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Abstract

We briefly report on the results in [26] and [25], where we discuss and prove the mathematical
validity of the so-called “ghost effect” for the steady Boltzmann equation in a general 3D bounded
domain, with a finite variation of the tangential wall temperature.

1 Formulation and Introduction

1.1 Introduction to Ghost Effect

One of the important applications of the Boltzmann theory is to derive hydrodynamic
(fluid) equations as € — 0, where ¢ is a dimensionless number called the Knudsen number
(the ratio between the mean free path ¢ and the characteristic macroscopic length). There
has been explosive literature on such hydrodynamic limits both from physical and mathe-
matical standpoints. Almost all of the fluid equations obtained from such derivations are
compatible with standard fluid theory, and the role of such limits can be viewed as further
justification rather than new discovery of fluid equations from the Boltzmann theory.

In particular, the diffusive hydrodynamic limit of the Boltzmann equation in the low
Mach number regime is described by the incompressible Navier-Stokes-Fourier equations
under the extra assumption that the initial density and temperature profiles (and on the
boundaries) differ from constants at most for terms of the order of the Knudsen number.

When the density and temperature do not satisty the above mentioned assumptions,
the limiting behavior of the Boltzmann equation deviates from the Navier-Stokes-Fourier
equations. Such a discrepancy, called “ghost effect” [64], shows up in the macroscopic



equations with the presence of some extra terms reminiscent of the limiting procedure
such as some heat flow induced by the vanishingly small velocity field.

A rare exception occurs in the study of the fundamental hydrodynamic limit for a
steady gas in a motionless bounded domain €. In his seminal paper [59], J. C. Maxwell
introduces his kinetic formulation of boundary conditions to investigate such a funda-
mental problem in physics, and proposes a slip boundary condition for a fluid flow, by
assuming thermal equilibria (local Maxwellian) for the gas. In the case of diffuse-reflection
Maxwell BC (with the accommodation coefficient equal to 1), his now famous slip bound-
ary condition takes the form of

uL—uw:G<
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Here (p,u,T) is the fluid density, velocity and temperature with (py,,uy, 7)) being its
counterparts at the wall, n is the normal direction and ¢ the tangential direction, and
A the viscosity and G the slip coefficient proportional to the mean free path . The
second term is of order € [63]. This boundary condition also predicts and explains that a
dilute gas slips from colder to hotter regions (the thermal transpiration or thermal creep
phenomenon) at the boundary. Maxwell’s work has inspired further research in physics
and engineering ever since, including constructions of thermal pumps.

In the case of a motionless boundary u, = 0 with Maxwell diffuse BC, Maxwell’s
kinetic formulation leads to the following stationary Boltzmann equation in a bounded
three-dimensional C® domain Q 5 z = (71, 22, ¥3) with velocity v = (v, vq, v3) € R3:

vV =e'Q[E,3], F|,,.0= Mo S(u) [u-n|dy, (1.2)

u-n>0
and its € — 0 behavior is one of the most classical and basic hydrodynamic problems
in the kinetic theory. Here § is the phase space density, () is the hard-sphere collision
operator

QIF.G] == /]R 3 /S gw.o—u) (F(u*)G(U*) - F(u)G(v))dwdu, (1.3)

with w € §? a unit vector, u, = u+ w((v —u) - w), v, := v —w((v — u) - w), and the
hard-sphere collision kernel ¢(w,v —u) := gy |w - (v — u)| for a positive constant go.
Moreover, the wall Maxwellian in the diffuse-reflection boundary condition is

o 1 o [ — \1)\2
Mulro ) = o o) p( 2Tw<xo>> (14)

for xg € 0f) where n is the unit outward normal to the bounded domain €2 with a wall
temperature

Tw=140(|VTy|;~) (1.5)
satisfying

/ My (zo,v) |v - n(zo)|dv = 1. (1.6)
v-n(xg)>0



In the case of |[VT,| = O(g), an L5 — L> framework has been developed in [23, 24]
which leads to the validity of the Hilbert expansion

3 |2 2 _ 3
T~ (27r)‘5e‘% (1+€(p1+T1|U| 5 )) (1.7)

v|?
where (27?)*36*@ is a global Maxwellian and 7} satisfies the celebrated Fourier law for

the infinitesimal temperature variation 77 of order e:

ATy =0 (1.8)

with u; = 0. We note that in this case, Maxwell’s slip condition (1.1) is trivial at the
order.

In contrast, for the more natural and general case of |VT,|,. = O(1), £ order only
results in V,(pT") = 0. Even though |VT,|;. = O(1) is within the regime of the com-
pressible Euler limit, the vanishing of the velocity at €% order requires further expansion
to determine uniquely p and 7. This process (see details in [26]) leads to that for any
constant P > 0

o lv|* — 3T 1 v, T
S~M+c{u(p1+u1-v+TlT —p2 | o - 5T (1.9)
p(z) [of*
where p(z,v) := ————=exp < - — |,
(27T (x))? 27 (x)
o =v- (o] =5T)uz €R®, o ==L [d] €R?, (1.10)

where £ is defined in (1.28), and (p,u,7,p) is determined by a Navier-Stokes-Fourier
system with “ghost” effect

( po= T,
pluy - Veuy) +Vep = V- (T(l) — 7'(2)) ,
V.- (puy) = 0, (1.11)
\A
Vm . (KZ oT2 ) = 5P(Vm : Ul),
with the boundary condition
T =T | = (e w)| = (80T 560.T0,0). (1.12)
o9 o0 0

Here 7V .= \ (Vmul + (Vaug)t — %(Vm . ul)l), 7@ .= ’\—P2 (K1 (VgT—%Ale)—F%(VzT@

VT — 3 V. T 1)), K, and K, are positive constants, A[T] > 0 is the viscosity coeffi-

cient, k[T] > 0 is the heat conductivity, (u1,,,u1,,) are two tangential components and
U1, i the normal component of uy, Sy = So[T)] is a function of T),. The system (1.11) has
been discovered by various researches as early as in 1960’s. We refer to [53, 54, 63, 64] for
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the stationary problem and to [19, 11, 9] for the time dependent one. In particular, Sone
(63, 64] establishes a systematic Hilbert expansion in the bulk with careful and precise
boundary layer corrections.

Sone’s precise formula (1.12) confirms Maxwell’s boundary condition (1.1) at O(g)
since the first term in (1.1) are of the order O(¢?), and his 3, formula matches the second
term in (1.1):

VT

Pl
which can be solved from the kinetic boundary layer (the Milne problem) [64, 63, 26].
Sone’s formula (1.12) serves as a benchmark for many numerical simulations.

Bo =~ const X (1.13)

Furthermore, Sone [63, 64], among others (see also [54]), makes an important and
surprising observation that new limiting system (1.11) cannot be predicted by any classical
fluid theory, which can be viewed as an exciting example of a new kinetic effect. Thanks
to the mismatch of £ orders, the infinitesimal first-order velocity eu; acting like a “ghost”
(a term introduced by Y. Sone [62]), has an O(1) impact in determining zeroth order p and
T, as long as the tangential temperature variation is of O(1) in (1.12). Therefore, (1.11)
is not compatible with any classical continuum fluid theory, in which all fluid quantities
are determined at the same level of order of . In particular, 7(? is a new contribution
different from the standard fluid theories. Subsequently, different types of ghost effects
have been discovered, such as the ghost effect from curvature or from mixture of gases
(65, 66]. In [30], a formal derivation of ghost-like equations is obtained starting from the

Newtonian many particle system.

Due to fundamental mathematical difficulty created by |VTy|; = O(1), it has re-
mained an intriguing outstanding question to rigorously derive (1.11). Particularly, the
presence of new term 2 (o - 3x£) in (1.9) leads to a boundary layer correction of order
€, which can not be avoided in mathematical analysis. The main goal of this paper is to

settle this open question in affirmative in a bounded domain under the assumption

IV Ty = 0(1). (1.14)

Throughout this paper, in the low Mach number regime, we always assume (1.14) and the
physically important hard-sphere collision kernel, even though our analysis can be easily
extended to kernels of hard potential with an angular cutoff.

1.2 Asymptotic Expansion and Remainder Equation

Throughout this paper, C' > 0 denotes a constant that only depends on the domain 2,
but does not depend on the data or €. It is referred as universal and can change from
one inequality to another. When we write C'(z), it means a certain positive constant
depending on the quantity z. We write a < b to denote a < Cb and a 2 b to denote
a > Cb. Also, we write a ~ b if both a < b and a 2 b are valid.

Let ( -, - ), denote the inner product for v € R3, (-, - )_ the inner product for z € Q,
and (-, - ) the inner product for (z,v) € Q x R3. Also, let { -, - )., denote the inner
product on v+ with measure dvy := |v - n| dvdS,.



Denote the bulk and boundary norms

v (f] e ) g = ( iorteslas) " 1

1
Define the weighted L*° norms for properly chosen Ty, > 0, 0 < p < 3 and ¥ > 0

1ol? Jv|?
g, o= esssup (00650 17l ), 1Fly = esssup (7o 700 ),

(z,v)€QXR3 e (zv)EV+
(1.16)

Denote the v-norm: || f||;. := <// vz, v)|f(z,0)]? dUdl) . Let [||lyyx» denote the

usual Sobolev norm for z € Q and |- ’W’W for z € 99, and ||||yv.p ;. denote W*P norm for
r € Q and L? norm for v € R®. The similar notation also applies when we replace L9 by
Ly or L.

We also define

K1 ::/ (o ® o)dv, ol:= / (Jof = 5T) (o @ o) dv, A::%/ BBy for i £ j.
R3 R3 R3
(1.17)

We follow the approach in [71] to define the geometric quantities and more details can
be found in [26]. For smooth manifold Jf2, there exists an orthogonal curvilinear coordi-
nates system (i1, to) such that the coordinate lines coincide with the principal directions
at any o € JQ (at least locally). Assume 0f) is parameterized by r = r(cy,t2). Let
the vector length be L; = |9,r| and unit vector ¢; = L; ', r. Based on sign of the flow
direction v - n(zg), we can divide the boundary v := {(zo,v) : zy € 02, v € R*} into the
incoming boundary ~y_, the outgoing boundary 7, , and the grazing set vy. In particular,
the boundary condition of (1.2) is only given on ~_.

Consider the corresponding new coordinate system r := (1, t2,n), where n denotes the
normal distance to boundary surface 02, i.e.

r=r-—nn. (1.18)
Define the orthogonal velocity substitution for v := (v,, v4,vy) as
—V M=y, SV G =V, —U - Gy = Uy (1.19)
: . n .. .0 10
Finally, we define the scaled variable n = —, which implies — = ——.
€ on  e0n
We seek a solution in the form
1
§(z,0) =f + [P +epiR = p+ps (5f1 + 62f2) + i (éle> +eusR, (1.20)
where the interior solution is
f(@,0) = p(x, v) + p2 (z,0) <5f1 (z,v) + 2 fo(, v)), (1.21)



and the new e-cutoff (singularity in v,) boundary layer is

12(50) = s, 12,0) ((5,0)). (1.22)

The details about the construction of the asymptotic expansion can be found in [26], where
f1, f» and [P are constructed precisely. R(x,v) is the remainder with the minimum and
natural € pre-factor, p(z,v) denotes a local Maxwellian and i, (11, t2, ) = p(xg,v) the
boundary Maxwellian.

In the following, let oy be a small constant depending on T, satisfying
opr=0(1) >0 as |VT,|ys0 — 0. (1.23)

In principle, while oy is determined by VT, a priori, we are free to choose o(1) depending
on the estimate.

In [26], we proved the following

Theorem 1.1. Under the assumption (1.14), for any given P > 0, there exists a unique
solution (p,uy,T;p) (where p has zero average) to the ghost-effect equation (1.11) and
(1.12) satisfying for any s € [2,00)

luallws.s + Ipllwas + 17 = lypas < or- (1.24)
Also, we can construct fi, fo and fP as in [25] and [26] such that
‘|~f1||W375LZ?19 + |.f1|W3—%,sL§?ﬁ S OT? ||.f2||W'275LZ?19 + |f.2|W2_%’sLZ,O19 S OT7 (125)

and for some Ky > 0 and any 0 < r < 3, (uniform in e-cutoff)
e FP e, + (™ 10|, + ("I ) S 0 (1.26)
Define the symmetrized version of @)
1
QIF.G) = / / gl Ju— o) (Pu)G) + P()G(w) — FR)GE) ~ F)G(w) )dodu
R3xS?
(1.27)
Clearly, Q[F, F'| = Q*[F, F']. Denote the linearized Boltzmann operator £
L1) = — 2 Qe [ b 1], (1.28)
Note that £ is self-adjoint in L2(R3) satisfying the coercivity property
y FLU Z 1@ =PI - (1.29)

Denote £7! : Nt — N+ the quasi-inverse of £. Also, denote the nonlinear Boltzmann
operator T"

[f,9) == p2Q" [/ﬁf, /159] eN*. (1.30)



Based on the analysis in [25, Section 4], in order to show the validity of (1.20), it suffices
to consider the remainder equation for R:

. % _1% = % | 3
{UVI<,MR)—|—£ WBLIR] = i3S in Q x R?, L)

R(xg,v) = Py[R](x0,v) + h(zg,v) for zp€ 02 and v-n(x) <O.

We do not give here the long expressions for the boundary and bulk sources h and S, that
can be found in [25] and [26],

P, [R](xo,v) = mw(zgjv)/ u%(zoju)R(a:O,u) lu - n(zo)| du, (1.32)

u-n(zo)>0

1
with my, (g, v) := Mypw? satisfying the normalization condition

1 P
b, o) =m0, ) [ paleo,w) (o) du =

—mw($07 U). (133)
u-n(xo)>0 (QWTW(‘TO))

[N

Note that

\ VA

1 1 1 1 1 —
vV, (pﬁR) =p2(v-VyR)+ iu_ﬁ(v V)R =p2(v-V,R) + (;a/ 172

)

where &/ is defined in (1.10). Hence, we can rewrite (1.31) in the equivalent form

— VT .
v-V.R+ (/,L_zﬂ- ZT2 ) R+e'L[R]=S in QxR

R(zg,v) = Py[R](xo,v) + h(zg,v) for zq€ 0 and v-n(z) < 0.

(1.35)

1.3 Decomposition and Reformulation

1.3.1 /-Hodge Decomposition and Local «/-Conservation Law

The presence of new contributions involving &7 - Z;fgr in (1.9) and </1,_%E . Z;QT) Rin (1.35)

creates fundamental mathematical difficulties, and we define the following projection and
<7-Hodge decomposition, as well as corresponding local .o7-conservation law.

Note that the null space N of L is a five-dimensional space spanned by the orthogonal
basis

u%{l,v, (|’U|2 —37) } (1.36)

We denote A/t the orthogonal complement of N in L?(R?). Define the kernel operator P
as the orthogonal projection onto N, and the non-kernel operator I — P. We decompose

1 =P[] + (1= P)[1] i= 115 (0){pr(e) + 0 br(w) + (o]’ = 57 )en(a) } + (X P)[R)
(1.37)



Note that we have chosen a different decomposition of P[R] in contrast with the classi-
cal (ag,bg,cg) decomposition in previous work [24] (pgr = ar + 2Tcg). Moreover, we
introduce a crucial further orthogonal split

(I-P)[R] =« -dg(x)+ (I-P)[R], (1.38)
where (I )[R] is the orthogonal complement to & - dg(z) in Nt with respect to
L

- P
(0 de=( Ll 0)
(ﬂ, (I —F)[R])L - <E, (I- F)[R]>v ~0. (1.39)

From now on, when there is no confusion, we will omit the subscript R and simply
write p, b, ¢, d. In summary, we decompose the remainder as

R= <p+b ot e(fof? - 5T));ﬁ +d-of +(I-P)R), (1.40)

and from (1.35), R satisfies
\ VA
477

We can further define the o/-Hodge decomposition d = V£ + e with the potential &
solving the Poisson equation

v Ve R+ (M—éﬂ >R+g—1d-3+e—1£[(1 —?)[R]] =S. (1.41)

Ve (V) =V, -(kd) in Q, £=0 on Q. (1.42)
We can directly compute
V.- (ke) =V, (kd) =V, - (V) =0. (1.43)
This implies the crucial orthogonality: for any n(z) such that n = 0 on 0f2, we have
/(f—ze) - Vyndr = — / V. - (ke)ndz = 0. (1.44)
Q Q

Thus, taking n = &, we know
(d-d,d-ﬂ)ﬁ - <d-,sz%,£[d~,;z%]> - <d-md-3> - /QK;\sz—FeFdx (1.45)

://@]Vwé\zdw—l—//i]e\de—I—Q/m(Vx&-e)dx
Q Q Q

:/mlvxé\de+/ﬁ]e\2dx—2/Vx-(ﬁe)§d:v://f\Vxﬁ\de—k/m\e\de.
Q Q Q Q Q

We note the local conservation laws of mass, momentum and energy (with test functions
FERDE N

P(V,-b) = <ﬂ%,s>v, (1.46)
PVap+ V- | (0 V) (1—P)[R] = <w%, S>v 7 (1.47)
5P<Vz : (bT)) LV, (nd) = <]1)]2/1,%,S>v. (1.48)



Notice that the construction of ¢ in (2.7) leads to a natural kinetic equation for the
combination V, (c+e7'¢) as

v-V,R+e'(V,{+e) o (1.49)
AV, (ct+e ) o +v-V, (pu% +b-opz+ (I— P)[R]) +ele o,

along &7 direction. This allows us to introduce the local ./-conservation law (with test
function )

KV (c+e'€) + Z;g (kp +0c) + e ke (1.50)

o VAP, ), + (SO PR ) = (5.0),.

This new ./-Hodge decomposition and its .@7-conservation plays the key role for us to
circumvent the analytical difficulty.

1.3.2 Reformulation with Global Maxwellian

Due to the cubic velocity growth term in (1.35), we have to reformulate the remain-
der equation with a global Maxwellian in order to obtain L estimates. Considering

VT S or for op defined in (1.23), choose constant Thy : Ty < migT < maécT <
TE fAS
2T and magT — Ty = or. Define a global Maxwellian
A
P v]?
fin = ———5 €xXp ( — _2|T| ) (1.51)
(2r)T}, u
We can rewrite (1.31) as
U'V;ERM—FE_I,CM[R] =Sy in Q XRg, ( )
1.52
R]\[([E(),’U) = ,P]\[[RM](zg, U) + h]\[([Eg,U) for T € 0 and v- n(l’g) < O,

_1 _1 _1 _1
where Ry = piy 22 R, Sar = piyf 125, by = puyf p2hoand for mag .y = g2 12 (20, v)ma (0, v) =
1

My iy

Laf[Ru] = — 20,7 Q" [M ,@RM] = v Rar — KR, (1.53)
,PM[RM](LL’O, U) Z:m]um,<$0, U) / ,LL]EV[RM(LIIO, u) |u . n(x0)| du. (154)
un(xo)>0



1.3.3 Working Space

Denote the working space X via the norm
1Bl =< (lpllz + €l + llell o + [T~ PRI + el ) (1.55)
e (Il + Nl + 101 = PRIy +196ls,)
+ (HCHL2 +pllgs + 1Dllzs + el o + [1€llwze

+llell o + | @ =PRI o + 1P [R]] 2 + |3 (1 =P[R

)

T+

1
et (IR, + Rl ).

1.4 Main Theorem

Theorem 1.2. Assume that Q) is a bounded C* domain and (1.14) holds. Then for any
given P > 0, there exists ¢g > 0 such that for any ¢ € (0,¢0), there exists a non negative
solution § to the equation (1.2) represented by (1.20) satisfying

/ﬂp(m)dm =0, (1.56)

and
B[ x < or, (1.57)

where the X norm is defined in (1.55). Such a solution is unique among all solutions
satisfying (1.56) and (1.57). This further yields that in the expansion (1.20), p+epu(uy-v)
1s the leading-order terms in the sense of

Hu‘% ki

Se (1.58)

2
La:,v

and

< et (1.59)

‘/w (5 n—ep(u o)

where (p,uy,T) is determined by the ghost-effect equations (1.11) and (1.12).

LE

Remark 1.3. There is no restriction on VT, except smallness condition (1.14). More-
over, our result is valid for all general smooth bounded domains (including non-convex
domains), despite the presence of boundary-layer approximation.

Remark 1.4. We stress that the boundedness of |R|y only implies that 2V, is
bounded in L?, not e~V £ is bounded in L*. This is in contrast to the fulle™ ||(I — P)[R] 12

control in L? in [24],
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1.5 Literature Review

The hydrodynamic limit of the Boltzmann equation on the diffusive space-time scales has
been the subject of many studies.

The Boltzmann solution has been solved close to the incompressible Navier—Stokes—Fourier
system. Mathematical results were obtained, among others, in [10, 19, 34, 37, 39, 16, 31]
for smooth solutions. In particular, the convergence of the renormalized solutions to the
Navier-Stokes-Fourier system has been obtained by Golse and Saint-Raymond [32], see
also contributions in [5, 6, 7, 8, 55, 58, 61, 49, 48]. We also refer to the survey [60]. In
a pioneering study of the unsteady ghost effect for 1D geometry —oo < z < oo [46],
convergence is established for a temperature variation along the 1D normal direction via
delicate analysis in a Sobolev space with a crucial sign condition for 7”.

Much less is known about the hydrodynamic limits for steady Boltzmann solution, due
to lack of basic L' and entropy estimates. Only the control of entropy production from
J Q[F, §) In(F) is available analytically. Despite progress [67, 21, 20, 17, 1] on the control
of entropy production in terms of § — pg (where pgz is the local Maxwellian with the
same mass, momentum and energy), its nonlinear nature prevents useful applications for
Boltzmann solutions with large amplitudes so far (see an interesting progress in [4] and
also [56, 18]). In [2], in the Rayleigh-Benard context existence results for small Knudsen
and Mach numbers in two dimensional slab are obtained and the first bifurcation is
studied. In [27, 28] the geometry is strictly one-dimensional and the Knudsen number
is small, but not the Mach number. We refer to the recent review [29] for more details.
In the above cases no slip boundary conditions are considered. Recently an interesting
extension to the case of slip boundary condition has been obtained in [22]. Very few
rigorous results, beyond the one-dimensional case, are available for the ghost effect. In
[15, 14], the ghost effect for a one-dimensional mixture is established, and in [3] the ghost
effect is studied for a one-dimensional problem with cylindrical symmetry. We remark
that classical ghost effect from temperature variation (1.2) requires non-trivial tangential
temperature variation which has a multi-dimensional nature.

2 Methodology

2.1 L% — [ Framework for Fourier Law

For a general 3D domain, an improved L5 — L framework is developed in [24], in which
steady hydrodynamic limits to the celebrated Fourier law are established, along with
their dynamical stability. For Boltzmann solutions close to a Maxwellian p, the entropy
production [ Q[F,§]In(F) is approximated by the fundamental a priori bound for the
microscopic part ||(I— P)[R]Hig associated with the linearized Boltzmann operator L
around p, where ,u%R ~ § — p instead of the natural difference with the local Maxwellian

§ — pg. In such a setup, the fundamental analytic difficulty is to control the missing
macroscopic part P[R] ~ 1 — pg for the nonlinear closure.

In a series of papers [33, 36], an elliptic structure is discovered for P[R], and P[R] can
be bounded via (I —P)[R] through the Boltzmann equation in high order Sobolev norms.

11



Unfortunately, it is well-known that Boltzmann solutions exhibit only limited regularity
(or even singularity) in the presence of physical boundary conditions [51, 41] due to the
characteristic nature of the grazing set in kinetic theory. To overcome this difficulty, a L% —
L framework is established in [35], in which ||P[R]]|,. is bounded via ||(I — P)[R]|| ;> to
bootstrap weighted || R|| ;. bound via double-Duhamel principle along the characteristics,
thanks to the velocity mixing feature of K. An important new methodology is developed
in [23], where ||P[R]||,- is estimated quantitatively in terms of ||(I — P)[R]||,. via proper
choices of test functions in the weak formulation with boundary effect, by solving dual
Poisson equations of the form A,¢ ~ a,b,c. Such a methodology entails a robust and
flexible approach to grasp the ellipticity (positivity) estimates for P[R] in the presence of
boundary conditions, reminiscing in spirit elliptic estimates in weak forms.

In recent papers [23, 24, 71|, the steady solution to the Boltzmann equation close to
Maxwellians was constructed, in 3D smooth domains, for a gas in contact with a boundary
with a prescribed temperature profile modeled by the diffuse-reflection boundary condi-
tion. Also, the Navier-Stokes-Fourier limit was established in [24, 71] for the diffusive
scaling of |V,T| = o(1)e based on an improved L® — L> framework. In particular, the
proof in [24] relies on the L? energy/coercivity estimates combined with L kernel esti-
mates (by solving dual Poisson equations of Ay¢ ~ alal*,b|b|*, ¢|c[)

e (T =P[Rl + IP[Rlle +22](1— PRz, (2.1)
<o(1)e2 HRHL% + o(1) boundary/source terms,

and the L™ estimates

HR||L§% < e3 [(X—=P)[R][: + e2 |IP[R]||;6 + o(1) boundary/source terms.  (2.2)

The L°® bound is crucial to control nonlinearity in 3D and to close the L* estimates:
weaker ||P[R]||,. bound leads to extra ¢! loss (compared with L° bound) as || R|| L, S
o,

_3
ez |[PLR]|] .-
We also refer to the recent papers on the diffusive limit of the Boltzmann equation

and related models [12, 13, 50, 47]. We list some recent developments along LP — L™
framework [23, 35, 37, 39, 41, 40, 51, 52, 70].

2.2 New [?— L% — [*® Framework

For hydrodynamic limits of (1.2), the basic energy estimate yields

1

I P)[R)Z, = — ! <u-23-

4T
S 5_15P<VIT7 bc> + good terms.

v
v 5 ,R2> + good terms (2.3)

In the case of ||V,T'||,« = o(1)e, we have

e @X=P)[R]ll; < o) [IPR]]l 6 + 1. (2.4)
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With a new L5 gain for P[R] in [24], quantitative estimates in [23] lead to
IP[A]lle S e I@—P) Rl (2.5)

~

where ¢ and b are estimated via test functions of the form V,¢ - o/ and V¢ : 4, and
the convergence to the incompressible Navier-Stokes-Fourier system as ¢ — 0 in [24] is
established. We remark that thanks to the new L° estimate and ||V, T, = o(1)e, it is
possible to avoid boundary layer approximation completely.

In the case of ||V,T||;~ = o(1), however,
—5‘15P<VIT, bc> ~ o(1)e " |P[R]||, (2.6)

which is impossible to close via (2.5) with a severe loss of e7'. We note that the term
—6_15P<VxT, bc> presents a fundamental major difficulty, and the main mathematical
achievement of our contribution is to develop a systematic methodology to overcome this
loss of € in the presence of boundary effects. Furthermore, (1.14) forces us to intro-
duce boundary layer approximation at the leading order, in a stark contrast to the case
|\VT|| = o(1)e. This presents another major technical challenge due to the well-known
singularity at the grazing set: no mathematical theory is available for non-convex sets.

Reduced Energy Estimate of (I - P)[R]+e-« The first key idea is to use o/-Hodge de-
composition to split

I-P)R|=d- o/ +(I-P)[R|=V,, - +e- -+ (I1-P)[R]. (2.7)
A reduced energy estimate is then established as the building block of our analysis:

Proposition 2.1. (Proof in [25, Section 5]) Let R be a solution to (1.31). Under the
assumption (1.14), we have

e (=P[R, + et lell 2 + et [(T= PR, SorIRlx + [R5 +or. (2:8)

Remarkably, this new reduced energy estimate (2.8), in comparison to (2.4), sacrifices
the control of V,£ -« in (I — P)[R] to cancel —z15P (V,T, bc) via a string of delicate
manipulations (ignoring boundary contributions):

el <VxT, bc>$ (2.9)
- g—1<vm : (/@'d),c>x [Mass and Energy Local Conservation Laws (1.46)(1.48)]
== Y(Va- (kVa€),c)  [o/-Hodge (1.43)]
z£_1<mvxf, V$c>z [Integration by parts]

A — 5_1<VI§, 5_1/<5fo> [Local «7-Conservation Law (1.50) and /-Hodge (1.44)]

:_5_2// F”’Vzg‘Q»
QxR3

13



which is cancelled with its counterpart in 2 / / R(I — P)[R]. We note that the
OxR3

ignored boundary contribution (V;&, (1 —P,)[R]), is bounded by o(1)e |R||% thanks to
(1.55).

We remark that the a priori control of the full (I — P)[R], as entropy production, has
been the starting point for PDE study for Boltzmann solutions near Maxwellians in the

past. To our knowledge, this is the first time one needs to study fine structure within
(I — P)[R] itself.

Estimate of p and Z :=c+¢'¢  We can control p = O(e) directly from local conservation
laws (1.47) as in (2.5).

Proposition 2.2. (Proof in [25, Section 6]) Let R be a solution to (1.31). Under the
assumption (1.14) and (1.56), we have

et Ipllze + Ipll s < or 1R I + I1RI + oz (2.10)
Thanks to the local &7-conservation law (1.50), the L% norm of the natural combination
Z=c+e k¢ (2.11)

is bounded by the L® framework in [24].

Proposition 2.3. (Proof in [25, Section 6]) Let R be a solution to (1.31). Under the
assumption (1.14), for a > 1, we have

2
121 s Sor [ Bl x + |Rllx + or (2.12)

In order to cope with the new e-cutoff boundary layer interaction, we must further
split Z as regular part Z" and small singular part Z°: Z = Z° + Z" so that

Proposition 2.4. (Proof in [25, Section 6]) Let R be a solution to (1.31). Under the
assumption (1.14), we have Z = Z% + 7 where

1Z5 ||, Sor IRl + 1 RIX +or, (2.13)
125, Sore® |Rllx + e |RI% + ore. (2.14)

Dual Stokes Problem and Improved Estimate |b,. <e? We now obtain a surprising gain

of ¢3 for b, which is necessary to justify the ghost effect contribution euy - U,u% beyond
the first order of «.

Proposition 2.5. (Proof in [25, Section 7]) Let R be a solution to (1.31). Under the
assumption (1.14), we have

e 7 [|ll 2 + 1]l s Sor Rl + IR + or- (2.15)
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Such a gain =% is crucial to justify the ¢ order ghost effect eu; with a key removal of
e 1(I-P)[R] term via compensating with an extra local conservation law. Such a removal
also plays the key role in the subsequent estimate for c.

Notice that the test function Vi : 4, where

2
B = (v@v— %1);& ERY™, B =L"][HB] e RP, (2.16)
yields
<U VR +c'd- d+5‘1£[ 1-P R] Vo) : @> (2.17)

:<U-VzR+£_1£[(I— P)[R ] Vo B
~ <|v|2u%b,vw(vm¢ : %)> + (e (1 =P)[R], V.0 : B),

and thus the combination of (2.17) and the local momentum conservation law (1.47)
TH{A=P)[R|,Vetp: B) = —e " (Vap,v)) m & {p, Vo - 0) (2.18)

Hence, the choice of the new test function V, 1 : B + "1 - vu% with a smooth function
() satisfying V, -9 =0, z/)‘ 20 = 0 exactly eliminates this most singular term for (1.31)
and leads to

— <)\Ax'g/), b> = good terms. (2.19)

The key feature in (2.19) is the absence of the O(1) term ¢~'(I — P)[R], so that a gain
of £2 is possible by constructing a solution to the dual Stokes problem for (1, q) (with an
artificial pressure q)

M) +Vegrblb ™ in Q,  V,-¢y=0in Q =0 on 90  (2.20)

Dual Stokes-Poisson Problem and Estimate of ¢ The estimate of ¢ is the most delicate
part of the paper.

Proposition 2.6. (Proof in [25, Section 8]) Let R be a solution to (1.31). Under the
assumption (1.14), we have

2 3
lell s Sor [[Rllx + [[Rl[x + [[RI[x + o (2.21)

Because of (1.49), it seems impossible to split Z = ¢+ ¢7!¢ and to obtain ¢ estimate
independent of e71¢ via any test functions. The key new idea is to recombine e 'V & +
e e = ¢7!d in the local &/-conservation law (1.50) with a new test function V¢ - o:

(v-V,R+e'd o V¢ )= vV, RV, &)+ (c'd- o, V- ) (2.22)
~ (A Ve,V )+ e (Y, (rd), 9),
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and thus the combination of (2.22) and the mass/energy conservation (1.46)(1.48) yields

e (V- (kd), ¢), = —5_1<VIT, b¢> (2.23)

Hence, the choice of a new pair of test functions V,¢- & +e~'¢( v]? — 5T),u% where ¢(x)
is a smooth function satisfying ¢| 20 = 0 for (1.31) leads to

— (V.- (kV.9), c>m +275P(6,V,T+b) = good terms, (2.24)

T

where the most singular term is in terms of b. Then we can choose choose 1 in (2.19)
coupled with (2.24) to kill 5_15P<¢, v, T - b> . To this end, we solve a coupled dual
Stokes-Poisson system for the triple (v, q, ¢)

MY+ Vg —5P¢V,T in Q,  V,-¢p=0in Q =0 on 09, (2.25)

Vo (kVe0) =cle[™* in Q,  $=0 on 9. (2.26)
Thanks to a precise cancellation, all but the boundary contribution
—5_1<V$1// . B.(1— PW)[R]> (2.27)
Y+

in 7' x (2.19) 4 (2.24) are under control. We note that (1 — P,)[R] is of O(e2) and
V.1« B is of O(1), so there is still a loss of ez here for closure.

e-cutoff boundary layer g® and Interior ¢ Compensation Through an extensive effort, the

original loss of e7! in —e~ 15 (V,T,bc) is now transferred to a boundary loss of £73 in
—6_1<VI¢ : B, (1 —7%)[R]> . Motivated by the gain of £2 in L2 for any boundary layers
T+

in the bulk, we carefully design an e-cutoff boundary layer ¢” and its interior counterpart
g to compensate such a loss with

(" +)l,, = (Vw2 )] 229
Thanks to the fact that anz/}n’ a0 = 0 as well as the parity of %, we can construct
g = ,u%(v)(/u -B), V, - B=0. (2.29)

This crucial and precise structure and parity of ¢” lead to two crucial cancellations, which
ensure the final closure of estimates with no singular power of «:

gt <,u%v -V, (u_%g>,R> =1 <u%v -V, (% . U), R> =0, (2.30)
g <gB,F[p/L% +c(jof =5T) §7,pp? +c (Jo]* = 5T) ,ué]> 0. (2.31)
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Even though boundary layer approximations have been established in kinetic theory
for matching given boundary data, to our knowledge, this is the first time boundary layer
construction is based on (unknown) 1 from (2.25) and (2.26) to estimate the remainder
R itself.

New e-Cutoff Boundary Layer Estimates for Non-Convex Domain

e Hardy Inequality with ¢ Gain One of the important challenges in the hydrodynamic
limit of (1.2) is the necessary inclusion of e-cutoff boundary layers f and ¢”. In fact,
the determination of the ghost-effect equations depends on f# implicitly. Unfortunately,
in [70, 42, 43], it is discovered that for non-flat domains the classical boundary layer
theory in kinetic theory breaks down, due again to the characteristic and singular nature
of the grazing set. Even though an alternative satisfactory theory has been established in
convex domains [68, 69, 71], the non-convex case is completely open. In the analysis the
most difficult contribution in e~ (h”, R) (where h” denotes a generic quantity related to
e-cutoff boundary layer) is treated as

e (nP,c (juf* = 5T) it ) (2.32)
== (n,Z (juf = 5T) it ) — &7 (WP, =7 (ol = 5T) ut )
== 1 (BP, 2% (jo? = 5T) i ) e (h%, 25 (ol = 5T) )

o2 <hB,§ (jof? = 5T) u%> .

Thanks to the fact that Z% € H} and £ € HZ, we express

AL 1 n 1 n
and apply Hardy’s inequality [45, 57] along the normal n direction to obtain
ZR
£ stz |5 <ot 290
n L% " n L?‘ n

Note that n = en in the e-cutoff boundary layer scaling can be absorbed by h” to produce
extra ¢ in nh? = enh®:

2 (WP, (o = 5T) )| < (= oh®l,0 ) (e H lonlly ) (239)

n

where 72 thBH ;2 1s bounded thanks to the change-of-variable I = 7 which yields

IRIFERS £3 ||| 2, and £73 |0x€]| .2 is bounded via an interpolation of .«/-Hodge decompo-
n n n
sition (1.42) with e~ [|€]| 2.
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e BV Estimate to Bound 7' (0, fP,¢”) It is well known from the boundary layer
theory that the sharp pointwise bound near the grazing set holds |9, f| ~ lup| . With
a cutoff |v,| > &, &JnleHLl ~ |lne|, which creates a fatal logarithmic loss for closure,

vn

even with € in n integration. To overcome such a |Ine| loss, we establish a new BV
estimate for fZ in [25, Section 3], which amounts to a subtle but crucial gain in joint

(n,v,) integration with no loss of |Ine| for the cutoff ||(9,J77f13||L1 < 1. For example, we
vn

can bound

(00 18,07) S T Pl 97l e S N02 i + €72 1125y S 0 el + e

We design an e-cutoff of the standard boundary-layer Milne solution to achieve this goal.
Such a cutoff leads to a non-local commutator, which needs to be carefully controlled.
Moreover, since it is extremely difficult to go beyond the first order boundary layer ap-
proximation in general domains, the presence of boundary layer dictates SM%R in (1.20).

We can bootstrap 1.2 — L5 estimates to L.>° bound by the method developed in [23, 24,
39, 38].

In summary, we develop a systematic approach to study the steady Boltzmann equation
near a local Maxwellian in a 3D bounded domain. Our analysis relies on elaborate and
integrated schemes with several exact cancellations and sharp estimates with no room
to spare. These new techniques have led to the final resolution of the diffusive limit of
the neutron transport equation in [44], an important open question for one of the most
classical problems in kinetic theory.
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