighted Gibonacci sequence [9-13]

Gap)o =90 Gap)1 = 91 Gap2=92=a g1+ b go ", Gapykrz = itz =@ Jkr1 + b - gio»
Gap)j = Fapyr+z " Gap)j-k-1 + b Fap kst Gap)j-k—2 (G =k+3). (2.6)

based on k € N and illustrated in Figure 2. This is how k(= 1) means the number of skips for k-skipped sequences.
Based on this rule, we can create Lucas sequence, when a = b = 1,9, = 2,g_; = —1 and put the various initial conditions
of weighted Gibonacci sequence using Equation (2.5).
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Figure 1 Exponential matrices for Pascal’s triangle with negative orders and some modified Pascal matrices for various
sequences.
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Figure 3 Illustrative examples for changing initial conditions to move smoothly using band matrices G.

3. Changing initial conditions for weighted Gibonacci sequence using modified Pascal matrices

In section 2, we suggest that it is effective to get skipped weighted Gibonacci sequences using (exp(F (ab)k+2 A))diag[(b .
F (a‘b),kﬂ)h]BG. In this section, we would like to consider how to change the initial conditions smoothly. We would like to
devise illustrative diagrams of the changing conditions shown in Figure 3 concretely. If we apply the various types of diagrams
effectively in Figure 3 to the modified pascal matrices, we can make the flows of sequences change naturally.

In figure 3, there are several categories for changing the initial conditions. We can confirm the expanded Pascal’s triangle using



the weights a and b on Type 1. On the left side of the Type 1 diagram, we can see the moving location numbers of the
sequences. In the same way, on the left side of the Type 2 diagram, we can also admit the moving location numbers of the
sequences. When we confirm the left side number 1 and 2 on Type 1 or 1 and 2 on Type 2 in Figure 3, we can admit those
numbers as the moving location numbers. If we add the parts of left side number 0 times b and the left side number 1 times
a equals to the left side number 2 using weighted digit shifts, we can get the solution as the parts of left side 2. This is how we
can compute the changing initial conditions using Gibonacci sequences systematically. On the other hand, if we use the
condition on Type 3, we can get the reverse moving locations of the sequence. Therefore, if we utilize Type 1 or Type 2 and
Type 3 in Figure 3 at the same time effectively such as Type 4 in Figure 3, we can change the initial conditions arbitrary or
systematically.

Changing initial conditions smoothly (First condition)
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Figure 4 Illustrative examples for firstly initial condition before moving the location of Jacobsthal sequence.

Changing initial conditions smoothly ( -1 moved condition)
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Figure 5 Illustrative examples for changing the initial condition after moving the location of Jacobsthal sequence.



Based on the rules of Figure 3, we can display illustrative examples before moving the condition in Figure 4 and after locating
in Figure 5 using Jacobsthal sequence visually. In Figure 5, we confirm that Typel and Type 3 give the moving points of the
sequences precisely.

4. Visualizations for descending orders for skipped weighted Gibonacci sequence using modified Pascal matrices

In section 2, we mentioned that it is effective to create skipped weighted Gibonacci sequences using (exp(F (@b)k+2 °
A))dlag[(b Flap), «+1)1BG. In this section, we would like to consider visualizations of reverse orders of the sequences. As
shown in Figure 6, if we simply estimate the matrices forms such as (exp( F(a b)k+2 A)) diag[(b * Fap)k+1)” "BG/(b -
F(ap)k+1) to create reverse order of (exp(F(a‘b),kJrz . A))dlag[(b . F(a,b),kﬂ) ]BG, we can get the descending orders of the
sequences above mentioned with some revisions of size.
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Figure 6 Illustrative examples of descending orders for 1 and 2 skipped Jacobthal sequences from matrices forms.
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Figure 7 Concepts for changing the initial conditions of Padovan sequence using band matrices G.
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Figure 8 Illustrative examples for changing the initial conditions of Padovan sequence applying band matrices G.

If you would like to use part of negative order of the sequences on modified Pascal’s triangles systematically, I am happy if
you search for my ideas [12,13] that we suggested some solving techniques before this presentation.

5. Visualizations and changing initial conditions for original 1 skipped sequence using modified Pascal matrices
In this section, we would like to propose how to create the initial conditions for some 1 skipped sequences such as Padovan
sequence [22]

paLd _q pid _q piD) _

(11,0 — 12 — (112 — &~
(1,11 _ p(1,1,1) (1,1,1) .
Payj =Panj-2 t Paj,i-s =3 (.1)

or Perrin sequence [23,24]
p302) _ 3‘P(s,o,z) _ O‘P(s,o,z) =2

(1,1),0 (1,1),2 (1,1),2
(3,0,2) _ (3,0,2) (3,0,2) .
Py =Payj—2tPanj-s 23 (5.2)

using proper matrices G in the same way. In Figure 7, we can confirm that the principles of 1 skipped sequence according to
the moving numbers of the left side of the diagrams should be gotten systematically. If we apply one of them into the band
matrix G properly, we can change the initial conditions precisely based on these numbers. Therefore, we can understand that
the layers of Pascal’s triangle show 2 forward steps theoretically. That is why 1 skipped sequence should be gotten from Pascal’s
triangle and related calculations.

In Figure 8, we can illustrate the visualized examples for changing the initial conditions of Padovan sequence based on the
rules of Figure 7 in practice. In Figure 9, we can display the visualized examples for changing the initial conditions of Perrin
sequence based on the same concept of Figure 7.

6. Visualizations for k-upward typed sequence using modified Pascal matrices
In this section, we would like to suggest how to create upward typed sequences [28] shown in Figure 10 as follows.
p) _q L pAed)

n1),0 — Dk — 7
(1) _ o pQen) | pest) -
PO =n PO PO G2k + Lk =12) (6.1)

should be related to x**' = n - x*¥ — 1 mathematically. Based on Figures 3 and 7, we can also get the changing initial
conditions of these sequences in Equation (6.1) and move that systematically. However, we should take care of the upward
steps k to reverse locations in Figure 11. Frome the characterizations of these figures, we can understand the changing initial
conditions have same concepts shown in Figures 3 and 7 with some local rules.
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Figure 10 Illustrative examples of 2, 3, and 4 upward typed sequences on related Pascal’s triangles and these ratios.

It is known that the ratio x are called super-golden ratio (k = 2,n = 1) [25], super-silver ratio (k = 2,n = 2) [26], plastic
ratio (k = 4,n = 1) [27] shown in Figure 10 and so on. We can especially find that the plastic ratio on Pascal’s triangle is
gotten by using 2 ways. One is mentioned in Figure 8 and knight moving on Pascal’s triangle as you can see. The other is 4
upward typed sequence on Pancal’s triangle shown in Figure 10 in this section. Therefore, the plastic ratio should be one of
special ratios on Pascal’s triangle. Based on this concept shown in Figure 10, we can also change the initial conditions to move
the sequences smoothly in Figure 11. We can confirm that



x= Z X7 (xRt = kg 1) (6.2)
=k

if the ratio x*** = x* + 1. From the geometrical viewpoint, the ratio x is much more useful to create regular hexagon spirals
as the extended ratios shown in Figures 12 and 13 [32,33]. Moreover, if we describe the designated sequence as one skipped
sequence, the first terms shown as 1, 2, and 3 are equal to the orders of single, double, and triple types of hexagon spirals or
equilateral triangle spirals coincidentally. The relation of golden ratio and regular hexagons be confirmed on the website [34].
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Figure 11 Illustrative examples for changing the initial conditions of 2 and 3 upward typed sequences using band matrices.

Ref. Shingo Nakanishi, OIT, Japan, JSGS. 2024
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Figure 12 Illustrative examples for right upward typed sequences of 0, 1, and 4 upward typed sequences on Pascal’s triangle
and related single, double, and triple regular hexagon spirals and these series (Part 1) [32].
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Figure 13 Illustrative examples for right upward typed sequences of 0, 1, and 4 upward typed sequences on Pascal’s triangle
and related single, double, and triple regular hexagon spirals and these series (Part 2) [32].
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Figure 14 Illustrative examples for double spirals of equilateral triangles as golden ratio, silver ratio, bronze ratio of primary
metallic ratios and these characterizations on modified Pascal’s triangles [32,33,35].

In Figure 14, we can illustrate the new visualization for primary metallic ratios such as golden ratio, silver ratio, and bronze
ratio related Fibonacci sequence, Pell sequence, and 3-Pell sequence respectively using double spirals of equilateral triangles
and these visualizations on modified Pascal’s triangles [35]. From this figure, we can understand the meaning of geometric
characterizations of primary metallic ratios clearly. In addition to that, we can also visualize the extended continued fractions



and nested radicals for primary metallic ratios as new concepts in Figure 14.
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Figure 15 Illustrative examples for the set (1,1), (1,1,1), and (1,1,1,1) insert into the diagonals of the band matrices G.
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Figure 16 2 ways of visualizations for Padovan sequence and plastic ratio on modified Pascal’s triangles.

In this paper, we investigate the visualizations and these changing initial conditions of various types of sequences using the
proper designated band matrices. We would like to discuss some special cases to clarify the principles precisely. That is, we
can show that the cases of Fibonacci or Lucas sequences with 2 steps [14] in Figure 15. To use the set of one of these
combinations brings us the beauty of smoothly changing initial conditions as you can understand. In the same way, we also



display the various Gibonacci sequences, and 1 skipped Padovan liked sequences. These sets such as (1,1), (1,1,1), and
(1,1,1,1) to insert into the diagonals of the matrices G in Figure 15 show the strict characterizations concretely. If you are
interested in the 2 steps of Gibonacci sequence, I am happy to confirm the RIMS paper by IWAMOTO and KIMURA [14].

Finally, we would like to display the 2 ways of visualizations of Padavan sequence and plastic ratio on the related modified
Pascal’s triangles at the same time in Figure 16 to understand my ideas [13,36,37] throughout this study clearly. I would be so
happy if you imagine two types of beautiful plastic ratios like Fibonacci and Lucas sequences on modified Pascal’s triangles in
Figure 17 [4-8] as one of my original works with thinkings of great mathematical history.
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Figure 17 Artistic Illustrative examples for weighted Fibonacci sequence and Lucas sequence
on modified Pascal’s triangles [9,37].

7. Conclusions

In this paper, we dealt with the visualizations for various types of sequences on modified Pascal’s triangles or using the related
Pacal matrices systematically. In addition to that, we can devise the changing initial conditions to move the sequences on
Pascal’s triangle naturally, smoothly and visually.

First, we can show that the skipped or weighted sequences instead of using generalizations of Fibonacci or Gibonacci
sequences to confirm the characterizations visually on modified Pascal’s triangles. To distinguish weighted and skipped
sequences make us investigate the characterizations on modified Pascal’s triangles by changing initial conditions effectively.
At the same time, we understand that the principles of changing initial conditions connect to the original characterizations of
Gibonacci sequences mathematically. These ideas come from the addition theorems of Gibonacci sequences.

Second, we can treat original 1-skipped sequences such as Padovan or Perrin sequences in the same way. Therefore, we can
find that the principles also mean the original’s 1-skipped sequences to change the initial conditions systematically.

Third, we can clarity that the increasing ratios of the right upward typed sequences on Pascal’s triangle are equal to x, which
means x**! = x*¥ + 1, and extended ratios of related regular hexagon spirals such as single, double, and triple regular hexagon
spirals with equilateral triangle spirals mathematically. Moreover, we can confirm that the number of right upwards is equal to
k on Pascal’s triangle. These preparations and changing conditions for visualizations are much more useful to introduce
matrices forms such as Pascal matrices and the related several band matrices easily in this paper than we thought.
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