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1 Introduction

We are concerned with the motion of a homogeneous and inextensible string of finite
length L under the action of the gravity and a tension of the string. Suppose that one
end of the string is fixed and another one is free. Let s be the arc length of the string
measured from the free end of the string so that the string is descried as a curve

x(s,t) = (z1(s, 1), x2(s,1), x3(s, 1)), s € 0,L]

at time £. We can assume without loss of generality that the fixed end of the string is
placed at the origin in R®. Let p be a constant density of the string, g the acceleration of
gravity vector, and 7(s,t) a scalar tension of the string at the point @(s,t) at time ¢. See
Figure 1.1. Then, the motion of the string is described by the equations

ot — (ra) = pg i (0,L)x (0.7),
2’| =1 in (0,L)x(0,7),

where @ and @’ denote the derivatives of @ with respect to ¢ and s, respectively, so that
a’ is a unit tangential vector of the string. For a derivation of these equations, we refer,
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for example, to Reeken [11] and Yong [18]. The first equation is the equation of motion.
The peculiarity of this problem is that we do not assume any elasticity of the string so
that the tension 7 in the first equation is also an unknown quantity of the problem. In
other words, we do not assume any constitutive equation for the tension 7. However,
we impose the second equation, which describes the fact that the string is inextensible.
We also note that the tension is caused by the inextensibility of the string as we will see
below. The boundary conditions at the both ends of the string are given by

=0 on {S:L}X(07T)7
7=0 on {SZO}X(OvT)

The first boundary condition represents that the one end of the string is fixed at the origin,
and the second one represents that another end is free. In the case g # 0, by making the
change of the variables s — Ls, t — \/L/gt, * — Lz, 7 — pglL7, and g/g — g with
g = |g|, we may assume that p =1, L = 1, and |g| = 1. Similarly, in the case g = 0, by
making the same change of the variables as above with any positive constant g, we may
assume that p =1 and L = 1. Therefore, in the following we consider the equations

b (Y=g b 01xO7)
(1.1) {‘w’] —1 in (0,1) x (0,7,

under the boundary conditions

x=0 on {821} X (O:T)v
(1.2) {7- =0 on {s=0}x(0,7).

Here, g is a constant unit vector or the zero vector. Finally, we impose the initial condi-
tions of the form

(1.3) (x,&)|1—0 = (i, ) in (0,1).

This is the initial boundary value problem that we are going to consider in this paper.
Here, we remark that the problem (1 1) and (1 2) also arises in a minimization problem
of the action function J(x fo fo (3]&(s,t)]* + g - ®(s,t))dsdt under the constraints
|z(s,t)| = 1 and x(1,t) = O In this case, the tension 7 appears as a Lagrangian multi-
plier. For more details on this variational principle, we refer, for example, to Sengiil and
Vorotnikov [15] and the references therein.

As was explained above, the tension 7 is also an unknown quantity. On the other
hand, we assume that the string is inextensible so that we impose the constraint |z'| = 1,
which causes a tension of the string. In other words, by using the constraint we can derive
an equation for the tension 7 as follows. Let (zx, ) be a solution to (1.1) and (1.2). Then,
we see that 7 satisfies the following two-point boundary value problem

—7" +|2"*r=12/|* in (0,1) % (0,7),
(1.4) T=0 on {s=0}x(0,7),
T'=—g-a on {s=1}x(0,7T),



where we regard the time ¢ as a parameter. This is a well-known fact and is easily verified;
see, for example, Preston [8, Section 2.1] and Sengiil and Vorotnikov [15, Section 2.4]. In
fact, by differentiating the constraint |2’|> = 1 with respect to s and ¢, we have x’- " = 0,
' -2"+|x")? =0, -2’ =0, and ' - &’ + |2'|> = 0. Therefore, differentiating the first
equation in (1.1) with respect to s and then taking an inner product with &', we obtain
the first equation in (1.4). Taking an inner product of the first equation in (1.1) with
&', taking its trace on s = 0, and using the first boundary condition in (1.2), we obtain
the last boundary condition in (1.4). It is easy to see that for each fixed time ¢, the two-
point boundary value problem (1.4) can be solved uniquely, so that 7 is determined by
Z'(-,1) and &'(-, (). Unlike standard theories of nonlinear wave equaions, in our problem
the tension 7 depends nonlocally in space and time on x’. Particularly, we need an
information of the curvature vector @”(-,t) and the deformation velocity &'(-,¢) of the
tangential vector of the string to determine the tension 7.

For the well-posedness of the initial boundary value problem, standard analysis on
hyperbolic systems requires a positivity of the tension 7. However, the positivity fails
necessarily at the free end s = 0 due to the boundary condition on 7. Taking these into
account, in place of assuming a strict positivity of 7, we impose the following stability
condition

7(s,1)

(1.5) -

>co>0

for (s,t) € (0,1) x (0,T). If we consider a linearized problem around the rest state, then
the corresponding stability condition is reduced to —g - ®’(1,t) > ¢y > 0 for t € (0, 7).
This last condition can be easily understood geometrically; see Figures 1.2 and 1.3. As

] ,

x'(1,1) (1.1

Figure 1.2: The case —g - «'(1,1) > 0 Figure 1.3: The case —g - «/(1,1) <0
we will see in Section 4, under the condition fol slz”(s,t)|?ds < 1, the tension 7 can be

bounded from below as

1 1
(1.6) () > —g-x'(1,1) +/ s|&'(s,1)]*ds exp <—/ s|a:”(s,t)|2ds> :
0 0

S

if the right-hand side is non-negative. This reveals a nonlinear stabilizing effect of the
problem, and moreover, ensures the stability condition even in the case g = 0 if &(s,t) #
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0; see Subsection 4.3. Our main objective is to show the local well-posedness of the initial
boundary value problem (1.1)—(1.3) in appropriate weighted Sobolev spaces under the
stability condition (1.5). Toward this goal, in this paper we will derive a priori estimates
for the solution (x,7) to the problem, which are given in Theorem 2.1. We also prove
a uniqueness of solutions to the problem in the class where a priori estimates would be
obtained. The uniqueness is given in Theorems 2.3 and 2.4.

Even if a priori estimates for the solution (a,7) would be obtained, it is not straight-
forward to construct an existence theory and we need more technical calculations than
what will be done in this paper. Therefore, we postpone this existence part in our fu-
ture work. Here, we just give a brief comment relative to the existence of a solution:
In the derivation of the two-point boundary value problem (1.4), we use essentially the
constraint |x’| = 1 so that it is natural to expect that (1.4) contains an information of
the constraint. In view of this, we will consider the initial boundary value problem to
hyperbolic equations

wn {a'r}—(mc’)’:g in (0,1) x (0,7),

x=0 on {s=1}x(0,T),

for & under the initial condition (1.3), coupled with the two-point boundary value problem
(1.4) for 7, in place of the problem (1.1)—(1.3). One may think that a boundary condition
on the free end s = 0 is missing for the well-posedness of the problem for . However, it
is not the case because the tension is degenerate at s = 0. For more details, see Takayama
[17]. We will use the initial boundary value problem to the hyperbolic and elliptic coupled
system (1.7), (1.4), and (1.3) to construct the solution (x,7). In order to show the
equivalence of the problems, we need to show that the solution (x,7) to the transformed
system (1.7), (1.4), and (1.3) satisfies the constraint |#’| = 1 under appropriate conditions
on the initial data. Here, we note that if there exists a smooth solution to the original
problem (1.1)—(1.3), then the initial data have to satisfy the constraints |z{'/| = 1 and
-2 =0 in (0,1). Conversely, we will show in Theorem 2.5 that if the initial data
satisfy these constrains, then any regular solution (x,7) to the transformed system (1.7),
(1.4), and (1.3) satisfying the stability condition (1.5) satisfies the constraint |z’| = 1.
This will be carried out by using an energy estimate.

Contrary to the studies on elastic strings, there are few results on the well-posedness
of the initial boundary value problem (1.1)—(1.3) to the motion of an inextensible straing.
Reeken [12, 13] considered the motion of an inextensible string of infinite length having
one end fixed at the point (0,0,00) in a gravity field. For technical reasons he assumed
that the acceleration of gravity vector g is not constant. To be precise, he assumed that
g =4g(s) € C*([0,00)) is constant for s € [0,[] and grows linearly beyond s = [ for some
positive [. Under this non-physical condition, he proved the existence locally in time and
uniqueness of the solution provided that the initial data are sufficiently close to a trivial
stationary solution in some weighted Sobolev spaces. The method that he used to solve the
original problem (1.1)—(1.3) is quite different from solving the transformed problem (1.7),
(1.4), and (1.3). He applied the hard implicit function theorem, which is also known as the
Nash—Moser theorem, to construct the solution so that higher regularity must be imposed
on the initial data and that a loss of derivatives was allowed. Preston [8] considered the
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motion of an inextensible string of finite length in the case without any external forces,
that is, in the case g = 0. Under this particular situation, he proved the existence
locally in time and uniqueness of the solution for arbitrary initial data in some weighted
Sobolev spaces. Although the weighted Sobolev spaces used by Preston [8] may seem to
be different from those used by Reeken [12, 13], their norms are equivalent so that their
weighted Sobolev spaces are identical; see Proposition 3.5. In order to solve the original
problem (1.1)—(1.3), he used the transformed problem (1.7), (1.4), and (1.3). To be
precise, in order to construct a solution he introduced a discretized problem with respect
to s and used uniform estimates for discrete solutions. Moreover, since the constraint
|2’ = 1 could not be achieved if we use the discretization method described above, he
guaranteed it by using the spherical coordinate such as @'(s,t) = (cos 0(s,t),sinf(s,t)) in
the two-dimensional case. Sengiil and Vorotnikov [15] considered exactly the same initial
boundary value problem (1.1)-(1.3) as ours and proved the existence of an admissible
Young measure solution after transforming the problem into a system of conservation
laws with a discontinuous flux. We note that the existence of such a generalized Young
measure solution does not imply the classical well-posedness of the problem. To our
knowledge, these are only results on the existence of a solution to the initial boundary
value problem (1.1)—(1.3), so that its well-posedness has not been resolved so far. We
aim to show the well-posedness of the problem (1.1)—(1.3) in the weighted Sobolev spaces
used by Reeken [12, 13] and Preston [8].

As related topics on the motion of an inextensible string, Preston [9] studied the
geodesics on an infinite-dimensional manifold of inextensible curves in the L2metric and
proved that the geodesics are determined by (1.1) and (1.2) with g = 0. Similarly,
Preston and Saxton [10] studied the geodesic on this manifold in the H'-metric and Shi
and Vorotnikov [16] studied the gradient flow of a potential energy on this manifold in
the L?-metric. Moreover, there are several results on the rotations of an inextensible
hanging string about a vertical axis with one free end under the action of the gravity. We
can observe stable configurations, in which its shape is not changing with time, when we
force to rotate the string from the upper fixed end. These configurations are related to
the angular velocity of the rotation. A representative result on this problem was given
by Kolodner [6], who proved that the corresponding nonlinear eigenvalue problem with
a constant angular velocity w has exactly n non-trivial solutions if and only if w satisfies
wp < w < wypp with w, = 0,1/|g|/4L, where o, is the n-th zero of the Bessel function
Jo(2), g is the acceleration of gravity vector, and L is the length of the string. For more
results on the rotating string, see references in Amore, Boyd, and Marquez [1]. The study
of the motion of an inextensible string has applications: see Grothaus and Marheineke [3]
to textile industry; and Connell and Yue [2]|, Lee, Huang, and Sung [7], and Ryu, Park,
Kim, and Sung [14] to flapping dynamics of a flag.

The contents of this paper are as follows. In Section 2 we begin with introducing a
weighted Sobolev space X, which plays an important role in the problem, and then state
our main results in this paper: a priori estimates for solutions in Theorem 2.1, uniqueness
of solutions in Theorems 2.3 and 2.4, and the equivalence of the original problem (1.1)-
(1.3) and the transformed problem (1.7), (1.4), and (1.3) in Theorem 2.5. In Section 3 we
explain that the weighted Sobolev space X™ that we will use in this paper arise naturally



from the standard theory of hyperbolic systems. We also prove the weighted Sobolev
space used by Preston [8] and that by by Reeken [12, 13] are the same. In Section 4 we
analyze Green’s function related to the two-point boundary value problem (1.4) to derive
precise pointwise estimates for the solution in terms of norms of the weighted Sobolev
space X for the coefficients. In Section 5 we analyze a linearized system to the problem
(1.1), (1.2), and (1.4), and derive an energy estimate for the solution. Finally, in Section
6 we prove Theorem 2.1.

Notation. For 1 < p < oo, we denote by LP the Lebesgue space on the open interval
(0,1). For non-negative integer m, we denote by H™ the L* Sobolev space of order m on
(0,1). The norm of a Banach Space B is denoted by || - ||g. The inner product in L? is
denoted by (-,)z2. We put &, = & and 9, = £. The norm of a weighted L? space with a
weight s* is denoted by ||s® uHLp, so that [|s®u||}, fo s°P|lu(s)|Pds for 1 < p < oo. Tt is
sometimes denoted by ||c®ul|z», too. This would cause no confusion. [P, Q] = PQ — QP
denotes the commutator. We denote by C'(ay,as,...) a positive constant depending on

ai,as,.... f < g means that there exists a non-essential positive constant C such that
f < Cgholds. f~ g means that f < gand g < f hold. a1 V ay = max{ay,as}.
Acknowledgement

T. I. is partially supported by JSPS KAKENHI Grant Number JP23K22404.

2 Main results

In order to state our main results, we first introduce function spaces that we are going to
use in this paper. For a non-negative integer m we define a weighted Sobolev space X™
as a set of all function u = u(s) € L? equipped with a norm | - || x= defined by

k
[l 7 +Z\|Sjaf+ju\|%z for m = 2k,

j=1
lullem = i

[l 5 + Z HSj_%afﬂuH%z for m =2k + 1.
j=1

This weighted Sobolev space X™ is essentially the same one introduced by Reeken [12, 13].

For a function u = u(s, ) depending also on time ¢, we introduce norms |[[|-|[,,, and [||-[[],,,.,
by

()1, Z 1o u@)5emss MO, = Z 107 w(t) |3
The first norm |[||-||[,, Wlll be used to evaluate @, whereas the second norm |||-[,, , will be
used to evaluate 7. However, in the critical case on the regularity index m, we need to
use a weaker norm than [[-[||,,, .. For e >0, we introduce norms || - [ x» for k =1,2,3 as

[sull2 + [|s2 <012, for k=1,
3 = 4 e+ I 2+ L2 for k=2

lull2 + ||s€u'||2 + Hs%“u”H%z + ||s%+€u’”\|%2 for k=3,
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and put

2
)l = lulxs + 10z + 107 u®)]%; -

The following theorem is one of main theorems in this paper and gives a priori estimates
for the solution (&, 7) to the problem (1.1)—(1.3).

Theorem 2.1. For any integer m > 4 and any positive constants My and cqy, there exist
a sufficiently small positive time T and a large constant C' such that if the initial data
satisfy

(2.1) {Hwb“HXm 2 < Mo,

3@2200 for 0<s<1,

where 7(s) = 7(s,0) is the initial tension, then any regular solution (x,7) to the initial
boundary value problem (1.1)—(1.3) satisfies the stability condition (1.5), ||x(t)|,, < C,
and

C_IS < T(S,t) < CS, z;n:_13 ’ag7(87t)| < 087 ‘a;n—27_(87t)| < CS%,
I (Ollpey <C in the case m > 5,

|H7'/(75)|||;),7*,e < C(e) in the case m =4
for 0 <t <T and e > 0, where the constant C(e) depends also on €.

Remark 2.2. (1) Since 7(-,t) is uniquely determined from (x(-,t),&(-,t)) as a solution
of the two-point boundary value problem (1.4), the initial tension Ti* is also uniquely
determined from the initial data (zl,2¥). Moreover, by Lemma 4.3, under the
condition |2 xm < My, we have

Tén(s) > in/ ' in/ 2 ' in/ 2
R T9 (1)+/0 sl (s)|ds exp (—/0 sl (s)] ds).
Therefore, if the initial string is in fact hanging from the fized end s = 1, that is,
if —g - (1) > 0, then the second condition in (2.1) is satisfied. Moreover, even
in the case g = 0, if the initial deformation velocity T is not identically zero, then
the second condition in (2.1) is satisfied, too.

2) Lemma 4.3 also implies that if 2 = 0, then we have LHOPN —g-x¥(1). Therefore,
1 P 0

if, in addition, —g - z'(1) < 0, then the initial tension T is negative everywhere

except at the free end s = 0, so that the equation of motion in (1.1) becomes elliptic

in space and time. As a result, the initial boundary value problem becomes ill-posed.

(3) The requirement m > 4 corresponds to the quasilinear regularity in the sense that
m = 4 1s the minimal integer reqularity index m that ensures the embedding

Co([0, T X™) N ([0, T X™ 1) — C([0,1] x [0,T7);

see Remark 3.2. Therefore, m = 4 is a critical reqularity index in the classical sense.



We then consider the uniqueness of the solution (x,7) to the initial boundary value
problem (1.1)—(1.3). To this end, we need to specify a class that the solutions belong to.
Here, we consider the solutions satisfying

(2.2) x' € L=(0,T; X*) N Wh>=(0,T; X1).

We note that if € € L>°(0,T; X*)NW1(0, T; X3), then it also satisfies (2.2); see Remark
3.2. Under the conditions (2.2), the solutions satisfy also ' € W>(0,T’; L?). In view of
these and the boundary condition x|;—; = 0, we may assume without loss of generality
that =, ' € C°([0,T]; X') N C'([0, T); L?). Therefore, the initial conditions (1.3) can be
understood in the classical sense.

Theorem 2.3. The solution to the initial boundary value problem (1.1)—(1.3) is unique
in the class (2.2) satisfying the stability condition (1.5).

In the case g = 0, if the initial deformation velocity = is identically zero, then
the initial boundary value problem (1.1)—(1.3) has a trivial solution (x(s,t),7(s,t)) =
(zi*(s),0). Since this solution does not satisfy the stability condition (1.5), we cannot
apply directly Theorem 2.3 to ensure the uniqueness of solutions in this case. Nevertheless,
by Lemma 4.4 we see that this trivial solution is the only one that does not satisfy the
stability condition (1.5) in the case g = 0. As a result, we have the following uniqueness
theorem without assuming a priori the stability condition.

Theorem 2.4. In the case g = 0, the solution to the initial boundary value problem
(1.1)~(1.3) is unique in the class (2.2).

The following theorem ensures the equivalence of the original problem (1.1)—(1.3) and
the transformed problem (1.7), (1.4), and (1.3).

Theorem 2.5. Let (x,T) be a solution to the transformed problem (1.7), (1.4), and (1.3)
in the class (2.2) satisfying the stability condition (1.5). Suppose that the initial data
satisfy |2’ (s)] = 1 and =’ (s) - 2'(s) = 0. Then, we have |x'(s,t)] = 1.

In this paper we only give the proof of Theorem 2.1.

3 Weighted Sobolev space X

3.1 Characterization of X™

The weighted Sobolev space X™ introduced in Section 2 is characterized as follows. Let
D be the unit disc in R? and H™(D) the standard L? Sobolev space of order m on D and
we define H?,(D) as a set of all radial function w = w(r) € H™(D), where r = /2?2 + y2.
For a function u defined in the open interval (0, 1), we define u(x,y) = u(x? + y?) which
is a function on D.

Lemma 3.1 ([17, Proposition 3.2]). Let m be a non-negative integer. The map X™ >
u s uf € H™(D) is bijective and it holds that ||ul wm(p) for any u € X™.

rad

xm =~ ||uf|




Remark 3.2. (1) The embedding X' — L>=(0,1) does not hold. A counter-example is
given by u(s) = log(log(%)).
(2) Unlike the standard Sobolev spaces, u € X™ does not necessarily imply v’ € X™.
A counter-example is given by u(s) = [ log(log(£))do, which is in X*. However,
in view of the embedding X? — L>(0,1) we easily check that its first derivative u'
is not in X2.
(3) Alternatively, we have ||su'||xm < [[u||xm+1 and ||u'||xm < ||ul|xm+z.

Moreover, the transformation 7 defined above has the following property.

Lemma 3.3 ([17, Proposition 3.5]). For a functionu € X?, it holds that {(su')'}* = AW,
where A is the two-dimensional Laplacian.

Remark 3.4. For a general function u = u(s) defined on (0,1), {(su')'}} = 1Au* does
not necessarily hold. A counter-example is given by u(s) = logs. Indeed, in this case, we
have {(su')'}* = 0 and Au? = w8y, where &y is the Dirac delta function at the origin.

In the remainder of this subsection, we explain that the weighted Sobolev space X
that we will use in this paper arise naturally from the standard theory of hyperbolic
systems. In the case where g is a unit constant vector, the problem (1.1)—(1.2) has a
trivial stationary solution (xs(s),7s(s)) = ((1 — s)g,s). Linearizing (1.1)—(1.2) around
this stationary solution and picking up only the highest order terms, we obtain

{agm:<sw')' in (0,1) x (0,7),

(3.1) z=0 on {s=1}x(0,T).

By introducing a new quantity x*(z,y,t) = x(2? + 42, 1), the linearized problem is trans-
formed equivalently into

(3.2) {(fﬁ =3Az" in D x(0,7),

i =0 on 0D x (0,7T),

where we use Lemma 3.3. It is well-known that the initial boundary value problem
corresponding to (3.2) is well-posed in the class (2, C7([0,T]; H;7(D)). Therefore,

rad
Lemma 3.1 implies that the initial boundary value problem corresponding to (3.1) is also

well-posed in the class ();2, C7([0,T]; X™7). Thus, we are naturally led to the weighted
Sobolev space X™.

3.2 The weighted Sobolev spaces N,, by Preston and X™ by
Reeken

For a non-negative integer m, we let N,, be the weighted Sobolev space introduced by
Preston [8], namely, a set of all function u = u(s) € L? equipped with a norm |jul|x,

defined by
mo .
Mh=2£§@wm
j=0

Then, we have the following equivalence.
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Proposition 3.5. For any non-negative integer m, it holda that N,, = X™ and that the
norms || - ||n,, and || - ||x= are equivalent.

Proof. Obviously, we have ||u||n,, < ||u||xm=. Therefore, it is sufficiently to show ||u|xm <
||| N, in the case m > 2.
Let r > —1. Then, we see that

(D) = /0 (5" Hu(s)])'ds = /0 {(r+ Ds"u(s)* + 25" u(s)u'(s) bds,

This implies

4 v
. +1]u(1)]2 + CENE /0 s"T2|u (s)2ds.

1
/ s"u(s)|?ds <
0

Using this inductively, we obtain

1
0

1 l
(3.3) / s"u(s))?ds < Z |0Lu(1))? + / s 19 (6))2ds
0 i=0

forl =0,1,2,.... We note also that by the standard Sobolev embedding theorem we have

m—1

> 1u)] S Hlully,.

Jj=1

We first consider the case m = 2k with £ > 1. For any j € {1,2,...,k}, it follows
from (3.3) with r =0 and [ = j — 1 that

1
2
N’IYL.
0

1 j—1
/ Diu(s)Pds S 30 u(1) + / 2910%u(s) 2ds < [lul
0 i=0

Similarly, for any j € {1,2,...,k — 1}, it follows from (3.3) with r =2j and l =k —j5—1
that

k—j—1

1 1
|k uePs £ Y o+ [ st eulPds £ ul,,
0 0

1=0

These estimates give ||u||xm < ||ul|n,,-
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We then consider the case m = 2k +1 with £ > 1. For any j € {1,2,...,k}, it follows
from (3.3) with r =0 and [ = j — 1 that

1
0

1 J—1
| ks £ 3o + [ sigspds <
0 i=0

Similarly, for any j € {1,2,...,k}, it follows from (3.3) with r =2j — 1l and | = k — j
that

k—j

1 1
| o £ 3 10 P 4 [ () s £ ul,,
0 0

1=0

These estimates give |[u||xm < ||u||n,,. This completes the proof. O

4 Two-point boundary value problem

In this paper, we evaluate the solution x of (1.1) in the weighted Sobolev space X™
by using the energy method. This requires to evaluate the solution 7 of the two-point
boundary value problem (1.4) also in a weighted Sobolev space. To this end, we express
the solution 7 by using Green’s function of the problem and evaluate it through precise
pointwise estimates of Green’s function.
In view of (1.4) we will consider the two-point boundary value problem
(41) {—7‘” +|z"?’r=h in (0,1),
7(0) =0, 7(1)=a,

where x(s) and h(s) are given functions and «a is a constant.

4.1 Green’s function

As is well-known, Green’s function to the boundary value problem (4.1) can be constructed
as follows. Let ¢ and 1 be unique solutions to the initial value problems

4.2 —¢"+ &P =0 i (0,1),
(4.2) {w(0)=07 #(0) =1,
and

—" 4+ |22 =0 in (0,1),
4.3
(4.3) {z/»<1>=17 v =0,

respectively. The Wronskian W (s; ¢, 1) = ¢(s)Y/'(s) — ¢'(s)1¥(s) is a non-zero constant
since the uniqueness of solutions to the boundary value problem (4.1) is easily verified.
Particularly, we have W (s;p, 1) = —¢'(1). A sharp estimate for ¢'(1) will be given
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below; see Lemma 4.1. In terms of these fundamental solutions, Green’s function to the
boundary value problem (4.1) is given by

o(s)(r) or s <y

G(s,r) = ot s
7 M for r<s<1
©'(1) -

Particularly, the unique solution to the problem (4.1) can be expressed as

_ P06 W) [T e P ! (e
=) +¢,(1)/0 ¢(o)h(o)d +w,(1)/5 P(o)h(o)do.

We proceed to evaluate these fundamental solutions ¢ and ).

(4.4) 7(s)

Lemma 4.1. Let ¢ be a unique solution to (4.2). Then, for any s € [0,1] we have

1< @/(s) < exp(floza”||2,),
s < ¢(s) < sexp(loza”||2,).

Proof. 1t is sufficient to show the first estimate because the second one can easily follow
from the first one by integrating it over [0, s] and by using the initial condition ¢(0) = 0.

We first show that ¢(s) > 0 for all s € (0,1]. In view of the initial conditions at
s =0, we have ¢(s) > 0 for 0 < s < 1. Now, suppose that there exists s, € (0,1] such
that ¢(s,) = 0. We can assume without loss of generality that ¢(s) > 0 for 0 < s < s,,
so that ¢/(s.) < 0. Then, we have ¢"(s) = |z"(s)|?p(s) > 0 for 0 < s < s,. This
implies that ¢(s) is non-decreasing in the interval [0, s.], so that ¢'(s,) > ¢/(0) = 1. This
contradicts with ¢(s,) < 0. Therefore, ¢(s) > 0 holds for all s € (0,1]. Particularly,
¢'(s) is non-decreasing in the whole interval [0, 1], so that we obtain ¢'(s) > ¢'(0) =1
for all s € [0, 1.

We proceed to show the upper bound of ¢'(s). Since ¢/(s) is a non-decreasing function,
we have p(s) = [/ ¢'(0)do < s¢/(s). Therefore, we see that

s

o) =1+ [ oo =1+ [ o)Petors <1+ [ ola’(o) (0)do,

which together with Gronwall’s inequality yields ¢'(s) < exp( [, o|z”(0)[*do). This gives
the desired estimate. O

Lemma 4.2. Let 1) be a unique solution to (4.3). Then, for any s € [0,1] and any o > 0
we have

0> s%/(s) > —llo%a” |7, exp(lloza”|}2).

{1 < (s) < exp(|loza”||2.),

Proof. We first show that ¢(s) > 0 for all s € [0,1]. In view of the initial condition
(1) = 1, we have 9(s) > 0 for 0 < 1 — s <« 1. Now, suppose that there exists
s« € [0,1) such that 1(s,) = 0. We can assume without loss of generality that 1(s) > 0

12



for s, < s <1, so that ¢'(s.) > 0. Then, we have 1"(s) = |x"(s)|*1(s) > 0 for s, < s < 1.
This implies that ¢’(s) is non-decreasing in the interval [s,, 1], so that ¢/(s) < ¢/(1) =0
for all s € [s,,1]. This implies that v(s) is non-increasing in the interval [s,, 1], so that
P(s.) > (1) = 1. This contradicts with 1 (s,) = 0. Therefore, 1(s) > 0 holds for all
s € [0,1]. Particularly, ¥"(s) > 0 holds for all s € [0,1], which implies in turn that
Y'(s) <0 and ¢(s) > 1 for all s € [0,1].

We then show the upper bound of 9 (s). Noting that 1(s) is a non-increasing function
and that ¢'(1) = 0, we see that

(45)  Pls)=— / ¥"(0)do = — / 2" (0) 2 (0)do > — / 2" (o) 2o (s),

which together with Gronwall’s inequality and (1) = 1 yields

(s) < exp (/1 /01 ]w”(&)]2d6d0> < exp (/01 a\w"(awda) |

This shows the desired upper bound.
We finally show the lower bound of ¢/(s). It follows from (4.5) that

1
() 2 - [ e (o) Pdouls)
which together with the upper bound of 1(s) gives the desired one. [l

4.2 Preliminaries

In view of (1.4) we first consider the case where h(s) is non-negative.

Lemma 4.3. Let 7 be a unique solution to the boundary value problem (4.1). Suppose
that h(s) > 0 and a + ||oh|| 1 exp(—|loz2"|%,) > 0. Then, for any s € [0,1] we have

sfa+ |lohl exp(=lloza"|7.)} exp(—[lo2a”|72) < 7(s) < s(a+ b)),
a—(a+hll)llo?a"|fe < 7'(s) < a+ Al

Proof. We remind that the solution 7 is expressed by Green’s function as (4.4). Under
the assumptions, by Lemmas 4.1 and 4.2 we see that

w62 2 v e(-lotall) [ etohiorio + [ vionio)is ]

#'(1)

G 1|2 SJLO' o + exp(—|lozz”|? 1O'LJ o
> Sl Laven-lota’g) [ onlono + exp(-lota ) [ onto)ds )
_ () a+ exp(—|lozz"||2) |loh| 11
~ Lo+ es(—lota’ ) o)

1 1
> sexp(—|lo2@”|72){a + exp(—[lo2a”|[7:)llohl| 1},
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which implies the lower bound of 7(s). Integrating the equation for 7 over [s, 1], we have

T(s) + / 1 2" (0)*7(0)do = a + / 1h(a)da.

Since the positivity of 7(s) is already guaranteed, this implies the upper bound of 7/(s),
and then that of 7(s). As for the lower bound of 7/(s), we see that

“s) > a— / & (o) Pr(o)do > a— (a+ HhHLI)/ o|2" (o) [2do.

This gives the desired estimate. O

4.3 Stability condition in the case g =0

As an application of Lemma 4.3, in the case g = 0, we prove that the trivial solution the
problem (1.1)—(1.3) is the only one that does not satisfy the stability condition (1.5).

Lemma 4.4. Let g = 0 and (x,7) be a solution to the problem (1.1)~(1.3) in the class
(2.2). Suppose that the stability condition (1.5) is not satisfied, that is,

(
(4.6) SN 1)
(s,)e(0,)x(0,T) S

<0.

Then, we have x(s,t) = x'(s) and 7(s,t) = 0. Particularly, 1*(s) = 0 must hold.

Proof. By Lemma 4.3 we see that Z20 > |lg2a/(1)]|2, exp(—2[|oz2"(1)||2,) for any (s, () €

s

(0,1] x [0, T]. Then, continuity of the right-hand side with respect to ¢ together with (4.6)
yields that there exists a ty € [0,7] such that &'(s,fy) = 0, which together with the
boundary condition (1.2) implies &(s,ty) = 0. On the other hand, we see easily that

4 1 1 1
—/ |a':(s,t)|2ds:2/ i-a’:ds=2/ (ra') - &ds = —2/ T’ - &'ds =0,
dt Jo 0 0 0

where we used @’ - ' = 0, which comes from the second equation in (1.1). Therefore,
for any t € [0,T], it holds that ||@(¢)||z2 = ||&(to)]|zz = 0. This implies x(s,t) = 0,
and hence we have x(s,t) = x(s) and "(s) = 0. Moreover, by Lemma 4.3 we obtain
0 < 7(s,t) < slj&/(t)]|3. = 0, which implies 7(s,¢) = 0. O

4.4 Estimate of solutions

We proceed to give estimate for the solution 7 to the problem (4.1) without assuming the
non-negativity of h(s) and a. Such estimates will be used to evaluate the derivatives of 7
with respect to t.

Lemma 4.5. For any M > 0 there exists a constant C = C(M) > 0 such that if
Ha%w”HLz < M, then the solution T to the boundary value problem (4.1) satisfies

m(s)] < Clals + lo®hllL1s' =),
s?|7'(s) < C(lals® + [lo®h] 1)

for any s € [0,1] and any « € [0, 1].
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Proof. 1t follows from Lemmas 4.1 and 4.2 that ¢(s) ~ s, ¢'(s) >~ 1, ¥(s) ~ 1, and
sl (s)| < 1. Since the solution 7(s) is expressed as (4.4), we have

S

1 1
I7(s)| < lals +/ o|h(o)|do + s/ |h(o)|do < |als + 81_"/ a“|h(o)|do.
0 s 0
This gives the first estimate of the lemma. In view of

©'(s)
¢'(1)

(4.7) 7'(s)=a /03 w(o)h(o)do + / YP(o)h(o)do,

we see that
s 1 1
s (s)] < lals* + so‘\w'(s)]/ O"h(O')’dO'-i—Sa/ |h(o)|do < |als® +/ o®|h(o)|do.
0 s 0

This gives the second estimate of the lemma. O

In general, if h(s) has a singularity at s = 0, then so is 7/(s). To evaluate the singularity
in terms of I”-norm, the above pointwise estimate does not give a sharp one. Next, we
will derive a sharp L? estimate for 7/(s). To this end, we prepare the following calculus
inequality.

Lemma 4.6. Let 1 < p < oo and o+ % >0, and put H(s) = fsl h(o)do. Then, we have

1
s Hl|p < ———[|s™ 2 1.

()7

Proof. The case p = oo is trivial, so that we assume p < co. We may also assume without
loss of generality that h(s) is non-negative. By integration by parts, we see that

1 1 p
JsHl = [ ( / h(a)da) as
0 s
1 1 Pt p 1 -1 p—1
— {ap%— 15ap+1 </5 h(a)da) ]0 + . (/0 sPHLp(s) (/S h(a)da) ds
—1

p 1 1 1 1 P
= / s o h(s) <5a+v / h(a)da) ds
ap+1 J, s

P 1 ) P
< (/ sa+ph(s)ds) .
ap+1\J,

Therefore, we obtain the desired estimate. [l

Lemma 4.7. For any M > 0 there exists a constant C' = C(M) > 0 such that if
|o2a”|| 2 < M, then the solution T to the boundary value problem (4.1) satisfies

127 |o < C(la] + ||s°T7 R 11)
or any p € |1,00] and any o > 0 satisfying oo + - < 1.
f 1 d > 0 satisfyi ; <1
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Proof. The case p = oo has already been proved in Lemma 4.5, so that we assume p < oco.
It follows from (4.7) and Lemmas 4.1 and 4.2 that

S 1
SIS lalst s (9)] [ olhlo)lda s [ (o)l
0 s
s 1
< Jals® + s | (s)] / o®" e |h(o)|do + 5“/ |h(o)|do.
0 s
Here, in view of (4.5) we have |¢/(s)| < fsl |z"(c)|?do, so that by Lemma 4.6 we get

1 1
Is" 2 llze S llsla” |z = [ls22”|7> < 1.

~

Therefore, by Lemma 4.6 again we obtain

15T || r < la] + (1 +

==

1 o+l
<—1)Hs TR
«

LA

Since (a + %)% > (}D) > exp(exp(—1)), we obtain the desired estimate. O

5 Energy estimate for a linearized system

In this section we derive an energy estimate for solutions to a linearized system for (1.1),
(1.2), and (1.4). We denote variations of (x,7) by (y,v) in the linearization. Then, the
linearized system has the form

y + (Ty/)/ + (V$/)/ - f in <07 1) X (07 T)7
(51) x' - y/ = f n (07 1) X (07 T)7
y = on {s=1}x(0,7),
and
Ve Py =23 -y 22" -y")r+h in (0,1) x (0,T),
(5.2) v=20 on {s=0}x(0,7),

V=—-g-vy on {s=1}x(0,7),
where f, [, and h can be regarded as given functions. As for @, we assume that

(5.3) & (0 + 1(8) [0 < M,
(5.4) le(t)]lxs + l(0)]l x> < A,

for 0 < ¢ <T. We are going to evaluate the functional F(t) defined by

E(t) = @)% + ly@)%--
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Proposition 5.1. For any positive constants My, M, and ¢y and any ¢ € (0, %), there
exist positive constants Cy = C(My, cy) and Cy(e) = C(M, My, co,€) such that if (x,T)
is a solution to the problem (1.1)—(1.2) satisfying (5.3), (5.4), and the stability condition
(1.5), then for any solution (y,v) to (5.1)—=(5.2) we have

E(t) < Ot <E(0) + 51(0) + Cy(e) / t Sg(t’)dt’> :
where

Sa(t) = | £II72 + s> flIZ72 + 1 fls=a [ +
We omit the proof of this proposition.

shllfs + lls2h][3.

6 A priori estimates of solutions

In this section we prove Theorem 2.1; see Subsection 6.4. For this purpose, we prepare
some lemmas in Subsections 6.1-6.3. We omit proofs of these lemmas.

6.1 Estimates for the tension 7

We derive estimates for the tension 7. In the case m > 5 we obtain the following lemma.

Lemma 6.1. Let M be a positive constant and m and j integers such that m > 5 and
0 <j<m—2. There exists a positive constant C' = C(M,m) such that if x satisfies

Jj+1

D9t (0)]xme < M,
=0

then the solution T to the boundary value problem (1.4) satisfies the following estimates:
1677 (1) || poorxm-1-5 < C in the case j < m — 3,
10727 (1) |2 < C in the case j =m — 2.

In the case m = 4 we cannot expect that the estimates for the tension 7 obtained in

Lemma 6.1 hold. In this critical case, we obtain weaker estimates for the tension 7, which
are given in the following lemma.

Lemma 6.2. Let M be a positive constant and 7 an integer such that 0 < j < 2. For any
€ > 0, there exists a positive constant C(e) = C(M,€) such that if T satisfies

Jj+1

(6.1) D100 xi-t < M,
=0

then the solution T to the boundary value problem (1.4) satisfies the following estimates:

Hang(t)HXg—j < 0(6) i the case 7 = 0,1,
Hat27—/(t)HX€1 < C(e) in the case j = 2.

In addition to (6.1) with j = 2, if we assume |0y’ (1)|| L~ < M, then we have H’T/(IL)’H?,* <

C, where C = C(M) > 0.
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6.2 Estimates for initial values

In this subsection we evaluate the initial value [|2(0)||,, in terms of the initial data
|lz£(0)||x= and ||&(0)]xm-1. Although it is sufficient to evaluate d{x only at time ¢ = 0,
we will evaluate them at general time ¢.

Lemma 6.3. Let M be a positive constant and m an integer such that m > 4. There
exists a positive constant C' = C'(M,m) such that if (x,7) is a solution to (1.1) and (1.2)
satisfying ()]l xn + [0(0) [ xs < M, then we have [l@(V)l], < C.

6.3 Estimates for the position vector x

Lemma 6.4. For any integer m > 4 and any positive constants My, My, and cq, there
exists a positive constant Cy = Cy(My, My, co,m) such that if (x, ) is a reqular solution
to (1.1) and (1.2) satisfying the stability condition (1.5) and

62) 2 (E)ll,_y < M,
107" ()13 + 110" 22 (6)][ 32 < Mo,
then we have ||x(t)]|| < Cs.

[l

6.4 Proof of Theorem 2.1

We are ready prove Theorem 2.1. We are going to show that for any regular solution
(x,7) to the problem, if the initial data satisfy (2.1), then the estimates in (6.2) hold
in fact for 0 < ¢ < T by choosing appropriately the positive constants M;, M, and the
positive time 7. In the following, we simply denote the constants Cy = C'(My, co,m),
Cy = C(My,co,m), and Cy = C(May, My, co,m). These constants may change from line
to line.

Suppose that the initial data (', z) satisfy (2.1) and that (x, 7) is a regular solution
to the problem (1.1)—(1.3). By Lemmas 6.3, 6.1, and 6.2, we have

ll2(O)l,p, + 7' Ol 2. < Cor
Cyts < 7(s,0) < Cps, Z;ﬂ:_lg 107(s,0)| < Cps.

Suppose also that the solution (x,7) satisfies (6.2) for 0 < ¢ < T, where the constants
My, My, and time T will be defined later. Then, by Lemmas 6.4, 6.1, and 6.2, we have

2@, < Co, |
Crls <7(s,t) < Cis, Z;n:_f’ 007(s,1)] < Cas, |07 27(s,1)] < Cys2,
N7 (Ollyey < G2 in the case m > 5,

17 Oll3.. . < Co in the case m = 4 with € = §

for 0 <t <T. Here, we note that there is no special reason on the choice ¢ = %1 and that
we can choose ¢ arbitrarily such that 0 < € < % Put y = 0" %x and v = 9" *7. Then,
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we see that (y,r) satisfies the linearized system (5.1) and (5.2) with (f, f, h) given by
f = {02 — (07 *r)al — oy Y
1
f= —5{8;”_2(33' x') - 22 - 0" 2},
h={0/ 2@ &) — 22" 0" 22’}

_ {0?_2<7’$” . wu) _ ((9;”_27')$” L2 — orp" . azn—Qw//}'

Therefore, by Proposition 5.1 we obtain the energy estimate
t
(6.3) E(l) < O (E(O) + 51(0) + Cg/ Sg(t’)dt’) ,
0

where E(t) = [9(t)[%: + ly@)I%: = 107 2@)l%: + 10" 2 (t)[|%2, and Si(t) and Ss(t)
are defined by (5.5).

Lemma 6.5. It holds that E(0) + 51(0) < Cy and Sa(t) < Cs.

We also omit the proof of this lemma. This lemma and (6.3) implies F(t) < C1e“2!(Co+
Cst). On the other hand, it is easy to see that ||l (¢)]]],,_; < [|l=(0) ]Hm_l—kf(fmw(t’)mmdt’ <

Co + Cst and that @ > @ — %jg |07 (s,t")|dt" > 2¢y — Cot. Summarizing the above
estimates, we have shown

07 (@) [Rs + 10722 ()[R < Cre®!(Co + Cat),
lz@)ll,,r < Co+ Cat,
@ Z 200 — Ogt

Now, we define the constants M; and M,y by M; = 2Cy and My = 4CyC'; and then choose
the time 7" so small that CoT < min{Cy, co,log2}. Then, by the standard argument
we see that the solution (x,7) satisfies in fact (6.2) for 0 < ¢t < T and the estimates
in Theorem 2.1 follows from Lemmas 6.4, 6.1, and 6.2. The proof of Theorem 2.1 is
complete. O
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