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1 Introduction

Let 1 < g<ooand =14+ N/q < s < 1/q, where N > 2 is the space dimension. In this paper, we
use the LrB;f{l X By ; maximal regularity framework to show the local well-posedness of the
Navier-Stokes equations describing the isotropic motion of the compressible viscous fluid flows

in the half-space. Let
RY ={z = (21,...,on) €RY |2y >0}, ORY ={r=(21,...,7n5) €RY | 2y = 0}.
The equations considered in this paper read as

pr +div(pv) =0  in RY x (0,7),
p(vi+v-Vv)—aAv — gVdivv+VP(p) =0 in Rf x (0,7T), (1.1)

Vigry =0, (p,v) = (po,vo)  in RY.

Here, p and v = (v1,--- ,vy) are respective unkown density and velocity functions, while the
initial datum (pg, v) is assumed to be given. Moreover, o and 3 denote respective the viscosity
coeflicients and the second viscosity coefficients satisfying the conditions

a>0, a+p>0,

and P(p) is a smooth function defined on (0, 00) satisfying P’(p) > 0, that is, the barotropic
fluid is considered.

Since the 1950s, lots of mathematicians have contributed to the research on the local well-
posedness and global well-posedness of compressible viscous fluids. Regarding the local well-
posedness, Solonnikov [17] proved it in W;' with N < ¢ < oo, while Tani [20] proved it in
the Holder spaces. Strohmer [18] applied the analytic semigroup approach and Enomoto and
Shibata [8] proved it in the L,-L, maximal regularity class, where R boundedness of solution
operators have been used. When the fluid domain is the whole space, the local well-posedness
was proved by Charve and Danchin [4] in the L; in time framework.

As for the global well-posedness, Matsumura and Nishida [11,12] proved it by energy esti-
mates in the three-dimensional whole space, the half space and exterior domains. After that,
semigroup approach has been establised. Strohmer [19] proved the global well-posedness by
the semigroup theory. He formulated the system in Lagrange coordinates. To this end, the
convection term v - Vp can be eliminated and the transformed system can be regarded as a
pure parabolic type system. Therefore, the derivative loss from the mass conservation equa-
tion vanishes. This idea has also been applied to the maximal regularity approach. As for the
maximal LP regularity (1 < p < 00), Shibata [14] proved the global well-posedness in exterior
domain, which is an improvement of Matsumra and Nishida ’ s theory since he minimized the
requirement of the regularity of initial data. On the other hand, for the endpoint case p = 1,



which is the maximal L; regularity. R. Danchin and R. Tolksdorf [7] proved the local and global
well-posedness of equations (1.1) in the L; in time and BN/ 7 % BN/ 77" in space maximal regu-
larity framework for some q € (2, min(4,2N/(N —2)), and the maln assumption is that the fluid
domain is bounded. Especially, they consider only the case where s = —1 4 N/q in our notation
for thier local well-posedness theory. To obtain the L in time maximal regularity of solutions
to the linearized compressible Navier-Stokes equations, in [7] they used their extended version of
Da Prato and Grisvard theory [5], which was a first result concerning L; maximal regularity for
continuous analytic semigroups. In [7] , they assumed that the fluid domain is bounded, which
seems to be necessary to obtain the linear theory for Lamé equations cf. [7, Sect. 3] in their
argument. However, our strategy of obtaining the L; in time maximal regularity is completely
different from [5] , and our analysis enable us to treat the unbounded domain. Our result here
is in the half space, which is the model problem.

1.1 Notation

Let us summerize the symbols and functional spaces in this paper. Let Ly(Q), and W;"(2) denote
the standard Lebesgue space, and Sobolev space on a domain €2 in N dimensional Euclidean
space RN, while || - || (q), and || - [wm (o) denote their norms. For time interval I, Ly(I, X) and
qu (I, X) denote respective X-valued Lebesgue space and Sobolev space of order 1. Wy (I,X) =
(Lg(I,X),W,(I,X))y for o € (0,1). Here, the complex interpolation functiors are denoted by
()i for 6 € (0,1) and 1 <r < oco. For 1 < ¢ < oo, we write

. _ /
00 = ([ 1700 a0) ™ 1 0 = ([ sl ar) ™

For differentiation with respect to space variables = = (z1,...,zy), D’ f := 90 f = 8‘5|f/81:‘f1 e
(")x%\’ for multi-index 6 = (61,...,dx) with [§| = 61 + - -- + dn. For the notational simplicity, we
write V[ = {90 [ 18] = 1}, V2f = {90 | 16| = 2}, VI = (f,V[), and V2| = (,V [, V*[). For
a Banach space X, £L(X) denotes the set of all bounded linear operators from X into itself and
| - [lz(x) denotes its norm. Let I denote the identity operator and I the N x N identity matrix.
For any Banach space X with norm ||-|x, XY ={f = (f1,...,fn) | i€ X (i=1,...,N)} and
I£f]lx = SN, |1 fillx- For a vector v and a matrix A, v and AT denote respective the transpose
of v and the transpose of A. The letter C' denotes a generic constant and Cy ... = C(a,b,- )
denotes the constant depending on quantities a, b, ---. C, Cyp...., and C(a,b,---) may change
from line to line.

Finally, we shall give the definition of inhomogeneous Besov space By ,.. To this end, we need
to introduce Littlewood-Paley decomposition. Let ¢ € S(RY) with supp¢p = {¢ € RV | 271 <
€] < 2} such that >, ., ¢(277¢) =1 for all £ € RV \ {0}. Then, define

op=F 027, keZ, Ww=F - e@"

keN

For 1 <p,q < oo and s € R we denote

1/q
a .
%+ fllo, @y + (Z (28k|f¢k * fHLp(]RN)) ) if 1 < ¢ < oo,
1f1Bs ) = kel
[ fllz, @~y + sup (28k\|¢k*f||Lp(RN)) if ¢ = o0
keN

Here, f % g means the convolution between f and g. Then inhomogeneous Besov spaces B]§7q(RN )
are defined as the sets of all f € &’'(R") such that ”f”Bg RNy < 00.
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Let s € R, p € (1,00), and ¢ € [1,00]. Then the space B;T(Rf) is the collection of all
f € D'(RY) such that there exists a function g € B, (R") with g|R§ = f, where D'(RY) be

the collection of all complex-valued distributions on RY. Moreover, the norm of f € B;’,,,(Rf )
is given by
HfHBg,T(Rf) = 1nf||9||Bg’r(RN)»

where the infimum is taken over all g € BS . (R") such that its restriction g|R§ coincides with
3

Let © € {RN,RY}. It is well-known that Bj (Q) may be characterized by means of real
interpolation. In fact, for —oco < sp < s1 <00, 1 <p<o0,1<g<o00,and 0 < 0 < 1, it follows
that

Bzfqo+(1—6‘)81(g) _ (H;O(Q)’Hzl(ﬂ))e,q’

cf. [13, Theorem 8], [21, Theorem 2.4.2]. Here, the real interpolation functors are denoted by

('7 ')Q,q-

1.2 Main theorem
Our main result of this paper reads as follows.

Theorem 1.1. Let N —1 < ¢ < 2N and —1+ N/q < s < 1/q. Let p, be a positive constant
describing the mass density of the reference body, and let 7y € B;jl(]Rf). Set no(x) = p«+1jo(x).
Assume that there exist two positive constants p1 < pa such that

pL<pe<pz p<Plp)<ps, p1<mo(@)<ps pi<Pno(x)<p (zeRY). (12)

Then, there exist small numbers T' > 0 and o9 > 0 such that for any initial data po = p«+ po
with po € ngl'l(]Rf) and vy € ngl(]Rﬂ\r/), problem (1.1) admits unique solutions p and v satisfying
the regqularity conditions:

p—po € L1((0,7), By ' (RY)) n W ((0,7), By 1 (RY)),

v € Lo((0,7), BE2RY)N) A WH(0,7), By (RY)Y) (3)

provided that ||po — ﬁo\\B;jl(Rﬁ) < 9.

Remark 1.1. The condition —1 + N/q < s < 1/q requires that —1 + N/q < 1/q. Thus, the
condition N — 1 < ¢ is necessary for our argument. On the other hand, the requirement of
s < 1/q comes from our linear theory. To use the Abidi-Paicu-Haspot theory for the Besov
space estimate of the products of functions (cf. Lemma 2.4 in Sect. 2 below), we have to assume
that —N/q < s < N/q when ¢ > 2 and —N/¢' < s < N/q when 1 < ¢ < 2. Since =1+ N/q <'s
when ¢ > 2, we need to assume that —N/q¢’ < —1 4+ N/q, which is fulfilled by 2N > g. When
1 < ¢ < 2, we need to assume that —N/q¢’ < —1 + N/q, which is fulfilled by N > 1. Thus,
N —1 < g < 2N is necessary for our argument.

1.3 Problem Reformulation

To prove Theorem 1.1, it is advantageous to transfer equations (1.1) to equations in Lagrange
coordinates. In fact, the convection term v - Vp can be eliminated, the derivative loss from the
mass conservation equation vanishes.

Let u(z,t) be the velocity field in Lagrange coordinates: x = (x1,...,zxy) and we consider
Lagrange transformation:

t
y = Xu(z,t) =z —1—/ u(z, 1) dr,
0
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where equations (1.1) are written in Euler coordinates: y = (y1,...,yn). If

T
H/O Yu(-, 7) dTHLw(M) < ¢ (1.4)

with some small constant cg > 0, and then for each t € (0,7, the map: Xy(z,t) = y is a C*
diffeomorphism from RY onto ®(RY) under the assumption that u € Ll((O,T),BZ’jQ(Rf M)
with =14+ N/q < s < 1/q (cf. Danchin et al [6]). Moreover, using an argument due to Strohmer
18], we have ®(RY) = RY, and so as a conclusion, ®(RY) is a C! diffeomorphism from R¥Y
onto Rﬂ\_] .

We shall drive equations in Lagrange coordinates. Let A is the Jacobi matrix of transfor-
mation: y = Xy(x,t) for each t > 0, that is

Oz Oy,4 ¢ —1_00 t J
Ay = 3 (ﬁ) = <]I+/0 Vu(z, 1) dT) = JZ:(:)(/O Vu(z, ) dT) ,
which is well-defined under the smallness assumption (1.4), where I denotes the N x N identity
matrix. We have the following well-known formulas:
Vy=ALVae, divy(-)=AL: Va(+) = dive(Au(+)),
Vydivy(-) = AgVa((Ay —D): Vo(+)) + Ay Vo divg(-),
Ay(+) =div, V() = dive (AgAy V() = dive (AyAy —DVL() + Az ).
Then the system of equations (1.1) in Lagrange coordinates reads
Op + pdivu = F(p,u) in RY x (0,7),
poru — aAu — fVdivu+ VP(p) = G(p,u) in Rﬂ\: x (0,7, (1.5)
u|8Rf = 07 (pa u)|t:0 = (pOa uO) in Rj—i\-[
Here, we have set
F(p,u) = p((I— Au) : Vu)
G(p,u) = (I— (A ™) (pdu — aAu) + a(AL) 1 div((AuA, — 1) : Vu)
+ BV((A] = 1) : Vu).

For equations (1.5), we shall prove the following theorem, which is (1.1) with the equations in
Lagrange coordinates.

Theorem 1.2. Let N — 1 < ¢ < 2N and —1+ N/q < s < 1/q. Let ps, fo(x), and no(x) be
the same as in Theorem 1.1. Then, there exist constants oo > 0 and T > 0 such that for any
initial data py € ngl(Rﬂ\r[) and uy € B;l(Rf)N, problem (1.5) admits unique solutions p and
u satisfying the reqularity conditions:

p—po € WH(O,T), BiTH(RY)), we Li((0,T), By (RY)Y) n Wi ((0,T), By (RY)Y)

provided that ||po — nOHB;jl(Rﬁ) < oyp.



2 Spectral Analysis and L; Semigroup

To prove Theorem 1.2, the key issue is the L; maximal regularity theorem for the linearized
equations of (1.5) at initial mass density no(x) = p« + 7o(x) with 79(x) € ngl(RﬂY ), which read

as
Ol 4+ no(z)divV = F in RY x (0, 00),

no(2)V — aAV — SV divV + V(P (no(x))II) = G in RY x (0, 00), (2.1)
V|8Rf =0, (H7V)|t=0 = (,00,V()) in R]-i\-[
We shall prove the following theorem, which will be used to prove Theorem 1.2.

Theorem 2.1. Let N—1 < q < 2N, —14+N/q<s<1/q, andT > 0. Let py, 7jo(x), and no(x) be
the same as in Theorem 1.1. Then, there exist positive constants v > 0 and C' > 0 such that for
any initial data (po,vo) and right membes (F, G) such that (po,vo) € B;jl(Rf) X Bg}l(RﬂY)N,

¢ 'F € Li(Ry, BT (RY)), ¢77'G € Li(Ry, By, (RY)Y),
then the initial boundary problem (2.1) admits unique solutions (II, V') with
e e W Ry, BT (RY)), eV € Lu(Ry, B2RY)Y) W Ry, By, (RY)Y)
possessing the estimate:
e (0, AT, =, ey + e Vil @y 2@y + 1€ 0V e, @)
< C([l(po, VO)HB;jl(Rf)xB;I(Rﬁ) + e (F, G)|’L1(R+,B;j1(Rf)xB;}l(Rf)))'

Here and in the sequel, we set Ry = (0,00), and

el ) = / £ Dl d.

In order to prove Theorem 2.1, we use the properties of solutions to the corresponding
generalized resolvent problem:

AMp+modivv=f  inRY,
no(2) AV — aAv — gV divv + V(P (no)p) =g in RY, (2.2)
V|6R§ = 0.
To state our main result for equations (2.2), we introduce a parabolic sector 3, defined by

setting
S, = {A € C\ {0} | [argA| < 7 — i}, (2.3)

where p € (0,7/2) and v > 0 . The set ¥, + v is defined by
Yoty ={A+v| A€ X}

Moreover, functional spaces ’H;l(Rf ) and D;l(RﬂY ) and their norms are defined by setting

Haa(RY) = {(£,8) € Bii'(RY) x By (RY)™},

D;1(RY) = {(p,v) € B; ' (RY) x By I*(RY)Y | v]gey = 0},
(2.4)
H(f’g)”Hg,l(Rf) = HfHB;fll(Rf) + Hg”Bg,l(Rfy
H(ﬂg)”D;J(RQ) = HfHB;fll(Rg) + Hg”BSjQ(Rf)'

Then, we shall show the following theorem.



Theorem 2.2. Let 1 < ¢ < 2N and —1+ N/q < s < 1/q. Let py, 1o(z), and no(z) be the same
as in Theorem 1.1. Then, the following three assertions hold.

(1) There exist constants v > 0 and C such that for any A € ¥, +~ and (f,g) € H27I(Rf),
problem (2.2) admits a unique solution (p,v) € D;,I(Rﬂ\_[) posssessing the estimate:

M)l + IOY29, 92 s, < CIC 8, )

for every A € ¥, + .
(2) Let o > 0 be a small number such that —1 4+ 1/q < s —o < s+ o < 1/q. Then, there
exist vi and vo such that v; € BSIQ(Rf) (i =1,2), v=vy1 + vy, and there hold

(A A2, ?2)"1”33,1(11%1) < C|)\|_%”gHB;j"(Rf)7
”(A:)\1/26762)@"1”3;,1(11%1) = C‘)‘\_(l_%)\\g|13330(1&£)
for every N € ¥, +v and g € C(‘)’O(]Rf), as well as
I\, /29 vQ)VQHB;J(Rf) < C|/\|_1H(f:g)HH;J(Rf)v
I(A A2V, v2)0/\"'2H]B;l(ﬂ{aﬁ) < CIAIZ?|(f, g)”H;J(Rﬁ)

forany A€ X, +v and (f.g) € H;jl(Rﬂ\r/).
(3) There exist constants v and C such that for every X\ € ¥, +v and (f,g) € 7—[271(Rf),
and there hold .
||P||B;,+11(Rf) < CIATNCE &)l vy

193 o vy < C‘)“_z”(fvg)HH;J(Rf)‘
In the statement of (1), (2) and (3), the constants v and C depend on p, and Hﬁo\|Bs+11.
9,

2.1 Spectral Analysis

In this subsection, we shall prove Theorem 2.2 as a perturbation from Lamé equations, which
read as
No(x) AV — aAv — fVdivv =g in RY, V‘aRf =0 (2.5)

for spectral parameter A\ € ¥, + v with large enough + > 0. Thus, we start with the existence
theorem for equations (2.5).

Theorem 2.3. Let 1 < g< oo and —1+1/qg < s <1/q. Let o be a small positive number such
that =1+ 1/g<s—o0c<s<s+o<1/q. Letv=s orsto. Assume that 17y € Bg{q(Rf).
Moreover, no(x) and p« satisfy the assumptions (1.2). Then, there exist constants y1 > 0 and
C > 0 depending on s, o, and HﬁOHBéV{q(Rf) such that for any X\ € ¥, +~1, problem (2.5) admits

a unique solution v € Bq”,I(RﬂY)N satisfying the estimate:
(A, Al/Qv»vQ)VHB;I(Rﬁ) < Cllelpy Yy,
(A, A28, ?2)5/\VHB;1(R§) < C|>\|_1Hg||3g’1(Rf)-
Moreover, for any A€ ¥, +v1 and g € CSO(RJJ\:)N, there holds
(A, A2, vQ)VHB;J(M) <O+ HﬁoHB;%l(M))P\r%Hg”B;fl”(M)
as well as

1O A2, 905w s ey + IVl ey < COH ol e )ATC gl o
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Remark 2.1. C;°(RY) is dense in Bq”’I(Rf) provided that —1+1/¢g <v <1/gand 1 < ¢ < 0.
We need the following lemma in this paper.

Lemma 2.4. Let 1 < g < oo and v € R. If the condition |v| < N/q for ¢ > 2 holds and
the condition —N/q' < v < N/q for 1 < q < 2 holds, then for any u € B;l(Rf) and v €

Bgég(Rf) N Loo(RY), there holds
luvllsy, @y) < Collullsy, @)1Vl gy

for some constant C > 0 independent of u and v.
Proof. For a proof, refer to [1, Cor. 2.5] and [9, Cor. 1]. O

By Theorem 2.3, we consider problem (2.2) of the Stokes system and prove Theorem 2.2.
We insert the relation: p = A~1(f — 1y divv) obtained from the first equation in (2.2) into the
second equations. Then, we have

no() AV — aAv — gV divv — A\"'V(P'(no)npdivv) =h  in RY, u|aR§ =0, (2.6)

where we have set h = g — A™'V(P'(n9) f). In what follows, restore the notation of RY like
Bé,l(Rf% |- ”B;A’I(Rﬁ) etc.
As a first step to analyze equations (2.6), we shall prove the following theorem.

Theorem 2.5. Let N —1 < g < 2N and -1+ N/q < s <1/q. Let 0 > 0 be a small number
such that —1+1/g< s—o <s<s+o<1/q, andletv =s orsto. Let no(x) = ps+1o(x) with
o € B;jl(]Rf). Let v > 0 be the constant given in Theorem 2.8. Then, there exist v > 7

and an operator family S(\) such that S(\) € Hol (£, + ’yg,E(BZ,I(RQY),BSIQ(RQY))), for any
A€ X472 andh € BY (RY) v = S(Mh is a unique solution of equations (2.6), and there hold
[ A9, TSRl wy) < Cllge o)
1/29 o2 -1
[AAEV, VRS (Ml gs | wry < CIAT [l gs | vy
Moreover, there are two operator families S'(\) € Hol (X, + 72,£(BZ71(Rf),B;J{Q(Rf)))
(i = 1,2) such that S(\) = S1(\) +S%(N),
[ N29,92)8" (Ve gy < O3 [ e,
(A, A2V, V2)5A51(>\)h||3311(11w) < C|>\|_(1_5)Hh||33,—10(11w)
for any A € £, + 72 and h € C§°(RY), and
[ X297, 9282 (W) sy < O s e
(A, /\1/2?a?2)8/\32(/\)}1”3;,1(1@) < C‘)"_Z”h”Bg,l(Rf)

for any A € ¥, + 2 and h € B,‘;,I(Rf)-
Here, the constants o and C depend on p, and Hﬁo\|Bs+11.
q,

We need the following lemma for the proof in this paper, which is the lemma for the Besov
norm estimate of composite functions cf. [9, Proposition 2.4] and [3, Theorem 2.87].



Lemma 2.6. Let 1 < g < oco. Let I be an open interval of R. Let w > 0 and let © be the
smallest integer such that & > w. Let F : I — R satisfy F(0) =0 and F' € BC*(I,R). Assume
that v € By, has valued in J CC I. Then, F(v) € By and there exists a constant C depending
only onv, I, J, and N, such that

1 @)Bs, < CA+ 0l I | poamvlBs, -

Proof of Theorem 2.2. Recall the symbols defined in (2.4), which will be used below.
Let v.= S(A\)(g — A™'V(P'(n0)f)), and then v is a unique solution of equations (2.6) with
h=g— AV (P'()f). Using the formula S(A) = S'()\) + S%(N), we divide v as v = v + va,
where

vi=8'Ng, v2=38*Ng— AT S(V(P (mo)f)-
Moreover, define p by p = A"!(f — nodivv). By using Lemmas 2.4 , 2.6 with the assumption:
N/q < s+ 1 and the above theorems, we complete the proof of Theorem 2.2. O

2.2 [, semigroup

Let A be an operator defined by
Alp,v) = (no divv, no(z) ' (—aAv — BV divv + V(P (no()p)))

for (p,u) € Dé,l(Rf)- Then, problem (2.2) reads as

AL+ A)(p,v) = (f,m0(2) " 'g). (2.7)

Noticing that no(z) ™t = p;t — 7o (z) (p«(p« +7j0(z)) 7L, we see that there exists a constant ¢y > 0
depending on p, and ||7j| BELRY) such that
q, +

CEngHB;J(M) < ”770_1gHB(‘1’,1(Rf) < CO|’gHB;1(R$)~

for v = s or v = s+0. Thus, Theorem 2.2 holds for the equations (2.7), which replaces equations
(2.2). Therefore, A generates a continuous analytic semigroup {7'(f)}+>0 and solutions IT and
U of equations (2.1) are given by

(I, V) = T(t) (po, vo) + / T(t — $)(F(5), pol-) ' G(- 9)) ds.

We now prove the L; in time maximal regularity of {7'(t)}:+>0. The idea of our proof here
is due to Shibata [15], cf also Kuo [10] and Shibata and Watanabe [16]. Let T3(¢) and T5(t)
denote the mass density part of 7'(¢t) and the velocity part of T'(t). Namely, T'(¢)(po, Vo) =

(T1(t)(pos vo), T2(t)(po, Vo)) and p = T1(t)(po, vo) and v = T3(t)(po, Vo) satisfy equations (2.1)
with FF =G = 0.

Theorem 2.7. Let N —1 < ¢ < 2N and -1+ N/q < s < 1/q. Let fjp(x) € Bl‘;j{l(RﬂY) and

no(x) = ps +1o(x) satisfies the assumption (1.2). Let v > 0 be a constant given in Theorem 2.2,

which depends on p,. and ”ﬁo”Bstl(RN)' Then, there exists a constant C > 0 depending on p.
q, +

and HTZOHBSF(R% such that for any (f,g) € H;}l(RﬂY), there holds

| e 0 T 0, v0) )+ 10 DOTi ()00 v0) )

< CII(PO,VO)HH;J(R%'



Proof of Theorem 2.1. Let F and Gy be zero extension of F' and G outside of (0,7")
interval. Using {T'(¢) }+>0, we can write

(IL, V) (t) = T()(po, vo) + / T(t - )(Fo(-, ). py () Go(- 8)) ds.

Let v and C be the constant given in Theorem 2.7. By Fubini’s theorem, we have

00 t
/0 e |V /0 Ty(t = O)(Fo, 15 ' Go)(£) dll| g, gy dt

< /0 {/g e V2T (t — 5)(F07nalGo)(ﬁ)HB;l(Rﬁ) dt} a0

= [ I R (o o) Oy ]}

<C [T R0 ol Dl o)
< CI(F, Gz, 01 )M L (RY))-

Employing completely the same argument, we have

[e%s) t
| [ T = 005 @00 s ey < CUE By o, 52

Therefore, we have
/0 oG Dll gy + IVE Dl g2y dt
< O, volllagy =) + IF Gy 017,45 , 1)
which implies that
T
e / D51y + ¥ )
o0, v0)lrgs ) + 1P Gy o1 ., a0y
Therefore, we have
T
/o (ol Dl ey + IVC Dz y)) o
< Ce" (1 (po, vo)llaeg , vy + I1(F, Gl o1, )

Here, v and C' are constants depending on p,, \|ﬁ0\|Bs+11(RN).
q, +
To show the estimate of time derivatives, we use the relations:

BtH = —T]()diVV+ F,
oV = (o) " HaAV + BV divV — V(P (no)II) + G),
and then,

T
/0 (Hatn('vt)HB;jl(Rﬁ) + Hatv('vt)”Bg,l(Rf))dt

T
< C(px HﬁOHB;jl)(/O (HH('vt)”ngl(Rf) + ”V(‘?t)HB;f(Rg)) dt + || (F, G)”Ll((O,T),H;’l(Rf)))

< C(ps HﬁOHB;jl)EVT(H(PO»VO)HHZJ(]R{X) HIE Gy omms ,@Y))-

This completes the proof of Theorem 2.1. O



3 Proof of Main Result

In this section, first we shall prove Theorem 1.2, which is the local well-posedness for the Navier-
Stokes equations in Lagrange coordinates. Then, we convert the obtained solution back to
Euler coordinates and prove the local well-posedness for the original compressible Navier-Stokes
equations, which is Theorem 1.1.

Let no(x) = p«+10(z) with 7o(x) € BSII(RJJ\Z) and assume that 7o(x) satisfy the assumption
(1.2). Let po(z) = psx + po(x) with po(x) € B;jl(]Rf). Let w > 0 be a small number determined
late and assume that

Hﬁo - ’F]()HB;jil(Rf) < w. (31)

Let ug € BSJ(RﬂY)N. We consider equations (1.5). By setting p = pg + 6 we write equations
(1.5) as follows:

O+ nodivu = (ng — po — ) divu+ F (0 + pp,u in RY x (0,7),

Mo — aAu — SV diva + V(P (n0)0) = —VP(po) + G(0 + po, u

+G(f,u

u\aRf =0, (0,u)]=0=(0,up

in RY x (0,7),

N
in RY,

~— — ~— —

where we have set G(6,u) = (19 — po — 0)9yu — V(P(po + 0) — P(py) — P'(10)8). To prove
Theorem 1.2, we use the Banach contraction mapping principle. To this end, we introduce an
energy functional E7 and the underlying space St,, defined by

Ep(n, w) = ||(n, 0t77)”L1((07T),B;j51(Rf)) + HW”LI((O,T),B;’*;?(R%) + ”atw”Ll((O,T),B;l(]Rf))7

n € Wi ((0,7), B;1'(RY)),

Gr = 4 () | ¥ € DO, BIPEDY) NW(0.7), B3, (BY)Y),

T
(U:W)|t=0 = (07 110), ET(’?»W) < W, /0 HVW(WT)HBN{Q(Rf) dr <
q;

Here, T > 0, w > 0 and c¢; > 0 are small constants chosen later. In particular, ¢; is chosen in
such a way that

T T
H\/O VW(-7T) dTHLOO(Rf) S C/O HVW(VT)HB(JIV{‘I(Rﬁ) S CCl S co,

where ¢g is a constant appearing in (1.4). Thus, the constant ¢; guarantees that the Lagrange
map y = Xy (z,t) is C! diffeomorphism from € onto €.
Given (f,u) € S, let n and w be solutions to the system of linear equations:
o +nodivw = (no — po — 0)divu+ F(py + 0, u) in RY x (0,7),
noorw — aAw — BV divw + V(P (no)n) = =V P(po)
+G(po +0,u) + G(0,u) inRY x(0,7),
)

. N
in R,

(3.2)

Wlogy =0, (1 Wleco = (0, ug
Let 1, and w, be solutions of the system of linear equations:

Oima + nodivw, =0 in Rﬂ\_] x (0, 00),
NoOyWa — aAw, — BV divwy + V(P (n0)na) = —V P (po) in Rﬂ\_] x (0, 00),

Wa‘aRf =0, (Na,Wa)l|t=0 = (0,up) in Rﬂ\_].
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We will choose T' > 0 small enough later, and so for a while we assume that 0 < 7' < 1. By
Theorem 2.1, we know the unique existence of solutions 7, and w, satisfying the regularity
conditions:

na € WI((0,1), BiTHRY)),  wa € Li((0,1), BS2(RY)N) nW((0,1), By, (RY)™)
as well as the estimates:

=2
1Cras Bena)llz, o,1), B2 ) + 1000 V)Wally .1, 85, 2 3.3
< Cev(”uOHB;J(Rf) + HVP(IOO)”B(?J(Rf))'
Here, v is a constant depending on p, ”ﬁOHBS*{l(Rf) given in Theorem 2.1. Here and in the
q,
following, C' denotes a general constant depending at most on p, and ||7|| peti(ra), Which is
q, +

changed from line to line, but independent of w and 7.
In view of (3.3), na and w, satisfy E1(1a, Wa) < 00, and so we choose T' € (0, 1) small enough

in such a way that
Er(1a, Wa) < w/2. (3'4)

Let p and v be solutions to the system of linear equations:
Op+nodivv = (ng — po — 0)) diva+ F(6 + pp, u) in RY x (0,7),
N0V — aAv — BV div v + V(P (10)p) = G(0 + po,u) + G(0,u) in RY x (0,7), (3.5)
V|8Rf =0, (p,V)]t=0=1(0,0) in RJ—I\—/‘

Applying Theorem 2.1, we see the existence of solutions p and v of equations (3.5) satisfying
the regularity condition:

p e WL((0,1), By (RY)), v e Li((0,7), By >(RY)™) n Wi((0,T), B;1(RY)™)
as well as the estimate:
Er(p,v) < CevT(H(UO — po — 0)divu, F(6 + po, u)HLl((O,T),ngl(Rf)) 3 6)
+ (G(0 + po, u), G(0, u))HLI((O,T),B;J(RQ)))-

Here, we notice that v and C depend on p, and ||| B (RY) but is independent of w and 7.
q, +
Now, we shall show that there exist constants C' > 0 and w > 0 such that

1((n0 — po — 0) diva, F(0 + po, W), 0.1y, 555 )

(GO + po. ), GO | o)y < Ol 7). 0
If we show (3.7), then by (3.6) we have
Er(p,v) < COT(w? 4+ w?).
Choose w > 0 and T > 0 so small that Ce(w + w?) < 1/2 and 4T < 1. Then, we have
Er(p,v) <w/2, (3.8)

which combined with (3.4), implies that n = 7, + p and w = w, + v satisfy equations (3.2) and
Er(n,w) < w. Especially, w is chosen so small that

T
| IW Dl sy 0 < CEr(nw) < Cw< a1
0 q,1 +

11



As a consequence, (n,w) € St,. Thus, if we define the map ® by ®(f,u) = (n,w), then ®

maps St into St,.

Now, we shall show (3.7). For notational simplicity, we omit RN below. Notice that B,

N/q

a Banach algebra (cf. [9, Proposition 2.3]). By Lemma 2.4 and the assumption: N/q < S + 1

we see that B;jl is also a Banach algebra. In fact,

luvllggs < I(VW)olls;, + uVols;, < CUVullsg [0l gy + llull el Volls;, )

< Cllul g [0] e

We first estimate (199 — po — 0) divu and F (0 + pg,u). By Lemma 2.4 and (3.1), we have

(10 — po) diquB;ﬁl < CW”U-”B;f-
Since BSJrl is a Banach algebra, we have
||9divu||B§,+11 < C’H9||B;+11|| diquB;#.

Since 0|¢—o = 0, here and in the sequel we use the following estimate:

N)

t
10Dy = | [ 26009 5] o o <1000 om0

Thus, we have
o divall, om0y < ClOON L 01), B4 19l (0,7, 8252)-

We next estimate F'(pg + 6, u) = (po + 6)((I — Ay) : Vu). Recall that u satisfies
T
| Ivat )l dr <
0 a1
Since Bé\jl/ ? C Lo, we have

T
sup H/ Va(. ) dr|| gc/o [Vt Pl e dr < Cer.

te(0,T)

(3.9)

(3.10)

Choosing ¢; so small that Ce; < 1. Let F(£) be a C*° function defined on |¢| < Ce¢; and
FO)=0,and I — A, = F(fot Vu df). In fact, F(£) = =372, ¢. Then, by Lemma 2.6 and

(3.10), we have

T
sup || F( Vu dT)||Bs+1 < C/ IVu(-, 7 )HBs+1 dr.
te(0,T)

Since BSJrl is a Banach algebra, using (3.11) we have

1E (o0 + 0wl eir < Cllooll g + 10, Dl [0l oy 12 | T8 Dl i

Using (3.9), we have

1ECpo + 0, W)l (0.9, 321y = CF

12

2
Poll e 104011, 019, B 10 0,0, 52

(3.11)



Summing up, we have proved that
[[(no — po — 0) divu, (6 + po, u)”Ll((O,T),Bgﬁl)
< Clwllully, o),ms12) 1901, 0,1, B350 1 Ly 0,7, 8542) (3.12)
(”770”384r1 + 1)”u”L1( 0,7),B:%?) + Hate”Ll((O,T),B;jl)”uHil((o,T),B;jgz)}'
Here and in the following, we use the estimate:

||po||B;,+11 < lpo — 770HB;+11 + \|770H]_r;;+11 <1+ \|770\|B;ﬁl~

Next, we estimate G(6+ pp, u) and G(6, u). These terms can be estimated in a similiar method,
and so we omit the prove here. Therefore we have

IGO0 + pos Wl ((0.1).55,,)
< Ol o g Ueollsg g + 19N, o,y 190 laong - (3.13)

+ H“”Ll((o,T),B;jQ)(l t ”“”Ll((o,T),B;ff))H“HLl((o,T),B;jQ)’

1GO, W) L.0,1)52,) < Clows ol g {10l Ly 0.1, + 19112, (029, 8551) G
+ ”8t9|’L1((07T)7B§,+11)(”9|’L1((0,T)7B;,+11) + ”8t11HL1((0,T),B;’1))}~

Combining (3.12), (3.13), (3.14) and recalling that Ep(0,u) < w, we have (3.7). And so, choosing
w >0 and T > 0 so small that Ce(w + w?) < 1/2 and 4T < 1, we have (3.8). Here, C and ~
depend on p, and |]770HBS+1 and so the smallness of w and 7" > 0 depends on p, and HWOHBSH

Therefore, we see that <I> maps St into itself.
We now prove that ® is contraction map from St into itself. To this end, pick up two
elements (0;,u;) € St (i = 1,2). Similiarly, we obtain

Ep(m —n2, w1 — wa) < CevT(w + W Er(0; — 6o, u; — uy).
Thus, choosing w > 0 and T' > 0 so small that Ce(w + w?) < 1/2 and 4T < 1, we have
Er(m —n2, w1 —wz) < (1/2)Ep(6h — 62,11 — ua),

which shows that ® is a contraction map from St into itself. Therefore, by the Banach fixed
point theorem, ® has a unique fixed point (7, w) € Sry. In (3.2), setting (n,w) = (6, u) and
recalling p = po + 0 and G(0,u) = (9 — po — 0)0u — V(P(po + 60) — P(po) — P'(n0)f), we see
that 0 and u satisfy equations:

O + nodivu = (ng — po — 0)divua + F(pg + 6, u) in Rf x (0,7),

nooyu — aAu — AV divu + V(P (n9)f) = —VP( 0)
+G(pg + 6,u) — G(6,u) in RY x (0,7),

)

. N
in RY.

(3.15)

ulpry =0, (1,u)]i=0 = (0, up

Thus, setting p = pg + 6, from (3.15) it follows that p and u satisfy equations (1.5). Moreover,
(p,u) belongs to St ,, which completes the proof of Theorem 1.2.

Next, y = Xyu(z,t) is a C! diffeomorphism from € onto itself for any ¢ € (0,T), because u €
Li((0,7), B;HQ(Q)N). Let x = X;!(y,t) be the inverse of X,,. For any function F € B;l(Rf),
1< qg<oo,seR, it follow from the chain rule that

[F o X1:1||B§’1(Rf) < CHFHBSJ(RQ])
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with some constant C' > 0 (cf. Amann [2, Theorem 2.1]). Let (p,v) = (6,u) o X! and
Ay = (VyXu)" L. Let Al = (A;x). There holds

Vy(p, V) = (AIVI(G* u)) 0 Xglv

ayjaykv = ZAjfaye(AkZ’ayyu)) °© XJI (]’ k=1,..., N)
N

Hence, we rely on the relation:
at(pv V) = at(ev u) © Xl:l - ((u © XlIl) ) Vy)(p, v),

concerning the time derivative of p and v. Therefore, by Theorem 1.2 and Lemma 2.4, we arrive
t (1.3). This completes the proof of Theorem 1.1.
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