Existence of homogeneous Euler flows of degree —a ¢ [-2, 0]
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1 Introduction

This article is based on the paper [Abe24]. In this study, we investigate (—a)-homogeneous
solutions to the Euler equations in R*\{0} for & > 0 and in R? for o < 0:

u-Vu+Vp =0, 11

V-u=0. (D
We say that u = (u', u?, u?) is (—a)-homogeneous if there exists @ € R such that u(x) = A%u(Ax)
for all A > 0 and x = (x1, x2, x3). We say that (i, p) is a (—a)-homogeneous solution to (1.1) if
(—a)-homogeneous u and (—2a)-homogeneous p satisfy (1.1).

The well-known (—1)-homogeneous solutions to the Navier—Stokes equations are the Landau
solutions [Lan44], [Squ51], [LL59, p.81], [Bat99, p.205], [TX98], [CK04]. They are explicit
solutions, smooth away from the origin, and axisymmetric without swirls. Tian and Xin [TX98]
showed that all axisymmetric (—1)-homogeneous solutions u € C*(R3\{0}) to the Navier—Stokes
equations are the Landau solutions. Sverdk [S11] demonstrated that all (—1)-homogeneous
solutions u € C*(R"\{0}) for n = 3 are the Landau solutions, as well as the nonexistence of
(—1)-homogeneous solutions for n > 4 and their rigidity for n = 2 under the flux condition. The
Landau solutions are relevant to the regularity of stationary solutions [S11] and their asymptotic
behavior as x| — oo [S11], [Kv11], [MT12], [KMT12].

It is conjectured in the work of Sverdk [S11] that the Landau solutions are rigid among all
smooth solutions in R3\{0} satisfying the following:

C
()l < R R*\{0}.

Korolev and Sverdk [Kv11] and Miura and Tsai [MT12], [Tsal8, 8.2] demonstrated that this
conjecture holds for small constant C. Li et al. [LLY18b] discovered explicit axisymmetric
(—1)-homogeneous solutions without swirls smooth away from the negative part of the x3-axis,
i.e., uls € C*(S?\{S}) for the South pole S. The work [LLY 18b] also demonstrates the existence
of axisymmetric (—1)-homogeneous solutions with swirls uls> € C*(S?\{S}). The subsequent
works [LLY 18a] and [LLY 19] show the existence of axisymmetric (—1)-homogeneous solutions
with swirls smooth away from the x3-axis, i.e., uls> € C*(S*\{S U N}). Kwon and Tsai [KT21]
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explored the bifurcations of the Landau solutions in the class of axisymmetric and discrete
homogeneous (self-similar) solutions.

Luo and Shvydkoy [LS15] and Shvydkoy [Shv18] investigated homogeneous solutions to
the Euler equations. The work by Shvydkoy [Shv18] is motivated by Onsager’s conjecture
[Ons49], [Shv10], [DLS13], [Ise13], [CS14a]. We refer to the book of Bedrossian and Vicol
[BV22, 6.1.2] for the introduction to Onsager’s conjecture. The work [Shv18] demonstrates the
nonexistence of (—a)-homogeneous solutions to the Euler equations in the following cases.

Case 0: Irrotational flows V X u = 0. (—a)-homogeneous solutions (u, p) € C'(R*\{0}) exist if
and only if o € Z\{1}. They are given by spherical harmonics.

Case 1: @ = 1. No (-1)-homogeneous solutions (u, p) € C'(R*\{0}) exist.

Case 2: a > 1. For 1 < @ < 2, no (—a)-homogeneous solutions (i, p) € C'(R*\{0}) exist other
than the irrotational solution among the following:

(A) Beltrami flows (V X u) X u = 0 or
(B) Axisymmetric flows.

Case 3: @ < 1. Inclasses (A) for @ < 1 and (B) for 0 < @ < 1, no (—a)-homogeneous solutions
(u, p) € C*(R*\{0}) exist other than the irrotational solutions.

These rigidity results are based on the homogeneous solution’s equations on the sphere
[S11], [Shv18] and do not assume their continuity at x = 0 for @ < 0. We include them [Shv18]
in the main statements of this study ((i) and (ii) of Theorems 1.1, 1.4, and 1.5, except (ii) of
Theorem 1.4 for -2 < a < 0).

On the existence side, only explicit homogeneous solutions to (1.1) are known [LS15],

[Shv18] (Remarks 1.6). This study aims to show the existence of axisymmetric homogeneous
solutions. We use the cylindrical coordinates (r, ¢, z) defined by the following:

X] =rcos¢p, x;=rsing, x3=2,
and the associated orthogonal flame

cos ¢ —sin¢ 0
e,:[sinqﬁ ] e¢:[ cos ¢ ) ezz[O].
0 0 1

For axisymmetric u = u"e, + u’e, + ue,, we denote the poloidal component by u” = u’e, + ue,
and the toroidal component by u?e,. We say that u is axisymmetric without swirl if u? = 0.



1.1 Statements of the main results

We consider continuously differentiable (—a)-homogeneous solutions (u.p) € C'(R3\{0}) for
a > 2 in R*\{0} and continuous (—a)-homogeneous solutions (u.p) € C(R?) for @ < 0 in R?
satisfying (1.1) in the distributional sense. We say that a (—a)-homogeneous solution (u.p) €
C(R?) for a < 0 is a Beltrami flow in R? if the Bernoulli function IT = p + |u|*/2 vanishes.

Theorem 1.1. The following holds for rotational Beltrami (—a)-homogeneous solutions to
(1.1):

(i) For 1 < a < 2, no solutions (u, p) € C'(R*\{0}) exist.

(ii) For a < 1, no solutions (u, p) € C2(R3\{0}) exist.

(iii) For a > 2, axisymmetric solutions (u, p) € C'(R3\{0}) such that u”, p € C*R*\{0}) and
uey € CHR\{0}) exist.

(iv) For a < 0, axisymmetric solutions (u, p) € C(R?) such that u”, p € C'R3\{r = 0}) N C(R?)
and u’e, € C(R?) exist.

(a) Beltrami (—a@)-homogeneous solutions in Theorem 1.1.

(b) Axisymmetric (—«)-homogeneous solutions without swirls
in Theorem 1.4.

a

(¢) Axisymmetric (—a)-homogeneous solutions with a non-
constant Bernoulli function in Theorem 1.5.
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(d) 2D reflection symmetric (—a)-homogeneous solutions in
Theorem 1.7.

Figure 1: The existence and nonexistence ranges of (—a)-homogeneous solutions to (1.1) in Theorems 1.1, 1.4, 1.5, and 1.7.
The yellow dots represent irrotational solutions. The blue dot and line represent the nonexistence range (i). The blue

dashed line represents the nonexistence range (ii). The red line represents the existence range (iii). The dashed red
line represents the existence range (iv).

Remarks 1.2. (i) A vector field u € C' is a Beltrami flow if there exists a proportionality factor
¢ such that

VXu=pu, V-u=0. (1.2)

The factor ¢ is a first integral of u, i.e., u - Vo = 0, and streamlines of u are constrained on the



level sets of ¢. It is known [EPS12], [EPS15] that there exists a smooth Beltrami flow with a
constant factor ¢ = const. in R? having arbitrary knotted and linked vortexlines and decaying
by the order u = O(|x|™") as |x| — o.

(i) It is known [Nad14], [CC15], [CW16] that the locally square integrable Beltrami flows in
R? do not exist if u = o(|x|™") as |x| = oo, cf. [EPS12], [EPS15].

(>iii) It is also known [EPS16] that the smooth Beltrami flows in a domain do not exist if the
proportionality factor ¢ € C**” (0 < y < 1) admits a level set diffeomorphic to a sphere, e.g.,
radial or having local extrema.

(iv) Constantin et al. [CDG] demonstrate that the axisymmetric Beltrami flows in a hollowed-
out periodic cylinder are translation invariant if the poloidal component u” has no stagnation
points in the cross-section, cf. [HN17], [HN19].

(v) There exist asymptotically constant axisymmetric Beltrami flows in R? with a nonconstant
factor ¢ # const. whose level set is a ball [Mof69], a solid torus [Tur89], and nested tori
[Abe22].

(vi) Axisymmetric Beltrami (—a)-homogeneous solutions u € C'(R*\{0}) for @ > 2 in Theorem
1.1 (iii) possess the axisymmetric stream function (z, r) and the proportionality factor

1
¢:c(1+ )|¢/|~+z. (1.3)
a-2
This solution is not square integrable at x = 0 and decaying faster than o(|x|™!) as |x| — oo,
cf. [Nad14], [CC15], [CW16]. The level sets of the proportionality factor ¢ are nested surfaces
created by the rotation of multifoils, cf. [EPS16] (Remark 1.12). The solution u € C(R?) for

a < 0in Theorem 1.1 (iv) is growing as |x| — oo.

A simple class of rotational flows with a nonconstant Bernoulli function is as follows:
(C) Radially irrotational flows VX u - x = 0.

We remark that the tangentially irrotational homogeneous flows (VXu)Xx = 0 are irrotational
(Remark 2.14). The radially irrotational flows include axisymmetric flows without swirls. On
the contrary, we demonstrate the following:

Theorem 1.3. All radially irrotational (—a)-homogeneous solutions (u, p) € C*R3\{0}) for
a € R with a nonconstant Bernoulli function to (1.1) are axisymmetric without swirls.

The existence and nonexistence ranges of axisymmetric (—a)-homogeneous solutions with-
out swirls are split into @ € R\[-2,2] and « € [-2,2].

Theorem 1.4. The following holds for rotational axisymmetric (—a)-homogeneous solutions
without swirls to (1.1):

(i) For 1 < « < 2, no solutions (u, p) € C'(R*\{0}) exist.

(ii) For =2 < a < 1, no solutions (u, p) € C*(R3\{0}) exist. For @ = =2, no solutions (u, p) €
C?(R3\{0}) exist provided that V X u - ey /1 vanishes on the z-axis.

(iii) For a > 2, solutions (u, p) € C*(R*\{0}) exist.

(iv) For a < =2, solutions (u, p) € C'(R*\{0}) N C(R?) exist.



We state a general existence result on axisymmetric (—a)-homogeneous solutions with a
nonconstant Bernoulli function.

Theorem 1.5. The following holds for rotational axisymmetric (—a)-homogeneous solutions to
(1.1):

(i) For 1 < « < 2, no solutions (u, p) € C'(R3\{0}) exist.

(ii) For 0 < a < 1, no solutions (u, p) € C*(R3\{0}) exist.

(iii) For a > 2, solutions (u, p) € C'(R3\{0}) such that u”, p € C*(R3\{0}) and uley € C'(R3\{0})
exist.

(iv) For a < =2, solutions (u,p) € C(R?) such that u”,p € C'(R*\{r = 0})) N C(R?) and
u’ey € C(RY) exist.

Remarks 1.6. (i) The explicit rotational axisymmetric (—a)-homogeneous solution with a non-
constant Bernoulli function (u, p) exists for @ < 0 [Shv18, p.2521, (13)]:
X1 —X2 0
(¢4 b = o
u(x) = 192—2x3 K2 » |- 5— = x |+d°K2| 0],
X + X5 0 X7+ X 0 1

1 2
K(x) = (az(xf + x%) - b2x§)+ ., a+b =1, ap=0, a<0.

Here, s, = max{s,0} for s € R. For b = 0, u = r %, is without swirl and belongs to C'(R?)
for @ < —1 and C*(R?) for @ < —2. For @ = -2, the toroidal component of vorticity is
V Xu-ey/r = =2, cf. Theorem 1.4 (ii). For b # 0, u is with swirls, belongs to C'(R?) for
@ < =2, and is supported in the wedged region {a’r* — b?z> > 0}. In particular, uls> is compactly
supported in {fy < 8 < 71— 6, 0 < ¢ < 2x} on S? for §, = arctan |b/al, cf. Theorem 1.5 (iv).

Here, 6 is the geodesic radial coordinate on S? (Section 2). This solution is as follows:
(D) Geodesic flows (1 - Vu) x u = 0.

Namely, streamlines are rays. The solutions of (1.1) with a constant pressure are geodesic

flows. It is demonstrated in the work of Shvydkoy [Shv18, Proposition 5.3] that all axisym-
metric (—a)-homogeneous solutions u € C'(R*\{0}) with a constant pressure p are this solution
or the irrotational solution for @ = 2. We remark on the existence of compactly supported
inhomogeneous axisymmetric solutions with swirls in R? [Gav19], [CLV19], [DVEPS21] and
compactly supported vortex patch solutions in R? [GSPS]. Baldi [Bal] discusses the streamline
geometry of compactly supported inhomogeneous axisymmetric solutions with swirls.
(ii) The two-dimensional (2D) (—a)-homogeneous solutions u = (u',u?,0) can exist for all
a € R. Luo and Shvydkoy [LS15], [Shv18, 2.2] found several explicit solutions and investigated
the streamlines of (—a)-homogeneous solutions based on the stream function’s Hamiltonian
PDE. The pressure p of 2D (—a)-homogeneous solutions is constant on the circle » = 1. In fact,
for any @ € R,



a [ 77 a\ 1
u(x) = o )8 , px) = _(Z) S @ €R,

is a radially symmetric (—a)-homogeneous solution (a circular flow) to (1.1) in R3\{r = 0} for
@ > 0 and in R? for @ < 0, cf. Theorem 1.5 (i) and (ii). All 2D radially symmetric (—a)-
homogeneous solution for @ € R\{1} is this solution (Theorem A.1). The work by Shvydkoy
[Shv18, Proposition 4.1] demonstrates that all (—)-homogeneous solutions (i, p) € C'(R*\{0})
to (1.1) are 2D radially symmetric solutions for @ < —1, provided that

(E) Tangential flows u - x = 0.

Guo et al. [GHPWar], [GPW23] demonstrated that the radially symmetric 1-homogeneous
solution is stable in the axisymmetric Euler equations via the Euler—Coriolis equations.

Noncircular streamlines appear for the following:

(F) 2D reflection symmetric flows u = (u!, u?,0),
Ml(xl, X2) = Ml(xl, —X2),
Mz(xl,xz) = —Mz(xl, —X2),
p(x1, x2) = p(x1, —x2).

Irrotational 2D reflection symmetric (—a)-homogeneous solutions u = (u!, u?,0) € C'(R?\{0})
to (1.1) exist if and only if & € Z (Theorem A.2). They are constant multiples of the following:

(1.4)
Oy
u= _({)llp » a EZ\{1}7
0
for the stream function
Y(x1,x2) = Sln(”¢), n=a-1l. (1.5)
rn

Figure 2 shows the level sets of ¢ for n = +1, +2, and +3.

We consider 2D reflection symmetric (—a)-homogeneous solutions # € C'(R?\{0}) for & > 0
in R?\{0} and u € C(R?) for & < 0in R? satisfying (1.1) in the distributional sense. The existence
and nonexistence ranges of 2D reflection symmetric (—«)-homogeneous solutions are split into
a € R\[-1,1] and « € [-1, 1], cf. Theorem 1.4.



Theorem 1.7. The following holds for rotational 2D reflection symmetric (—a)-homogeneous
solutions u = (u',u?,0) and r**p = const. to (1.1):

(i) For 0 < @ < 1, no solutions u € C'(R*\{0}) exist.

(ii) For =1 < a < 0, no solutions u € C*(R?\{0}) exist.

(iii) For a > 1, solutions u € C*(R*\{0}) exist.

(iv) For a < —1, solutions u € C'(R*\{0}) N C(R?) exist.

The stream function level sets {f = +C} for C > 0 of the rotational 2D reflection symmetric
(—a)-homogeneous solutions for @ > 1 in Theorem 1.7 (iii) are unions of the Jordan curves
sharing the origin (multifoils). For @ = 2, the stream function level sets of the irrotational 2D
reflection symmetric (—2)-homogeneous solution consist of the Jordan curves {¢y = C} in the
upper half plane and the Jordan curves {{f = —C} in the lower half plane (n = 1 in Figure 2).
We show the existence of rotational (—a)-homogeneous solutions for 1 < @ < 2 whose stream
function level sets are homeomorphic to those of the irrotational 2D reflection symmetric (—2)-
homogeneous solution.

Theorem 1.8. For 1 < a < 2, there exist rotational 2D reflection symmetric (—a)-homogeneous
solutions u € C*(R*\{0}) to (1.1) whose stream function level sets are homeomorphic to those
of the irrotational (—2)-homogeneous solution.

Remarks 1.9. (i) Choffrut and Sverdk [Cv12] investigated a local one-to-one correspondence
between smooth 2D steady states u = (u',u?,0) and co-adjoint orbits of the nonstationary
problem in an annulus for steady states whose stream function ¢ and vorticity w have no crit-
ical points and satisfy nondegeneracy conditions. The stream function and vorticity of (—a)-
homogeneous solutions in Theorem 1.7 (iii) and (iv) are the following:

@)
'7[’(x19x2) - ra_l 92 (16)
w = Py,

for some function w(¢) on [—r, ] and a positive constant ¢ > 0. Their gradients are the follow-
ing:

| — 1Pw? + W)

r2a i

|Vy|* =

+1
Vo = 2 yFvy.
a—1

For a > 1, ¢ has no critical points in R?\{0} because w and w’ do not vanish at the same point
(Remarks B.3 (iii)). The vorticity w has critical points on, e.g., {x, = 0}. For @ < -1, both
¥ and w have critical points at the origin. We remark that Choffrut and Székelyhidi [CS14b]
demonstrated the existence of merely bounded steady states near a given smooth steady state in
T for d > 2 based on the convex integration.

(i1) Hamel and Nadirashvili [HN23, Theorem 1.8] established rigidity theorems for the 2D
Euler equations in bounded annuli, exteriors of disk, punctured disks, and punctured planes.
It is shown that all solutions of the 2D Euler equations in a punctured plane u = (u!,u?,0) €
C?(R?\{0}) satisfying



lul >0 in R*\{0},
liminf Ju| > 0,

r—oo

u.e,:(,(l) a5 1 — o, (1.7)
r

f lu-eJdH -0 ase— 0,
{r=¢}

are circular flows, i.e., u - ¢, = 0. The vector field (1.4), is a noncircular irrotational (—a)-
homogeneous solution to the 2D Euler equation in R?\{0}, violating the conditions (1.7), and
(1.7)4 for n > 0 and (1.7); for n < 0. The solutions in Theorem 1.7 (iii) are examples of the
noncircular rotational (—a)-homogeneous solutions for a > 1 in R?\{0}.
(iii) It is shown in the work of Hamel and Nadirashvili [HN19, Theorem 1.1] that all solutions
of the 2D Euler equations in the plane u = (u!, u?,0) € C*(R?) satisfying

sup [u| < oo,
R2

inf u| > 0,
R2

are shear flows, i.e., u = (u'(x,),0,0), for some function u' with a constant strict sign by a
suitable rotation. (Koch and Nadirashvili [KN] discuss analyticity of streamlines and Hamel
and Nadirashvili [HN17] discuss a rigidity theorem in a strip). The vector field (1.4), forn <0
is an irrotational (—a)-homogeneous solution to the 2D Euler equation in R?. This solution is
constant (a shear flow) for n = —1 and has a stagnation point at x = 0 and is growing as |x| — oo
for n < —2 (Figure 2). The solutions u € C'(R?\{0}) N C(R?) in Theorem 1.7 (iv) are examples
of the nonshear rotational (—a)-homogeneous solutions for @ < —1 in R2.

(iv) It is a conjecture [Sve, chapter 34], [Shn13] that vorticity of the 2D nonstationary Euler
equation is generically weakly compact but not strongly compact as t — oo. Glatt-Holtz et
al. [GHVV15, 2.2] discuss the relationship between the compactness of vorticity and coherent
structures at the end state. The behavior of solutions around shear and circular flows are in-
vestigated in perturbative regimes. We refer to the important works [BM15], [BGM19], [DM],
[MZ], [1J20], [1J22], [1J] on the nonlinear asymptotic stability of the 2D Euler equations.
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Figure 2: The level sets of y(x;, x,) = sin(ng)/r" for n = +1 (dipole), +2 (quadrupole), and +3 (hexapole). The sets ¥~ (k)
are represented in purple (k = 1), blue (k = 1/2), light blue (k = 1/3), green (k = 0), yellow (k = —1/3), orange
(k=—1/2), and red (k = —1).
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