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1 Introduction

This article gives a survay of [5]. We consider the initial value problem for the compressible
Navier-Stokes equation:

Op + div(pv) =0,
Ii(pv) + div(pv @ v) = pAv + (p+ p')Vdive — VP(p) + pF(x), (1)
(;07 U)‘t=0 = (Po,U()), (pvv)(ta:E) — (poo,O).

Here t > 0, x = (x1,72,73) € R® v = (v1,v9,v3) is the fluid velocity, p is the fluid
density, po is a given positive constant, P is a given pressure, u and p' are given viscosity
coefficients and F' = (F}, Fy, F3) is a given stationary external force. In this article,
we assume that the viscous coefficients p and p are constants that satisfy g > 0 and
2u/34 1/ > 0, and the pressure P is a smooth function of the density p in a neighborhood
of pso With P'(ps) > 0. The corresponding stationary problem of the initial value problem
(1) is the following.

div(p*v*) = 0,
div(p™v* @ v*) = pAv* + (u+ p)Vdive® — VP(p") + p"F (), (2)
(p",v")(@) = (pos, 0).

The existence results of the stationary problem (2) and the initial value problem (1)
ware obtained by Shibata and Tanaka [10] when a stationery force F' is small and an
initial perturbation (py — p*,vg — v*) is small in the Sobolev space H3. In [11], Shibata
and Tanaka derived the decay rates of the perturbations

* * S * *
(o= p" v =0 ) ()l Se X +8)727[(po = p" 00 = V") 5 s (3)

where € > 0 is an arbitrary constant. Here H* denotes the homogeneous Sobolev space
whose definition is given in Section 2 below. On the other hand, the decay estimate of
the perturbation around the motionless state (poo,0) is given by
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for0 <s<2and1<p<2 (Cf [6],[7], 8], [9].)

This article aims to give a summary of resent result on stability analysis of a solution
of the stationary problem (2). We shall consider the stationary solution obtained in the
following theorem.

. _3 .
Theorem 1.1 ([5]). There ezists a constant &g > 0 such that if F € By 2 N H® and

1] < o,
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then there exists a unique stationary solution (p*,v*) = (0* + peo, v*) of (2) such that

" ) o7l < do, (5)
B
2,
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Theorem 1.1 show the existence of the stationary solution in the framework of the
homogeneous Besov space B, . whose definition is given in Section 2 below. The estimate
(5) for the stationary solution will use for deriving the decay estimate of the perturbation.
The following theorem show the existence of the global solution of the perturbation around

the stationary solution which obtained in Theorem 1.1.

Theorem 1.2 ([5]). Let (p*,v*) be a stationary solution of (2) satisfying (5) with || F|| 5-s/2 s
2,00
sufficiently small. Then, there exists a constant 61 > 0 such that if an initial perturbation
(00, w0) = (po — p*, v0 — v") satisfy
|](00,w0)’|32%me3 < 0y,
then there exists a global solution (p,v) = (o + p*,w + v*) of (1) satisfying (o,w) €
([0, 00); Ba2 N H?) and

2,00
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We now state our main theorem which derive the decay rate of the perturbation around
the stationary solution obtained in Theorem 1.1.

Theorem 1.3 ([5]). Let (p*,v*), (p,v) be as in Theorem 1.1 and Theorem 1.2, with
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sufficiently small. If the initial perturbation (py — p*,vg — v*) € LP for some 1 < p < 2,
then the decay estimate

_s_3(1_1 ¥ %
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holds for —3/2 < s < 3/2 with s/2+3/2(1/p—1/2) > 0.

In this article, we will give outline of the proof of Theorem 1.3. We present the notation
used throughout this paper and the basic facts of the homogeneous Besov spaces in Section
2, and give the proof of Theorem 1.3 in Section 3.



2 Preliminaries

In this section, we shall introduce the following notations and some function spaces. The
notation A <, B means that there exists a constant C' depending on « such that A < CB.
The notation A ~, B means that A <, B and B <, A. We denote a commutator by
[(X,Y] = XY — YX. We write S for the set of all Schwartz functions on R? and we
write S’ for the set of all tempered distributions on R3. The notations *, F stand for the
Fourier transform

i) = Fu)(©) = [ e ula)da,

and the notation F~! denotes the inverse Fourier transform. The symbol P denotes the
Helmholtz projection: Pu = u— A"'Vdivu, u € §’. We denote the L?(IR?) inner product
by (u,v) = [ps uvda,

The rest of this section introduces the homogeneous Sobolev and Besov spaces and
presents some basic facts. For any s € R, we define the homogeneous Sobolev space

H® = H*(R?) by
o ={ues

Next, we give the definition of the homogeneous Besov space. We choose ¢ € C*°(IR3)
supported in the annulus C = {£ € R? | 3/4 < |¢| < 8/3} such that

> 6(27¢) =1 for £#0.
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i € Ligo(R?), |lu|

loc

i =1 Pl < o0}

Define the dyadic blocks (A;);ez by the Fourier multiplier
Aju= F o279 )a).
The homogeneous low frequency cutoff operator is denoted by
Sju= Z Aju, jeE. (7)
J'<j

Fix ¢ € C5°(R?) satisfying ¢(0) # 0. Let s € R, 1 < p,7 < co. Then, the homogeneous
Besov space By, = By (R?) is given by

Bi={ues | tm |F @il =0, uls,, <o),
Jull g, = || @14l )see],

We present some lemmas for the homogeneous Besov space.

Lemma 2.1. Let s e R, 1 < p,r < oo, u €S andv € S. Then, we have the following
duality estimates:

(u,0) S llul

Bs ., |U||Bp*,;, and ||ul Bs., S Sip<ua¢>a

where  the supremum s taken over the Schwartz functions 1  with

H¢||B;,ST/ <1 and 0 ¢ supp F.



Lemma 2.2. Let s1,50 € R satisfy sq,50 < 3/2 and s1 + 89 > 0. Let 1 < 1,72 < oo

satisfy 1/r1+1/ry = 1/r. Then, for anyu € B and v € B3 st 3/2

o7rys WE have uv € B
and

2,71

luvll oy roa-g Sorse llullgp Nollzg -
2,7

In the cases s1 < 3/2, sy < 3/2 with s; + sy > 0, we have

S vl
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for any u € 32 L and v € B;QOO

Lemma 2.3. Let ® € C*(R3), 1 <r < oo and u,v € B e B?’/2 with —3/2 < s < 3/2
or s =3/2, r =1. Then, we have

[@(u) = (v)]l 5, Se (1+[[(u,0)].

Bf%l)Hu =0l -

Lemma 2.4. Let —3/2 < s <5/2, 1 <r <oo. Then, we have

S0 [IVAIl 3 [lul
2
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(s auis)

o(z)
where 1 < k < 3 and u, h are scalar functions.

As for the proofs of Lemmas 2.1, 2.3 and 2.4, see [2, Lemma 2.100, Proposition 2.29,
Theorem 2.47, 2.52], [4, Lemma 1.6 ii)] for example.

3 The proof of Theorem 1.3

Throughout this section, we fix the stationary solution (p*,v*) = (0* + pso, v*) of (2) and
the global solution (p,v) = (0 + p*, w + v*) of (1) satistying

0= [lo” Hﬂ ulL P R o (CAIO]
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We shall prove the following theorem.
Theorem 3.1. Let —3/2 < s9 < 1/2. If

0= lo"ll -y . + vl

5 i +sup | (o, w) (1)

1 1
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B2,oomH5 BQ,oomHS

is small enough, then, for any —3/2 < s < 3/2 with sy < s, we have

_ 5750
o, w) )l _ams Ss (L+1)772 ({0, wo) | g30_nss: (8)

where (o,w) = (p — p*,v —v*) and (o9, wo) = (po — p*, vo — V*).



The proof of Theorem 3.1 is carried out by decomposing the perturbation into low- and
high-frequency parts with respect to the Fourier space. For fixed j, € Z, we decompose
the perturbation (o, w) as follows:

(o,w) = (op,wr) + (og, wy), 9)

where (o7, wr) = (S;,0, Sjow). For any T > 0, € > 0 and —3/2 < so < 1/2, we define the
quantity D, s, (T') by

n—so
Deso(T) = sup sup (1+1)2 [|(o,w) ()| g7 _nps- (10)
—3/2+e<n<3/2—e, O0<t<T e
s0<n

3.1 Estimate for the low frequency part

To estimate for the low frequency part, We shall rewrite the equation of the perturbation
in the momentum formulation. (Cf. [12], [1].) Let n = (m —m*)/P'(ps)'/? with m = puv,
m* = p*v*. Then, (o,n) satisfies the equation Then, the pair of functions V = (o,n) =
(p — p*,n) satisfies the system of equations:

{ 00 + 1divn = 0, (11)

om — Ain+yVeo =h+ ploF(z),

where 71 = P'(pso)/?, A1 = 11/ pocD + (11 + 1)/ poo Vdiv; h is defined by

h=> h (12)

with

(n@m m*®@n
1 = —div

+ ot (U(o* +0) — V(")) m* ® m) ,

hy = =V (Il(c%,0)0), hs= A ((¥(0" +0) = ¥(0))n),
= «41 ((‘P(U +o) - ‘P(U*))m*) :

1
1
(G, ) = / (P(G 40+ po) = Pp)) B, 0(0) = ——
0 C + Poo
Let ¢4 be the semigroup associated with the linear equation (11):
AUy = FH [AOT |, Uy = (Uo,. ., Upa) " € S'(REY, (13)
where A(£) is the matrix of the form:
A 0 —WlﬁT
A =1 . . 14
(5) [_2716 —V’£‘213 _ (l/ + V,)S ®€ ( )



Here v = p1/ poo, V' = 1/ Pooy € = (£1,E2,&3)T € R3, €@ E = €€T and 13 is the 3 x 3 identity
matrix. By direct calculation, the eigenvalues of A() are

20+ v/ Vv +V)2E — 43 E
2

, Mol€) = —vlgl (15)

We set Py(§):

Vi Vi §

for |€| # 0,m0, where gy = v/(v +v//2), Vi - Vi = VIV,, and set the eigenprojection
Fo(8):

! 2
Py(€) = Ve Ve Gitn v, = { Az el }

RO = o 1, et

¢l
Since Py (&) + P-(§) + Po(€) = L, we have the spectral resolution

e A = AP (€) + A IP_(€) + Py (&) for €] £ 0,70 (16)

If |€] = no, then we have

i ey [1— )€t —iyETt lel?
tA(€) _ o—mwolél’t 0 vIg|?t
e =e 0 l —Z"yft (1—V0|f|2t)?§2§ +e P(](é), (17)

where vy = v + 1/ /2.
The following lemma shows some smoothing estimate for the low frequency part of the
semigroup e*4 and its adjoint e'4". This lemma has been proved in [2, Proposition 10.22].

(Cf. [3], [4], [13].)

Lemma 3.2. Let jo € Z, s € R. Set i = S e, A" = S, where S;, is the low
frequency cut-off operator defined in (7).

(i) For any Uy € B§T and o > 0, we have

lei Uoll e, Nlei Uoll ggra Sao (1+ )72 1Uoll 5, (18)
for any 1 <r < oco.
(ii) The following time-space integral estimate holds:
o o
| e Talaggeat, [ et Vallggodt S 10l (19)

for any Uy € 35,1-

We now show the following proposition which derives the time decay estimate for the
low frequency part of the perturbation (o, wp).



Proposition 3.3. Let —3/2 < sy < 1/2, and let € > 0 be a small number. If

P R (CXDICT I
1s sufficiently small, then, for any T > 0, we have
sup (1 6) 7 (o2, we) (O, Seso 00, w0) [+ 0Dy (1), (20)

0<t<T
where —3/2+¢€ < s <3/2— € with so < s. Here, D, (T) is the quantity defined in (10).
Proof. Let n = (m — m*)/v; with m = pv, m* = p*v* and 7, = P'(pso)"/?. Then, (o, n)

satisfies the equation (11). Let e be the semigroup defined in (13). Then, the Duhamel
principle gives

t
_ A (t-7)A 0
i =eos [ 8 p|@n @)

where Vi, = S;,V, ¢4 = S;et* and Vy = V(0). By the definition of n, we have y,n =
P + (ov — o*w). Let n;, = S;n. Then, for any —3/2 < s < 3/2, Lemma 2.2 shows

s
BQ,oo

lwells; <o lInclls; + 8o w)

Thus, to prove Proposition 3.3, it is sufficient to show the inequality

sup (L+1) 72 |[(or,nz)(t)]

0<t<T

Bg,oo rgﬁypdo “(UO, wU)' B;?Oo + 52)6750 (T)7

where —3/2 + ¢ < s < 3/2 — e with sy < s. The Duhamel principle gives

[Zj (t) = ef! [;ﬂ + /Ot b= {h . p;?UF(l’):| (7)dr, (22)

where ¢t = ;e and the function h is defined in (12). Let us denote Vi = (09, n0)7,
V = (o,n)". Then, by Lemma 2.2 and Lemma 3.2 (i), we have

_s=s0 _s=s
e Vollgy i L+H7 = [IVollggo, < (1+6)772 [[(00,w0)l 550._- (23)
We shall prove the following estimate.
5 1
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By Lemma 2.2 and Lemma 2.3, we have

nm m*en

Hh1”B§,Oo S P + p + ot (U(o* +0)—T(o*))m* @m -
2,00
S (o7, v, 0, n)HBéwHUHng S 0|Ul gge2

Ihall gp S (0%, 0)all s S 0™ o)l 3 Nl e

2,00



for any —5/2 < 8 < —1/2. By Lemma 2.2 and Lemma 2.3, we obtain bounds for A3, h?
as

1Pl gg S (¥(0™ +0) = W(0)) V| g
+ ||V (Y(c*+0) —¥(0)) n||35+1
o 10”3 Inllagez + 1013 NUlagez < 81011
1Pall g S 1(¥(0" + ) = (o)) V" g
HIV (¥(o" +0) = U(o™)) m"|| g
So Il ol gsz S Ol agee

for any —5/2 < 8 < —1/2. Thus, we have the desired estimate (24).
Let us denote the second term in (22) by

Ny (t) = /O et m (r)dr + /0 ott-na [pgolaoF(x)l (r)dr
= N;(t) + N7 (). (25)

We estimate the term Nj (t). We first treat the case —1/2 < s < 3/2 — ¢ with s < s. In
this case, we estimate N} (t) by using the duality argument. Let 1 = (11,...,1)" € S%.
Fix a real number aq satisfying s —sg < ap < s—sp+2and s+1/2+¢e < apg < s+5/2—e.
This ag can be taken if € < 1. Lemma 2.1 then yields

t—T1)A*
gz llef 7 Dl gare dr

(NL), ) < / Ih(r)]
T / 1)

By, S AU 5 U
’ 2,1

o~

t—7)A*
prealler™ 7 W oo dr.

By Lemma 2.2,
IV (7)|

5 S IUG))

B‘;’OJ (26>
where U = (0, w)T. Then, the estimate (24) with 3 = s — 2 shows

) g2 < 6+ 10y IV
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By using the time-space integral estimate

o0
| bl dr S 1l



which follows from Lemma 3.2 (ii), we obtain

t t
S I a2l bl dr 528 [ )
2 2

t—7)A*
lgg e ™™ )l g dr

S 0D, (T)(1 +t)52s°/ lez* |l g2 dr
O il
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The estimate (24) with 8 = s — o shows

1)y o S v+ Uy o UMy o2 S OIU T gg_oo2-
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By using the time decay estimate

1A _a
ek ™ el oo S (Lt = 1) % [l g
which follows from Lemma 3.2 (i), we obtain
: (t—7)A* A
1) oo e~ Ul oo dr S, 6 ||U sy-rorsllef W gygrdr
0 £l El ’

—sp+2—aq ag
< D, (1) 5 /<1+T> S (I

SGjo 5,D6,80 (T)(l + t)

As 1 is arbitrary, applying Lemma 2.1, we obtain the 1nequahty
INL)] 55 Seuin 0Dea(T) (L +8)” 2" (27)

for —1/2 < s <3/2—¢€, —3/2 <59 <1/2 with 59 < s.

Next, we show the inequalities (27) for —3/2 + ¢ < s < —1/2, =3/2 < 59 < 3/2
with sp < s. We take €; > 0 which satisfies ¢, < 1/2. Then, using Lemma 3.2 (i) with
a =2+ s — € and the estimate 24 with § = —2 + ¢, we have

t
i S0 [ (Lt = ) A0y avndr

INL(1)]

t
55/ (Lt = 1) AU (7) | o dr
0 ,00

Sevp 0De(T) (L 1)
By Lemma 2.2 and Lemma 3.2 (i) with a = s + 3/2, we have

t
_s_3
INZ ()15 o / (14t =)o (D)F| g dr

t
_s_3
S Pl o [ Gt =783 lo(o)] g ar
2,1 2,00
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where —3/2 + ¢ <s<3/2—¢, —3/2 < 59 < 3/2 with s9 < s. Hence, we obtain
_s=sg
INL(®)ll; oo 0Dee(T) (1413 (28)
for =3/2 +€ < s < —1/2, =3/2 < 59 < 3/2 with 59 < s. O

3.2 Estimate for the high frequency part

We show the following estimate for the high frequency part of the perturbation (og, wg).
Proposition 3.4. If

0= llo*l 3
B. 2

2,00

+l .y sup|(o,w)(t)]]
t>0

. L
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1s small enough, then we have the following estimate for all T > 0 and small € > 0,

S*SO
sup (1+4)72" [[(on, wa) ()l Sjo [[(00, wo)ll 3+ 0Deso (1), (29)
0<t<T 300 H

where —3/2 +¢ < s < 3/2—¢, =3/2 < sy < 1/2 with sy < s. Here, D, (T) is the
quantity defined in (10).

Proof. The perturbation (o, w) satisfies the following equation
010 + poodivw = f(o,w),
dyw — Agw + pocy2Vo = g(o,w), (30)
(0, w)]1=0 = (00, wo),
where 1o = P'(poo) /P20 Vo = 11/ Poos Vo = I/ Poos Ao = 10A + (vg + 1)) Vdiv, (09, wy) =
(po — p*,v9 — v*); f and g are defined by the following:
4

flo,w) = =div{ov + c*w}, g(o,w) = Zgi
with B
¢t =—v" - Vw—w- Vo' —w- Vu,
g° = —(®(0" + 0) = ®(0*))Vo" = (B(c" + o) — ®(0))Vo,
9= (U(0" +0) = U(0") A (v" +w), g¢* = (¥(s") = ¥(0))Agw,
_ PI(C +/)00) _ 1
P(¢) = T v(¢) oo

Let fu = f — S;f and gy = g — S;g. for any multi-index ay,ay € Z* with |ay| = 3,
lag| = 2, we have the following identities

1d o
5 g 102 (oo, wallZz + vIVO wa Tz + (v + ) |[div 07 wa |7

= 2(05" fu, 05 our) + (0% grr, 03 wir),
d

%<V6§“20H,8§2w1{> + poo")/szagQJH”%z = pooHdiv 6§2wHH%2 + <Aa§2w[{, V@?QUH)
+ (VO fu, 022wy) + (0%, VO o).

10



By using Lemma 2.2 and the identity
1
(v-VOPoy, 0y o) = —§<divv 0oy, 00 on),

we have
(O fu, 0 ) = (v VO 0) 1, 0% 0r) + (((div )0 o), O o)
+ S div(@00 8 o), 0 o) + (O div(o"w) g, O o)
0<B<ay

S lldivoll < l| 07 oullze + vl g .5 1050l 105 ol
2,1 2,1

+ Vol Vollu2 107 onll ez + Vo™ as [ Vwl s |07 o] 2
S (ll(o w)

BS,OOHH3 + HwH”HAL) Ha?lO'HHLQ
By Lemma 2.2 and Lemma 2.3, we have

(07 g, 07 wi) S |0, v)]

2 oo + (10w B + 1052V ou22).

and

> (029, 032Vou)

lova|=2

< 0l v)]

2o + 00102 w32 + 022V 32).

VO wg|| 2, if £ > 0 is small enough, then
d
dt

where 0 < t < T, ¢y > 0 is a constant and

t)= D 1105 (eom wa) ()72 + Y w52 Vou(t), 05 wa(t)).

|ar|=4 |ao|=3

Since |09 w2 Sjo |

Ex(t) + cou(t) Sjo Ol (o, )1,

mHS)

Since E; ~ ||(om, wn)| g if £ > 0 is small, by Gronwall’s inequality, we have
l(om, wa) ()7 S e ll(omwa) ()]s
¢
o [ N o

< (L +8)7([[(o0, wo) IG5 + 1 D5 (T)?),
where 0 < ¢t < T and D, ,,(T') is the quantity defined in (10). O

dr

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. By Proposition 3.3 and Proposition 3.4, if § is small enough, then
we have

1@, war) ()l 35_ire Sio (L+1)7 2" [[(00, wo)|

B0 (31)

11



where t > 0, =3/2+ ¢ < s < 3/2 —¢€ and —3/2 < 59 < 1/2 with sg < s. By the
interpolation inequality (see [2][Proposition 2.22] for example)

[ull s Sor.00 |IUI|}§19 lull with s = (1—0)s1+0ss, 0 €(0,1), (32)

we obtain
_s_3(1_1 * *
(o= 9", 0 =) B groraizs o (148526721 (pp — % 00 — 07| (33)

holds for —3/2 < s <3/2,1 <p <2 with s/2+3/2(1/p—1/2) > 0. O
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