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1 An application of the Velocity averaging lemma

The Boltzmann equation reads
OF +v-V,.F = Q(F,F), (1)

Here, F' = F(t,z,v) > 0 is the distribution function for the particles located
in the position x with velocity v at time . The collision operator @ is
defined as

21 T/2

QF.G) = / / / (F(v')G(v;)—F(U)G(v*)>B(|v—v*|,«9)d9dedv*, @)
R3 0 O

where v/ and v/, are the velocities after the elastic collision of two particles
whose velocities are v and vy, respectively, before the encounter. Here,
the cross-section B is chosen according to the type of interaction between
particles. We set
Uy — U

e = ——
e — 0]
and choose es € S? and e3 € S? such that {e1,e2,e3} forms an orthonormal
basis for R3, and define

« = cos feq + sin 6 cos eey + sin 6 sin eeg.



Then,
v =v+ ((vx —v) - a)a, (3)
v =ve — ((vs —v) - @) v, (4)

As have been adopted by many authors, regarding the cross-section, we
consider Grad’s angular cutoff potential [14] by assuming

0 < B(Jv — v«],0) < Clv — vs|” cos@sin 6. (5)

Our discussion includes hard sphere model (y = 1), cutoff hard potential
(0 < v < 1), and cutoff Maxwellian molecular gases (7 = 0). Consider the
stationary solution

F=M+M3f, (6)

where , ,
M) =n"z2e VP,

Plugging the expression (6) into (1) and discarding the nonlinear term, we
arrive at the stationary linearized Boltzmann equation

vaf<x7v> :L(f>($’,11), (7)
with linearized collision operator L, which reads
L(f) = M™5(Q(M, M* f) + Q(M3 £, M)). (8)

Under the assumption (5), L can be decomposed into a multiplicative oper-
ator and an integral operator

L(f) = —v(o)f + K(f)- (9)

Here, v is a function of the velocity variable v behaving like (1 + |v])7, i.e.,
there exist two positive constants vy and v, depending only on «, such that

0 <wp(l+v])" <v) <wvi(l+]v])7, (10)

for all v € R3. The integral operator K reads

mewa@mwm@mww

where the collision kernel k is symmetric, that is, k(v,v,) = k(v«, v). Notice
that the assumption of the cross-section here is different from and more



general than that in [4, 6]. The significant difference is that the operator
K in the case we consider does not guarantee to have regularity in velocity
variables.

Under the decomposition (9), then we consider the boundary value prob-
lem

{V(v)f(x,v) +v-Vef(z.v) = K(f)(z,v), forzeQ, veR3, an
flr_(g:v) = g(q.v), for (¢,v) €T

The celebrated velocity averaging lemma reveals that the combination of
transport and averaging in velocity yields regularity in space variable [12].
Recall the velocity averaging lemma in [10, 13]: Suppose u is an L? solution
to the transport equation

v-Veu=G(z,v), (z,v) € R" x R,
where G € L?. Let
a(w)i= [ ulzo)ulo) do
where 1) is a bounded function with compact support. Then, we have
u(x) € H2(R™).

Here, the Sobolev space is generalized to non-integer order via the Fourier
transform as follows.

Definition 1.1. We say u : R® — R is in H3(R?) if

lullg ey = [0+ EPEF@OP de)” < o (12)

where F(u)(€) is the Fourier transform of u, i.e.,

F() = (2#)_3 /]Rg u(z)e %" dx

This velocity averaging lemma demonstrates that the regularity in the
transport direction can be converted to the regularity in space variables after
averaging with weight ¢. Hence, it is natural to adopt this technique to the
study of regularity problem of linearized Boltzmann equation in the whole
space [9].

In case the source term ¥ (x, v) is imposed, the inhomogeneous stationary
linearized Boltzmann equation in the whole space reads

v(v)f+v-Vof = K(f)+ 9(z,0). (13)



We can rewrite it as an integral equation

flz,v) = / h eVOK(f)(z — vt,v) + U(z — vt,v)] dt

0

=: S(K(f)+0) (14)
= SK(f) +5(9),
where -
S(h)(z,v) = / eVl p(z — vt t) dt. (15)
0

Performing the Picard iteration, formally we can derive that

F=>_ S(KES)kW). (16)

0
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By carefully adapting the idea of velocity averaging lemma, the following
lemma was proved in [9].

~ ~ gl
Lemma 1.2. The operator KSK : L2(R3; H(R3)) — L2(R3; Hy 2 (R3)) is
bounded for any s > 0.

Here, the mixed fractional Sobolev space is defined as follows.

Definition 1.3. We say u : R® x R® — R is in L2(R%; H5(R3)) if

Il ey = ([, [, 0+EDHF@IE P dgan)” <o (1)

where F(u)(&,v) is the Fourier transform of uw with respect to the space
variable.

However, when it comes to bounded space domains, the main tool of
velocity averaging lemma, namely, the method of Fourier transform, does
not translate well on a bounded domain. In [7], for the incoming boundary
data, the authors overcome the obstacles arising from geometry and obtain
a fractional regularity result in space variables for the linearized stationary
Boltzmann equations in a bounded convex domain.

To this aim, for a bounded domain, we adopt the fractional Sobolev
space through the Slobodeckij semi-norm.



Definition 1.4. Lets € (0,1), 2 C R? open. We say f(x,v) € L2(R3; H3(Q))
if f € L2(R% I2(9)) and

— 2
/Rs /Q/Q |f(x|7:cv)— ulgg;v)| dadydy < oo, (18)

with

1

2 |f($,?)> B f(yav>|2 >§

3. F7s = dxdyd

I £l 22 (r3; 15 (2)) <||f||L2(Q><R3)+/R3 /S2 0 Jz—gte rayav

(19)

Notice that Definition 1.3 and Definition 1.4 of fractional Sobolev spaces are
equivalent on the whole space. In other words, for 0 < s < 1, there exist
two positive constants C; = C1(s) and Cy = Cy(s) such that

Cullullz s ms®s)) < lull L2 s, s ®a)) < Collull2@ms;ms@s)y  (20)

for any u € L2(R3; H2(R?)).

Here, we shall first introduce our main result and then explain the mul-
tiple obstacles we encountered and how we overcome them. We consider a
bounded convex domain which satisfies the following assumption.

Definition 1.5. We say a C? bounded convexr domain Q in R3 satisfies the
positive curvature condition if 0 is of positive Gaussian curvature.

Remark 1.6. Positive curvature condition implies uniform convexity, which
would also imply strict convexity. If the domain is compact, then its being
strict convezity is equivalent to being uniform convexity. On the contrary,
a uniformly convex domain does mot necessarily satisfy positive curvature
condition.

We consider the incoming boundary value problem for linearized Boltz-
mann equation in (2

{’U-fo(a:,v) = L(f)(z,v), forzeQ, veR3 (21)

f|F— (‘LU) = g(‘]?v)v for (‘Lv) el_,
where

I_:={(q,v) € QA xR>: n(q)-v <0},

and n(q) is the unit outward normal of 9Q at ¢. In this context, L satisfies
one of hard sphere, cutoff hard, and cutoff Maxwellian potentials.
We assume the following two conditions on the incoming data g.



Assumption 1.7. There are positive constants a,C' such that
lg(q1,v)] < €t (22)

and
l9(q1,v) — g(g2,v)| < C'lg1 — g2, (23)

for any (q1,v) € T and (q2,v) € T'_.
The main regularity result obtained in [7] is the following theorem.

Theorem 1.8. Suppose Q) satisfies the positive curvature condition in Def-
inition 1.5, linearized collision operator L satisfies angular cutoff assump-
tion (5), and incoming data g satisfies Assumption 1.7. Then the solution
f € L?(2 x R3) for stationary linearized Boltzmann equation (21) belongs
to L2(R3; H1=(Q)) for any 0 < e < 1.

We shall sketch the proof and reveal the difficulties induced by geometry
and the method we tackle the problem. For the technical details, see [7].
Let € Q and v € R3. We define

Definition 1.9.

%gg{t: x — vt ¢ Q},

I
e
\Va=
oFh

2
~

(z,v) =

q—(z,v) =z — T_(ZE, v)v,
(x,v) xr+ ot ¢ Q},
(z,v)

We can write down the integral equation

fla,0) =e 00 g (g (2,0),0)

7—(x,v) (24)
+ / e VWSK(f)(z — sv,v)ds.
0
Hereafter, we define
(Jg)(x,v) = eI g(q_(2,0),0), (25)
T_(z, v)
(Saf)(x,v) / WS f (g — sv,0)ds (26)



Notice that Sq : LP(Q2xR3) — LP(QxR3) and J : LP(T'_;do) — LP(QxR3)
are bounded for 1 < p < oo with

do = |v-n(q)|dX(g)dv,

where 3(g) is the surface element on 9 at ¢g. Performing Picard iteration,
we have

f(x,v) =J(g) + SaK(f)
=J(g9) + SaKJ(g) + SaKSaK([)
=J(g9) + SaKJ(g9) + SaKSaKJ(g9) + SaKSqaKSqK(f)

27
:J(g) + SQKJ(Q) + SQKSQKJ(Q) + SQKSQKSQKJ(Q) ( )
+ S K SqKSaKSoK(f)
=go + 91 + g2 + g3 + fa,
where
gi = (SaK)"J(g), (28)
fi = (SaK)'(f). (29)

We observe that each g; is directly under influence of boundary data and
the geometry of the domain. Our strategy is to prove g; € L2(R3; H17¢(R?)).
And, concerning the remaining term f;, we shall match up the regularity of
boundary terms.

We point out the difference between the cases for the whole space and a
bounded domain. Suppose f € L?(2 x R3) and consider its zero extension
fin R3 x R3. Notice that

SK(f)|, = SaK(f). (30)

Therefore, applying Lemma 1.2, we have

Corollary 1.10. The operator KSoK : L?(Q x R3) — L%(R?’;H;;/Q(Q)) is
bounded.

Furthermore, from the geometric properties, we have

Lemma 1.11. The operator SqK SqK : L?*(Q x R3) — LE(R3;H;/2(Q)) is
bounded.
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Therefore, if we end iteration at fo, we can already claim f € L2(R3; Hx/ ’(Q)).
Considering piling up the regularity, however, notice that

SKSK(f)| # SoKSaK(f). (31)

It seemingly comes to the limit of this strategy. However, surprisingly, some
subtle properties of functional space on a bounded convex domain satisfies
positive curvature condition allow us to improve the regularity one step
further. We use F' to denote the zero extension of F' from Q x R? to R? x R3.
We have

I 1_

Lemma 1.12. SqKSoK : L*(Q x R3) — L2(R3; H? “(R3)) is bounded for
any € € (0, %) Furthermore, there is a constant C independent of ¢ and f
such that

S c
| SaK SoK f|| ) < 7 /122 (xr3)- (32)

L2(R%HE(RY)
That is, zero extension only reduces infinitesimal regularity. Therefore, after
zero extension, we can repeat our strategy and obtain the desired result.

Regarding the existence result of boundary value problem (21), it has
been studied by Guiraud [16] for convex domains and, for general domains,
by Esposito, Guo, Kim, and Marra [11].

In the paper of Esposito, Guo, Kim, and Marra [11], they proved the
solution is continuous away from the grazing set. With stronger assumption
on cross-section B, namely,

B<|’U — ’U*|,9> = |U - ’U*|'Y/3(9)7

33
0<3(0) < Csinfcosb, (33)

the interior Holder estimate was established in [5] and later improved to
interior pointwise estimate for first derivatives [6]. Notice that, in [5, 6],
the fact K improves regularity in velocity are key properties used. The
idea is to move the regularity in velocity to space through transport and
collision. This idea was inspired by the mixture lemma by Liu and Yu [20].
In contrast, in the present result, we do not need the smoothing effect of
K in velocity; the integral operator K itself provides ”velocity averaging”
and therefore regularity. Regarding regularity issues for the time dependent
Boltzmann equation, we refer the interested readers to [17, 18].



2 Small domain problem

Concerning the problem (21) in a small convex domain, in [8], the au-
thors give the necessary and sufficient conditions for the existence theory
in H'(Q x R3). We assume that L(f) satisfies the following assumption.

Assumption A. The operator L(f) can be decomposed into the multiplica-
tive term —v(v) f(x,v) and the integral operator term

K(f)(xz,v):= /R3 (v,0") f(x,v*)dv* (34)

such that
k(v,v%) = k(v*, v), (35)
w1+ [v)” < w(v) <n(1+ o)), (36)
. 1 1 p(|v v |2+(|v —v*|? )2 )
k < [v—v¥] 7
FOO S e T e o
Vok(v,0%)] S Lt oI D (g
TR = P ol + o) 7
Vor(v)] S 1+ o), (39)

where p € (0,1) and v € [0,1].

Remark 2.1. 1. If we adopt the idea of Grad [14] and consider the Grad
angular cut-off potentials which include the hard sphere, hard potential,
and Mazwellian molecular condition, then the condition of (37) and
the upper bound of (36) hold. See Caflisch [1].

2. It is worth mentioning that the commonly used cross section B(|v —
v*[,0) = blv —v*|7 cos 0, where b is a positive constant, leads to all the
estimates in Assumption A.

We assume that the domain 2 possesses the following property.

Assumption B. Q C R? is a C? bounded domain such that O is of positive
Gaussian curvature.

Theorem 2.2. Suppose L satisfies Assumption A, then there exists € > 0
such that: for any domain Q satisfying Assumption B with diam(Q) < e,
the boundary value problem (21) has a unique solution f € H'(Q x R3) if
and only if Jg € H'(Q x R?).



We remark that the condition Jg € H' in the statement of Theorem 2.2
is implicit. To demonstrate that there is a wide class of functions satisfying
this condition, we have the following lemma.

Lemma 2.3. Let g : '~ — R. Suppose g satisfies the following conditions.

/RB/U 19(2 v) 2SS (2)dv <00, (40)

Vv 2
/Rg |5)|3 /F l9(z v)Pd¥(2)d <o, 40

/R?’ /_ IV2g(z,0)2d2(2)dv <oo, (42)

// IVog(2,0)2 Nz, 0)2dS(2)dv <o, (43)
R3 JT',

where
I, ={x€d]|n(x) v<0},
v

N(x7v> = _n(Q(x7v>) ) m:

|Veh(z,0))? = gijvaihv h,

8
x; (')zj
d¥(z) is the surface measure of 9 and g¥ is the (i, j) element of the inverse
matriz of the metric tensor on 9S2. Then we have Jg € H' (2 x R3).
The detailed definition of |V A(z,v)|? and the proof is presented in the
subsection. It can be verified by the following standard scaling analysis:
1
v-Vof = =(—v@)f+ K(f)), (z,v)eQ xR (44)
K
Notice that by defining f.(x,v) := f(kx,v), we have
v-vxf,{:—V(U)f,{+K(f,€),(l‘,U)GQXRB, (45)

where Q := %Q’.

We note that the smallness of domain or equivalently the diluteness of
gas has been used to build up the existence theories for the Boltzmann
equation, e.g., [2, 15]. In this article, we also take the advantage of the
smallness of domain.

Lemma 2.4. Let Q be a bounded domain with C? boundary with positive
Gaussian curvature. Then, there exists a positive constant C(Q2) depending
on Q such that for any z € 9 we have

|z — q(z,v)] < C(Q)N(z,v). (46)

10



2.1 Sketch of Proof

Here, we briefly sketch the idea of the proof of Theorem 1.1. A formal Picard
iteration gives the following solution formula for (21)

f=> (SaK)"Jg. (47)
=0
This is a valid solution of (21) if the right hand side of (47) converges in

H'. We first consider the L? convergence. We have

Lemma 2.5. For any h € L*(Q x R?), we have
. 1
[SaK bl L2xrs) S diam ()2 ||h|| L2 xrs)- (48)

By Lemma 2.5 above, we can see that S K is a contraction mapping in
L? provided the diameter of Q is small. This provides the L? convergence of
(47) in case diam(f2) is small. However, concerning the H! convergence of
(47), we do not have a direct analogy of Lemma 2.5. Instead, we establish
the following key lemmas:

Lemma 2.6. Given h € H'(Q x R3), we have
. 1
[SoK bl g1 oxrsy S diam(Q)2[[A]| g1 oxrsy + C(Q)|IlL200xr3),  (49)

where ||h||1200xrs) 18 defined in trace sense.

Lemma 2.7. Let C(Q) be as defined in Lemma 2.4, then for any h €
L?(Q x R3) we have

[Sa Kb 2@0xr3) S C)|R L2 @xr3)- (50)
Hence, we have

Corollary 2.8. Let C(Q2) be as defined in Lemma 2.4, then for any h €
L?(Q x R3) we have

. 1
1S K So K hl| giaxre) S diam(Q)2 || S KA g oxrsy + C ()21l 2(xrs)-
(51)

By Lemma 2.6 we have

(S K) Tyl (axre)
. 1 i— i—
Sdiam(Q)7][(So K)" ' gl axrs) + C()?[1(SoK)' g/l L2(xrs).-

11



For small diam(2), we have

1(SK) gl g (axrs)

1 . . (52)
§§||(S&2K) "Il axrsy + COQ2((SoK)' T gl r2(xrs)-

Combining (52) with Lemma 2.5, we conclude the H' convergence of (47)
for the case where diam(€) is small. Notice that the constant C'(Q2) depends
on 2. More precisely, it depends on the maximum radius of curvature. Nev-
ertheless, it is the diameter of ) that affects the convergence, no mater what
value C(92) is. Uniqueness of the H' solution follows from the contraction
mapping argument on the L? space.
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