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1 Introduction

We consider the incoming boundary value problem of the stationary Boltzmann equation

{v V,F=Q(F,F) inQxR 0

F=G on €I,

and its linearized problem

{v-vmszf in O x R?, o)

f=g onI'".

The solution F', which is called the velocity distribution function, describes the density
of rarefied gas molecular at the position x with velocity v. Here, 2 is a bounded domain
in R? with C* boundary. The incoming boundary I'~ is defined by

I'™ = {(z,v) € 0Q x R* | n(x) -v < 0},

where n(x) denotes the outward unit normal vector at x € J€2. The nonlinear collision
operator () reads

ar. )= [ [ M REIRG) ~ RE)RB( — ].6) dodode.

where

V=4 (v — ) - ww, vl =1, — (0 — v) - w)w,

Vs —

2 (sinf cos ¢)es + (sin @ sin ¢)es,

w = cos
v, — v

¢ and 0 are real values satisfying 0 < ¢ < 27 and 0 < 0 < 7/2, and the vectors e, €3

are chosen so that the pair {ﬁ—‘“ es, €3} forms an orthonormal basis. Roughly speaking,

—



the collision operator () describes the interaction of two particles due to the collision. For
the cross section B, we assume that

B(|lv = v4],0) = By|v — vi|" cos O sin 6, (3)

where By is a positive constant and 0 < v < 1. The range of v covers the hard sphere
model, the hard potential model, and the Maxwellian molecular gases. We note that the
cross section of the form (3) is regarded as an angular cutoff potential.

Let M(v) := 7 2e " be the standard Maxwellian. It is known that v - V,M =
Q(M, M) = 0. Based on this observation, we consider the fluctuation of the solution to
the problem (1) from the Maxwellian:

F=M+Mzf, G=DM+M?2g.
Then, the problem (1) is reduced to the following one.

v-Vof =Lf+T(f,f) inQ xR
=y on ',

where
Lh:=M"* (Q(M, Mzh) +Q(Mzh, M))) ,
T(hy, ho) :=M"2Q(Mzhy, M2hy).

In this article, we are interested in WP regularity of solutions to boundary value
problems (2) and (4). For the case where the domain is non-convex, it is known in the
time-dependent case that the grazing set creates discontinuity of the solution due to the
nature of characteristic lines [10] (or [9] with the diffuse reflection boundary condition),
and it is expected that it is true for the stationary case. Thus, in this article, we assume
that the domain is convex.

In this direction, H. Chen and Kim [1] showed the W regularity of the solution to the
nonlinear Boltzmann equation with the diffuse reflection boundary condition in bounded
uniformly convex domains with C® boundaries. On the other hand, in this article, we
discuss WP regularity with respect to the both z and v variables in general bounded
convex domains with C? boundaries. Instead, we assume the smallness of the domain.

We first introduce the regularity result on the linearized problem (2). For the linearized
collision operator L, we assume that it is decomposed into two parts:

Lh(z,v) = —v(v)h(z,v) + Kh(z,v),

where

Kh(z,v) ::/ k(v,v.)h(z,v,) dv,,
R3

and that the function v and k satisfy the following estimates.



Assumption A.

w1+ o))" <v(v) <1+ [v])7,
1

k Dl S E,(v,vy),
| (U,U )| ~ |U—U*|(1+ |’U| + |’U*|)1_7 ,D(U U)
1
V(o 0| S + 1o By(v.0.),

v = w21+ o] + o)
[Vor(v)] S 1+ o),

where 11y > 0,0 < p< 1,0 <~ <1, and

2 o 2\2
—W(w e+ (bt )
(v,04) =€ :

Here and in what follows, we denote f < g if there exists a constant C' > 0 such that
f < Cg. We remark that the decomposition of L and Assumption A holds if we adopt
the cross section B of the form (3).

We introduce function spaces in order to describe our result. For 1 < p < oo and
a >0, let

E,

LA (82 x Rg) ={f ||fHLg(QxR3) < oo},
where

,02
T{ A= / ()P dado.
QxR3

Also, for 1 < p < oo and a > 0, let

WP (Q x R®) = {f | ”fHWé’p(Qx]I@) < oo},
where
HfHWi’p(Slx]R@) = || fllzzoxrs) + [[Vafllzz@xrs) + Vo fll Lz @xrs)-
We remark that W, (€2 x R?) is the standard Sobolev space W'?(Q x R?).
Theorem 1.1 (Chen, Hsia, K., Su [5]). Suppose the linearized collision operator L sat-

isfies Assumption A. Let Q be a bounded convex domain with C* boundary. Then, the
following statements hold.

(1) For any given 1 <p <2 and 0 < a < (1 — p)/2, there exists ¢ = ¢(p,a) > 0 such
that: for any Q with diam(Q2) < e, the boundary value problem (2) has a unique
solution f € WLP(Q x R3) if and only if Jg € W2P(Q x R3), where

Jg(x,v) :==e YO g(g(z,0),v),
T(z,v) :==inf{s >0 | x — sv € QY},

q(z,v) ==z — 7(z,v)v.



(11) If we further assume that OS) is of positive Gaussian curvature, namely, the Gaussian
curvature of 082 is uniformly positive, then the range of p in (i) can be extended to
1<p<3.

(#i) Upper bounds of p in (i) and (ii) are optimal.

Remark 1.2. After uploading our manuscript [5], we noticed that the parameter 0 < p < 1
is arbitrary though the implicit constant in Assumption A depends on it. Thus, we may
take 0 < o < 1/2 first in the statement (i) of Theorem 1.1 and next take 0 < p < 1 such
that o < (1 — p)/2.

Remark 1.3. Jg € WlP(Q x R3) if g satisfies
19(X,v)| < e P for all (X,v) eI,

9(X,v) = g(¥,0)] S |X = Y]e™" for all (X, v),(V,v) €T,
IVog(X,0)] S e for all (X,v) el

For the case p = 2 with the positive Gaussian curvature condition, see [2].

We next establish a pointwise estimate for the solution (and its first derivatives) to the
nonlinear boundary value problem (4) on bounded convex domains with C* boundaries
of positive Gaussian curvature. The WP estimate of the solution follows from pointwise
estimates of the derivatives.

We list notations and function spaces for the nonlinear problem as follows:

o |floca = esssup e”|f(z,v)|.
(z,v)EQXR3
o w(w,v) = N (z,v).

N(z,v) := |n(q(z,v)) - &

[vf |

|f|oo,o¢,w = |wf|oo,o¢-
HfHoo,a = ‘f‘oo,u + ‘vxf‘oo,a,w + ’va‘oo,a;w~
LZO = {f | ‘f|oo,a < OO}

o L= {f | lIfllsc.a < 00}.

We remark that L2 C W (Q x R?) for a > 0 and 1 < p < 3.
If the domain € is bounded convex domain with C? boundary of positive Gaussian
curvature, then the boundary 0f2 satisfies both uniform circumscribed and interior sphere

conditions.

Definition 1.4. Given © C R?, we say that the boundary of € satisfies the uniform
circumscribed sphere condition if there exists a positive constant R such that for any
x € 0F) there exists a ball Br with radius R such that

zG@BR, QCBR



The constant R is called the uniform circumscribed radius.

Definition 1.5. Given © C R?, we say that the boundary of € satisfies the uniform
interior sphere condition if there exists a positive constant r such that for any z € 02
there exists a ball B, with radius r such that

x € 0B,, B, C Q.
The constant 7 is called the uniform interior radius.

Theorem 1.6 (Chen, Hsia, K., Su [6]). Given 0 < a < (1—p)/2, where p is the constant
in Assumption A, there exists a positive constant § such that: For any bounded convex
domain Q with C? boundary of positive Gaussian curvature with uniform circumscribed
and interior radii R and r respectively, if

max {diam(Q), (Rr)z (1 + g) , HJgHoo,a} <9,

then the boundary value problem (4) admits a solution in Ego

The organization of the rest part of this article is the following. In Section 2, we
introduce some estimates as preliminary. With these estimates, we give a proof of Theorem
1.1 in Section 3. Following the same idea, we give a sketch of proof of Theorem 1.6 in
Section 4. The conclusion of this article is given in Section 5. The presentation was based
on joint works [5, 6] with Prof. I-Kun Chen, Prof. Chun-Hsiung Hsia, and Mr. Jhe-Kuan
Su in National Taiwan University.

2 Preliminary

In this section, we introduce some estimates as preliminary.

Lemma 2.1. Let Q be a bounded convexr domain. Then, for v #0, a >0 and b > 0, we
have )
7(x,v di 0
/ e~ dt < min {1, &()}
0 v
for all x € €.
Proof. We notice that

— —a _a _a
the < [suptbe 2t ) e 2t <emel,
>0

By the direct integration, we have

@), 2 o 2
/ e 2'dt==(1- 6_57(“)) < -
0 a a



On the other hand, since e~%/2 < 1, we have
7(z,v) . di 0
/ ezt dt < 7(z,v) < diam(2) )
0 |v]
The last estimate follows from the definition of the function 7(z,v). This completes the
proof. O

In the following sections, we use the following identity.

Lemma 2.2 ([2], Lemma 2.5). Let Q2 be a bounded convex domain. Then, for a nonneg-
ative measurable function h on Q x R3 x [0, 00), we have

7(x,v) 7(y,—u)
/// h(:v,v,s)dsdzcdv:/ // h(y + tu,u,t) dtdydu.
rs Ja Jo rs Jo Jo

In the exponent of the function E,, we see that

1—p 2, (o2 =lv.?)
1 <|U Uy —f—( T
(v—2) v

2
:0L|v|2 — 0,0,V — U*|2 —(1-=0p) ( — Qg q,plV — U*|) — a|v*|2

o—o.

Vy) * 0

2
U_
=~ alof = anal = 0 = (1= ) (L g o= )l
*

for all v, v, € R3, where

(1—p+2a)(1—p—2a) l—p—2a
. Oy = .
4(1 = p) 2(1=p)

Qlap =

Thanks to the factorization, we may prove the following estimates.

Lemma 2.3 ([5], Corollary 2.14). Let 1 and po be two real numbers such that 1y > 0,
po >0 and py+pe < 3. Assume 0 < p < 1. Then, for any —pa(1—p)/2 < a < pa(1—p)/2,

we have
|2

1
/R:ﬂ o[ (v, U*)‘mealvlz dv < el
and |
[ o v o, et
*

Lemma 2.4 ([5], Corollary 2.15). Let puy and ps be two real numbers such that py > 0,
wa >0 and g 4+ 2us < 3. Also, let 0 < p < 1. Then, for any a satisfying —p2(1 —p)/2 <
a < ps(1—p)/2, we have

1 *
[ Dok o)t o (1 ot
R

3 |fU|M1



Lemma 2.5 ([5], Corollary 2.16). Let 0 < p < 3/2 and 0 < p < 1. Then, for any
—i(l—=p)/2 <a<p(l—p)/2, we have
*|2

/ (Vo (v, v e du S (14 [o"]) el
R3

3 WP regularity for the linearized problem

In this section, we give a sketch of a proof of Theorem 1.1 following [5].
We integrate the equation of (2) along the characteristic line to obtain

f = ngKf -+ Jg,
where

T(z,v)
Soh(z,v) = / e " Wsh(z — sv,v) ds.
0

The formal solution to the above integral equation reads:
f =2 (SaK)'Jg. (5)
i=0

We make use of the smallness of the domain in order to apply the contraction mapping
theorem in WP (2 x R?). To this aim, we prove the following estimate.

Lemma 3.1. Given h € W2P(Q x R3) with 1 < p <2 and 0 < a < (1 — p)/2, where p is
the constant in Assumption A, we have

: 1 . 1
HSQKhHWj’p(QxR?’) S diam(§2)» HhHW;P(szxﬂz@) + 18|22 (oxrs) + diam(€2) 7 ||l 12 (poxrs),

where ||h]| 2 9oxrs) is defined as

101 sy = / (2, v) Pl 45(2)do,

OOXR3

and d¥ denotes the surface measure on OS).

We decompose the estimates into three parts; LP norms of SqKh, V_ SqKh and
VuSaKh. For the first part, we obtain the following estimate.

Lemma 3.2. Let 1 < p < o0 and 0 < a < (1 — p)/2, where p is the constant in
Assumption A. Then, for any h € LP.(2 x R?), we have

. 1
1S K| 1z oxrsy S diam ()7 ||| £z (xws)-

Proof. When p = 1, applying Lemma 2.2, Lemma 2.1 and Lemma 2.3, we have

/ |So K h(z, v)|e” dudv
QxR3

7



7(z,v)

eV Kh(z — sv,v)ds| e dadv

R

s Ja|Jo
7(z,0) 5
S/ // e % | Kh(z — sv,v)| ds e’ dedv
R3
di
/ / fam ($) / k(u, v)||h(y, v,)] dv, e’ dydu
R3 |ul
= diam(Q / / ( Ik (u, vy ) [e®! du> |h(y, v.)| dydu,
R3 R3 |U|
< diam(Q) / / \h(y, v,)|e " dydo,.
R’ Jo

For 1 < p < oo , by the Hélder inequality and Lemma 2.1, we have

/ ]S’QKh(ac,v)\pe”al”|2 dxdv
QxR3

p

7(z,v) )
ePll dadu

e YOS Kh(z — sv,v)ds

R

s Ja o
p
7(z,v) o’ 7(z,v) )

S/ / (/ e "0® ds) (/ e "% |[Kh(z — sv,v)|” ds) e daduy

rs Ja \ Jo 0

r(z.0) .

5/ // e % | Kh(x — sv,v)|P ds el dado,

rs Ja Jo

where p’ is the Holder conjugate of p.
In the same way as for the case p = 1, by choosing a parameter «; carefully, we have

. ~ p7(z,) )
/ / / e % | Kh(x — sv,0)|” ds e dadu
R3

di p
/ / fam () / k(u, v.)h(y, v.) dv,
R3 \u!
/ / ( k(u, v, ) e P ol gy )
R3 |U| R3

X(/IWWMWW%WWW”MQJWWMU
R3

1 ) .
S/ / </ —’/{:(u,v*)‘ep(a—al)lul du) ‘h(y’v*)‘pepa1|u*| dydv,
rs Jo \Jrs |l

</ ep(“‘o‘l)'”*l2/ |1y, v.) [P Pl dydo,
R3 Q

:/ /’h(y,v*)‘pemlv*Pd@/dU*-
r3 JO

epolul’ dydu




Summarizing the above estimates, we obtain
/ 1So K h(z,v)|P e dudv < diam(9) / h(z,v) [P " dzdv
QxR3 QxR3

for 1 < p < co. This completes the proof. O
For the z derivative, we have the following estimate.

Lemma 3.3. Let 1 <p<2and 0 < «a < (1—p)/2, where p is the constant in Assump-
tion A. Then, for h € W P(Q x R3), we have

Ve SaKh| 1z xrs) S diam($2)? HhHWal’p(Qx]R?’) + diam(Q) 7 [|Al| Lz (pxrs)-
Proof. Observe that
VoSaKh = SoKV h+ So.Kh,
where
Saeh(z,v) = (Vo7 (z,v))e @0 (g(2,0),v).
By Lemma 3.2, we have
/ |So KV h(z,v)Pe? ! dadv < diam(Q) / IVoh(z,v)[Pe”F dadv.
QxR3 QxR3

Thus, we focus on the estimate for the second term. In other words, we prove that
. 1
HSQ,thHLQ(SlxR?’) < dlam(Q)p HhHLﬁ(assz?»)-

It is known in [7] that

—n(q(z,v))

N(z,v)lv] -

Now we perform the change of variables z = ¢(x,v) and s = 7(z,v). Noting that z € ',
where

V.1(z,v) =

I, ={2€00]|n(z) v <0},

we have

/ (Vo7 (2, 0)e O @) Kh(g(2,v), v)[PeP ™ dado
QxRS

1 2
z e e KR peralol g
_/RL%/QN(:E,U)P]U]PG |[Kh(q(x,v),v)["e Tdv

. . 7 (2,—v) 2
_ / / / KRz, o) PN (2, o) ol dsdS (2)de (6)
Jr3 Jry Jo N(z,

ool

(z,0)p
1 1

:diam(ﬂ) /652 /_ U—‘qu(h(Z,vﬂp epah)lzd?)dZ(z).

1 1 2
< diam( — —————|Kh(z,v)|P """ d%(2)d
Saiam(@) [ [ Kb v e s ()




Here,
I, :={veR®|n(z) v<0}
and we have used Lemma 2.1.
In the case p = 1, we have

1 1 i
— K p pajv| D
/89 /‘ (z U)p—l | h<Z’ U)| € dvd (z)

/ / (/ |k (v, v,)] e dv) |h(z, v,)| d%(2)dv,
rR3 Joo \JR3 ‘U‘
N/ |h(z,v,) |1 dS(2)dv,.

OO0 xRS

For 1 < p < 2, we fix the variable z and decompose the velocity v into two components:
v = vy, + vy, where v, 1= (v-n(z))n(z) and v; := v — v,,. Then, we have

1 1 o2
/. R

1 2
S —_ popo [vs| pla—ar)|v]
N/F_ ’U’p (Z )p—l (/R3 |k(v,v*)||h(z,v*)| € dv*) e dv

1 1
:/ (/ HHTV{?(’U U*)‘ep(a a1)|v]? dU) \h(z Vy )‘p 6po¢1|'u*| dU
R3 r; (U] |Un
1 1 —1_ —an|ve—vs,t)? v
< ﬂ| |p_1|Ut _U*vt| em T dy |h<zjv*)|pep I du,
R3 ry |V [Un

where a; and as are some positive constants. By the rotation, we simply denote v, =
r(1,0,0) for r > 0 and v; = (0,v,) for v, € R% Then, we further have

1 1 L e
/ — v — vy Temazlve—vedl gy

o [v] v [Pt

— — — 2
, 16 012|'Ub 'U>~<,b| d'Ub

- dr | |v
/. (/0 NCETIE ) .
— o0 1 1 1-p —1 _a2|'Ub—’U*b|2

_/Rz ( 0 ﬁrﬁ-l dr) | Ploy — vip| e 217 duy,.

Since 0 < p— 1 < 1, we have

<1

1
————dr S
Vr2 41t
/2 || P vy — vap| e
R

1 1 , 2
—————|K p epalvl® g, < b _palvs|
/F; [o]? N(z,v)P—1| h(z,v)|Pe dv < /R3 |h(z,v,)|P e dv,.

and

<1

Therefore, we have

10



The conclusion is obtained by integrating the above estimate with respect to z € 02. [
For the v derivative, we have the following estimates.

Lemma 3.4. Let 1 <p<2and 0 < a < (1—p)/2, where p is the constant in Assump-
tion A. Then, for h € WlP(Q x R?), we have

IVeSoKh|| 1z xrsy < diam(Q)% 1R llwae xrsy + 1] 2 xms) + diam(Q)% 17 2, 00xm3)-
Proof. By the straightforward computation, we obtain
VSoKh = So,Kh— (V,v)SqsKh+ SoK,h — So KV h,
where

Sauh(z,v) :=(V,7(z,v))e @b (g(2,0),v),

7(z,0)
Sash(z,v) ::/ se "Wk (z — sv,v) ds,
0

K,h(z,v) .= [ V,k(v,v)h(x,v,) dv,.

]R3

Notice that, in [7], we see that

|V,7(z,0)] < [z = gl@, v)lin(g(x, v) = |V,7(z,0)|7(z,v).

[v|?N(z,v)
Since
T(x,v)pe_gy(”)T(I’”) < sup tPe~ ¥t <1,
£>0
we have
—vv)T(T,v v 2
||SQ,uKhHZ£g(QX]R3) Z/ﬂ y |(V,7(z,0))e ), )Kh(q(x,v),v)|pep‘”| ® dedv
X

Y

< / Vo7 (2, v)[Pe™ 3707 @0 | K h(q(z, v), v)[Pe”*F dadv.
QxRS

We can give an estimate for the above inequality in the same way as in the proof of
Lemma 3.3 to obtain

[ S0 KAl S diam(Q) |||

p p
LE (QxR3) LE (092X R3)

for1<p<2and0<a<(l-p)/2
For the second and the fourth term, we have

2
eV dedy

7(z,v)
/ se "W w(v) Kh(z — sv,v)ds
0

| Sa,s KR L1 (oxrsy = /

OxR3

7(x,v) y )
5/ / / e 2 |Kh(z — sv,v)| ds | e dadv
rs Jo \Jo

11




5 dlam(Q) HhHL(IJ((QXRS),
and

‘|SQ7SK]7’H][),P(£2><R3)

7(z,v)
:/ / se WS Kh(x — sv,v)ds
axr3 [Jo

7(z,v) P 7(z,v) )
5/ / / sPe "% ds / e % |[Kh(z — sv,0)|” ds | e"F dedv
rs Jo \ Jo 0

for 1 < p < 2. By Lemma 2.1 and the proof of Lemma 3.2, we have

p
2
Pl dado

7(z,v) )
1S, KI5 ups) S,/RB /Q/o e | Kh(z — sv,0) [P P ds dadv
S diam(Q) [ A]]

p
LB (QxR3)"

Recalling Assumption A for V,v, we have
H (VUV)SQ,SKhHLP(QX]RB) ,S dialn(SZ); HhHLg(QXRS)

and
. 1
[S0,s KVh| praxrsy S diam(Q)7 [V h|| 1z oxrs)

for1<p<2and0<a<(l-p)/2
For the third term, by Lemma 2.2, Lemma 2.4 and Lemma 2.5, we obtain

7(z,v)
| SaKuh| L1 (xrs) =/ / e v Vok(v,v)h(x — sv,v.)dv,ds e’ dady
0 R3

QOxR3

r3 Jo
S/ / ( |V ok (u, U*)|e"|“|2 du) |h(y, v.)| dudv,
r3 Jo \JR3
§/ /\h(y,w)\e""“*'z dv, dy
r3 JQ

Vok(u, v.)h(y, v )dv, e dydu
R3

and

||S52th||zz,g(gsz3) :/ ]
QxR3

<[

R3 JQ

<[/ ( |vvk<u,v*>|e—p’a1'”*'2dv*)”
R3 JQ R3

12

p
2
Pl daduo

7(z,v)
/ e W5 [V kv, v,)h(z — sv,v,)dv,ds
0 RS

P 2
e dydu

Vok(u, v) h(y, vi)dv,
R3




X ( / IV ok (u, v,)|[B(y, v.) [P emllv*de*) Pl dydu
R3

5/ / (/ |Vvk:(u,v*)|ep(a—a1)|UI2 du) |h(y,v*)|p€pallv*|2dv* dy
R3 JQ R3
< / / (g, 0P - dv, dy,

R3 JQ

where « is a suitably chosen positive constant. Thus, we have

[Sa Kbl zroxrs)y S 10l Lz (oxrs)

for1<p<2and0<a<(l-p)/2
The proof of Lemma 3.4 is complete. O

Lemma 3.1 follows from Lemma 3.2, Lemma 3.3 and Lemma 3.4.
In order to control the LP” norm on the boundary in the estimate of Lemma 3.1, we
introduce two trace lemmas.

Lemma 3.5 ([8]). Let Q be a bounded domain with Lipschitz boundary. Also, let 1 < p <
oo and a > 0. Then, there exists a positive constant C1(Q) such that

p=1 _1
Hh||Lg(anR3) < C1(Q) (5 P HvzhHLg(QxR?») +4 ”Hh||L§(QxR3)>

for allh € WP(Q x R3) and 0 < § < 1.

We remark that the constant C1(£2) in Lemma 3.5 can be large when diam(2) is small.
Lemma 3.5 is not enough to obtain the desired estimate when p = 1. Thus, we need
to introduce another trace estimate.

Lemma 3.6 ([11]). Let Q be a bounded domain with C? boundary, and let a > 0. Then,
for any 6 > 0, there exists a positive constant Cs(§) such that

[l Ls oaxrsy < (14 0)[IVahllLy@xrsy + Cs(IIA]| Ly (oxrs)
for all h € WLHQ x R?).
Combining the above lemmas and taking § and diam(£2) sufficiently small, we obtain
i 1 i— i—
1S E) Tgllywzraxmey < 5 (S E)' ™ g yrps) + Co(DN(SaK) ™ Tgll 1z (0xs)

for all i > 1, where C5(f) is a positive constant which may depend on ). Summing it
from i = 1 to n, we obtain

1 ;
B Z [(SeK) JQHW,W(WRB)
=0

13



- i 1 i—
< Z (H(SSZK) JgHWé’p(Qfof) - §H(SS2K) 1J9HW,§P(QxR$)> + HJgHWé’p(Qx]W)

i=1
S”‘]gHW,};p(QxR?’) + C2(Q) Z ||(SQK)iJ9||LZ(QxR3)-
i=1
With the help of Lemma 3.2, the above estimate converges as n — oo. Thus, the series
(5) converges in W2P(Q x R3) for fixed 1 <p <2 and 0 < a < (1 — p)/2, which implies
the existence of the W17 solution assuming Jg € W2?(Q2 x R?). On the other hand, if
there exists a Wl solution to the integral equation, then we have Jg = f — SoK f €

WLP(Q x R3). This proves the first statement of Theorem 1.1.
For the case 2 < p < 3, we need to use a good property of positive Gaussian curvature.

Lemma 3.7 ([3]). Let Q be a C? bounded convexr domain of positive Gaussian curvature.
Then, there exists a positive constant C5(S2) depending only on Q such that for any (z,v) €
'™ we have

|z —q(z, —v)| < C3(Q)N(z,v).

By Lemma 3.7, we have
N(z,v)

[l

T(z, —v) < C5()

)

with which we may improve the estimate (6) as

/ (Vo7 (2, 0)e "D Kh(g(w,v), v) P dudy
QxR3

1 2
< = pwor(zo) Kh p pajvl dxd
_/11§3/51N(x,v)1’|y|176 [Kh(q(x,v),v)["e Tav

7(z,—v) 1
_ —pros P palv]?
_/Rg /F/O N oy " R VNG o)l dsas(2)do

1 1 2
< ) - |k p palv| dvd>
NCB( ) /6‘9 /I“Z "U’p N(Z,U)p_2‘ h(z, U)’ (& v (Z)

SCs(Q)]A]

p
L (9QxR3)

for 2 < p < 3. We may apply this effect to the v derivative to obtain the following
estimate.

Lemma 3.8. Let Q be a C? bounded convex domain of positive Gaussian curvature, and
let C5(Q) be a constant defined in Lemma 3.7. Then, given h € WIP(Q x R3) with
2<p<3and0<a<(1l-p)/2, where p is the constant in Assumption A, we have

. 1 1
HSnKhHW;»P(QxRa) S diam(Q)» HhHWo{’p(QXR?’) + 1Al 2z xrsy + C3(2)7 [|A]| L2 (90 xk3)-

In the same way as in the proof of the statement (i), by Lemma 3.8 and Lemma
3.5, we may conclude that the series (5) converges in W1P(Q x R3) for 2 < p < 3 and
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0 < a< (1-p)/2if diam(Q2) is sufficiently small, which is the second statement of
Theorem 1.1.

We show the third statement of Theorem 1.1 in the hard sphere model v = 1 by just
providing counterexamples. For the detailed argument, see [5].

For the first statement, we have the following lemma.

Lemma 3.9. For fized 1 < p <2 and 0 < a < (1 —p)/2, there exist a bounded convex

domain Q and a boundary data g such that the boundary value problem (2) has a solution
in L?(Q2 x R®) N WEP(Q x R?) but this solution does not belong to W12(Q x R3).

An example of the domain €2 and the boundary data g is given as follows. We choose
) as a small bounded convex domain such that

Dm = {av = (0,372,373) S R3 ’ ’m‘ < 7‘1} C 092
with a small radius r; and
{ = (21, 79,23) € R® | || < 7,21 <0} C Q.

Also, let 1 be a smooth cut-off function on 92 such that 0 < ¢; < 1, ¢1(x) = 1 for
x € D, 4, and ¢1(z) =0 for x € 02\ D,, . We pose the boundary data g of the form:

g(a,v) = pr(x)e 2"’ (z,0) €T

A zoomed picture of the function ¢ near x = 0 is given as Figure 1.

Figure 1: An example of Lemma 3.9

For the statement (ii), we have the following lemma.

Lemma 3.10. For firted 2 < p <3 and 0 < a < (1 — p)/2, there exist a bounded convex
domain 2 with its boundary of positive Gaussian curvature and a boundary data g such
that the boundary value problem (2) has a solution in L3(2 x R3) NWLIP(Q x R?) but this
solution does not belong to W13 (2 x R3).
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An example of the domain €2 and the boundary data g is given as follows. Let €2 be
a small ball centered at the origin with radius r. We introduce the spherical coordinates
on the boundary: = = (rcosf,rsinfcos¢,rsinfsing) for 6 € [0,7] and ¢ € [0,2m).
With these coordinates, for 6y € (0,7), let 0y, = {z € 00 | 0 < 0 < 6y}. Take
0 < 6, < 6 < 7 and a smooth cut-off function ¢y on 99 such that po(x) = 1 for
x € 0Qy,, pa(x) =0 for z € IQ\ 08y, and 0 < py(x) < 1 for x € Iy, \ 0y,. We pose
the boundary data ¢ of the form:

g(z,v) = gog(zv)e_%|“|2, (x,v) e".

A picture of the function s is given as Figure 2.

Figure 2: An example of Lemma 3.10

4 WP regularity for the nonlinear problem

In this section, we give a proof of Theorem 1.6 based on [6].
The integral form of (4) reads:

The formal solution for given ¢ is
f= Z(SszK)i(Jg + Sad).
i=0
Based on the relationship, we introduce the following iteration scheme:
v-Vefitvw)fi=Kfi inQxR3
f1 =g on F_,

and

v-Vofip +v) fipn = Kfip +0(f;, f;)  in QxR?,
fis1=g onI'~.
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We make use of the smallness assumption in order to apply the contraction mapping
theorem in ﬁff

For the linear theory, in the same way as in the proof of Lemma 3.1, we have the
following estimate.

Lemma 4.1. Suppose Assumption A and let 0 < o < (1 — p)/2. Also, let Q be a
bounded convex domain with C? boundary of positive Gaussian curvature with uniform

circumscribed and interior radit R and r respectively. Then, given h € EgO, we have

1 R
|SaKh|con S (14 diam(2))|h]oa + (R1)2 <1 + ?) 11| c0.a-

By the contraction mapping argument, we obtain the following existence result.

Corollary 4.2. Let ¢ be a function such that Sq¢ € igo Suppose Assumption A.
Then, given 0 < a < (1 — p)/2, where p is the constant in Assumption A, there ezists
a positive constant § such that: For any bounded convex domain Q2 with C? boundary of
positive Gaussian curvature with uniform circumscribed and interior sphere radit R and
r respectively, if

1 R
max {diam(Q), (Rr)2 (1 + —) } < 0,
r
there exists a solution f € I:ZO to the integral equation (7). Moreover, we have

HfHooa N HSQQbHoo.a + H‘]gHoo.a-

For the nonlinear theory, we need to verify that SqI'(f;, fi) belongs IAfO’[O and that the
generated function {f;} converges to a function f in L2°. It suffices to show the following
lemma. For a proof, see [6].

Lemma 4.3. Let 0 < a < (1 — p)/2. where p is the constant in Assumption A. Also,
let Q be a bounded convex domain with C? boundary of positive Gaussian curvature with
uniform circumscribed and interior radit R and r respectively. Then, for hi,ho € L, we
have

. 1 R
HSQP(hl, hQ)HOO,a ,S (1 -+ dlam(Q) + (R?“)Q (1 -+ ?>) thHoo,aHhQHoo,a-
By Corollary 4.2 and Lemma 4.3, we have
| fixillooa SISl (fis fi)lloo,a + 179]ls0a

1 R
< <1 + diam(Q) + (Rr)2 <1 + ?)> Hlelfm + 179000

Hence, by the assumption that diam(2) and (Rr)% (1 + g) is small enough, we have

I fisillsoa < Cllfillsa + ClIgllooa
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for some constant C' > 1. We further take § > 0 so small that § < 1/4C? to achieve

1
< — < —.

Also, if || filloco.a < 1/2C for some i, we have

1 1

HfH—lHooa — 2”sz00£¥+ 40 — 20

Hence, by induction, the Lgo norm of the sequence f; is uniformly bounded by 1/2C.
Furthermore, by the subtraction, we have

v Vo fir1 — fi) +v(0)(firr — fi)
= K(fix1 — fi) + T(fi, fi) = T(fic1, ficr),  (z,0) € A X R,
fir1(z,v) = fi(x,v) =0, (x,v)el".

Notice that I'(f;, f;) = T'(fi—1, fie1) = U(fi, fi = fic1) + T(fi = fiz1, fi-1). Hence, we have
Hfz-i—l - szooa ~ (1 -+ dlam(Q) —+ (Rr)% (1 + ?))
X (|| filloo.allfi = ficilloow + I1fi = ficillooall fimillooa)
S (1 + diam(Q) + (Rr)2 (1 + g)) %Hfi — fictllssa

In the last line, we use the uniform bound 1/2C of || fi11]/co.a. With small enough diam(£2)
and (Rr)2 (1+ £) we have
Hfi+1 Hooa ~ CHfl fi—lHoo,a~

By taking C sufficiently large, we finally deduce that

1
| fix1 — fillooa < §||fz — fiz1lloo,as

which implies that {f;} is a Cauchy sequence in I:ZO Hence we achieve the convergence in
L% of the iteration scheme when diam(Q), (Rr)2 (14 £) and [|Jgsc,q is small enough.
This completes the proof of Theorem 1.6.

5 Conclusion

In this article, we discussed WP regularity of solutions to the incoming boundary value
problem of nonlinear and linearized Boltzmann equations in small convex domains. At
least in the linearized level, we observe that the geometry of the domain plays a crucial
role for the range of the exponent p. Concerning the nonlinear problem, we recently
removed the smallness assumption on the domain to obtain the same regularity result [4].
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