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Abstract

We study the local existence of the classical solutions to the quasilinear system.
This proof has already been given in several books. However, there seemed to be
some gaps that we was not able to fill in. The purpose in this paper is to provide
the new proof.

In this article, we give a proof of the local existence of the classical solutions to the

quasilinear system
uy + Az, t,u)u, = h(x,t,u) (1)

with initial data
u(@,0) = (), @ € [a,b], (2)

where we assume
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(A) Each matrix A(x,t,u) has n real distinct eigenvalues. The functions A : R x R, X
R" - R*" x R" and h : R xR, x R* — R"™ are continuously differentiable with
respect to all variables and their derivatives are locally Lipschitz continuous with
respect to all variables. In addition, we assume  is continuously differentiable.

Remark 1. In [1], it is not assumed that the derivatives of A and h are locally Lipschitz
continuous. However, this assumption seems be needed in the proof.

For simplicity, we further assume that A(x,t,u) is a diagonal matrix, i.e.,

)\1(‘%7 t? u)

0

Az, t,u) =

0

An(z,t,u)
Then we have the following theorem.

Theorem 2. Suppose that A, h, and @ satisfy the assumption (A). Then there exist con-
stants A, T > 0 and a continuously differentiable function u which is the unique classical
solution of (1), (2) on the domain

D=Dyr:={(z,t):t€[0,T], a+ At <x <b— At} (3)

Proof. To get the solution, we consider the sequence u*) : D — R" such that u(® (x,0) =
a(z) and, for v > 1, u) = (ugu), . .,ug’)) is defined inductively by the solution of the
semilinear problem

ugvt) + )\i(x,t,u("_l))u(”) — hi(l’,t, u(u—l))’ u(”)(x,o) — ﬂ(g;% i=1,...,n, (4)V

©,T

where h; is the i-th component of h.
The proof consists of 5 steps. The first three steps follow the argument in [1]. The
essential part is Step 4.
Step 1. We set
Co := max |u(x)| (5)

z€|a,b]
and choose A in (3) to be
A = max{|\i(z,t,u)|: t€[0,1], z € [a,b], |ul| <Co+1, i=1,...,n}.
Under the choice of A, the set D becomes a domain of determinacy for (4), provided that
T<1, |Ju" Yt <Cy+1 for (x,t)€D. (6),

With the assumption (A), one can choose constants C; and Cy such that

|@'(z)| < Cy,  |h(z,0,a(x)) — A(z,0,u(z))d' (z)] < C;  forall z € [a,b]  (7)
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and
|ha| < Oy ] < Coy hy| + Azl < Coy ] + A < Co,y Ay < Gy (8)

for all t € [0,1], x € [a,b], |u] < Cp+ 1.
Let Y be the solution of the ODE

—C(14nY?,  Y(0)=Ch.
Then Y can be solved explicitly by

_ 1 1 1
Y(it) == —1 for all — .
=7 ((1 +nCh) L — nGCht ) orallt e [O’ nCs(1 +nC’1)>

We now choose T" > 0 small enough such that

T
/ nY (t)dt < 1. (9)
0
Step 2. We now prove by induction that (6), holds together with
) (2, 1) < V1), | (x,t)] < n¥ (¢) for all (z,t) e D, v e NU{0}. (10),
If (6), and (10), holds for all » > 0, then we will prove the following:
(a) D serves as a universal domain of determinacy for all problems (4),.
(b) The Lipschitz constant of the functions () is uniformly bounded on D.
(10), is obvious for v = 0. Suppose that (10),_; is true. Then, by (5) and (9), we have
Ju D (z, 1) < [u” Y (z |+/ " (z, s)|ds
(11)
< |a(x) +/ nY(s)ds < Co+1  for (x,t) € D,
0
which proves (6),. It follows from [1, Theorem 3.6] (see also [2, Theorem 6]) that problem
(4), admlts a classical solution u®) on D. Moreorver, if we write 0@ := 0", w® := ",
) ™)

and v; denote the i-th component of 8™, 1w respectively, then they will be broad
solutions (see [1, p. 48] for its definition) for the following systems

o) + X\ (, ¢, ulY (x,t)) 00 = hip + oy u ™ — (N + Apw - u D)0 =1,
(V) + >‘ (I7t7 u(uil)(li t)) ] - hzt + hzu : (V_l) ()\i,t + )\zu Ug” 1)) m(V)’ 7’ = 17 N

which implies

d 14 vV— — — .
o { b )(xf 1)<T;l’,t),T)} =hig+hiy- ug’ D _ (x\m + N - u;” 1)) o, i=1,....n,
-

(12)



d 14 V— vV— V— .
o {mf )(555 1)(7';%15)77')} = hi,t‘f‘hi,u’ug Y ()\i,t + i u,g 1)) o, i=1,...n,

dr
(13)

(V_l)(T;m,t) denotes the i-th characteristic curve related to u*) passing

%

where 7 — x
through (z,t); more precisely, l’l(»y_l)<7'; x,t) is the solution of

X

- = A (X, mu" (X, 7)), X(t) =uz. (14)

Define
Y () = max{[o{"” (X, )], [w{(X.7)| : X €a+Ar,b—A7], i=1,...,n}
In view of (7)-(8), (11)-(13), and the induction hypothesis, we obtain that
Y'(7) < Co[l +nY (1) +n?Y (7)Y (7)] < Y'(7), Y (0) <y,

provided that Y (7) < Y(7). A simple comparison argument gives that Y (7) < Y (1) for
all 7 € [0,T]. Thus, by induction, we complete the proof of (10),.

Step 3. Next, we show the uniform convergence of the sequence u*) on D. For
simplicity, we write

u =y — Y, N, t) = N (z,t,u(”_l)(x,t)) . kYN, t) = hy (x,t, u(”_l)(x,t)) .
(15)
From (4), we get that

v v—1,v _ jv-—1 v—2 v—1 v—2y, (v—1) .
W+ N, =hi = Iy — (AT =N , t=1,...,n,

i,

and then

d (W man,nb = == =Y, =1 (16)

dr U

From the assumption (A), there exists a constant C3 such that
|A<l’,t, U) - A<I7t> ul)| < C3|u - ul|7 |h($7tau) - h(x,t,u')l < 03|U - U’I|

provided that (z,t) € D, |ul,|u'| < Cy+ 1. On the other hand, the bounds (10) say that

there exists a constant Cy such that |u§5”)\ < Cy for (x,t) € D and v € NU {0}. We now
consider the function

Z,(1) = max{|u/(X,7)]: X €la+Ar,b—A7], i=1,...,n}.
Then (16) yields that
Z,(1) < CsnZy () + [CsnZy 1 (7)]Cy, - Z,(0) = 0. (17)

Then the uniform convergence of the series > Z,(7), for 7 € [0, 7], follows directly from
the following lemma. Therefore, the sequence u®) is uniformly convergent on D.
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Lemma 3. Let {Z,(7)},>0 be a sequence of continuous, non-negative functions satisfying
Zo(T) < Ze™. Suppose that o > 0 and 5,2 > 0. If Z,(1), v > 1, satisfy the following
recurrent inequality

200 < [z + 2Zldn Jorv =1, (18)
0
then, forv > 1,
Z,(7) < %Z and Z Z, (1) = ety (19)
’ v=0

Proof. Let .
Wit i= [ laZutn) + 82,2l
From (18), we deduce
W!(r)=aZ,(r)+ BZ, 1(7) < aW, (1) + BZ, 1(7).
Multiplying e *" and integrating the resultant inequality on [0, 7|, we have

W,(r) <8 / T Z, 1 (n)d,
0

which together with (18) gives that

Z,(7) < / D7, ().
0

Then one can easily obtain (19) by induction on v. O
Step 4. Here we observe [1]. The first term on the right hand side of [1, (3.126)] is
et = w4t not v¥7L. Since we consider classical solutions, u%.! does not make sense.

Therefore, we need to modify the argument. To do this, we prove that the subsequence
of ul) converges uniformly by the Arzela-Ascoli theorem. This step is the essential part
of this paper.

We first prove that u” is equicontinous on D. Since uY and w!”) are uniformly

bounded on D by (10), there exists a C5 > 0 independent of v such that
[u) (z,t) — u) (2, )| < C56,  if |(x,t) — (2, t))| < 8y and (x,t), (z/,t) € D (20)

for all 6; > 0.

For any fixed € > 0, we choose d5 such that 0 < dy < 81/Cs < €/(4nC?%), where Cq, Cy
are constants determined later. Moreover, let (x,¢) and (2/,t") be any two fixed points in
D such that |(z,t) — (2/,t')| < d2 and t > ¢'.

By (14), we have

d v— vV—
d—x,E 2 (t—rT1ya,t) = —)xfl <x£ b (t—T;x,t),t — 7') =: =\, (21)
-
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and

d (,_ t/ t/ v t/ t/ t/
—:135 V(¢ —Zmat) = —— vt :v,f 2 (t' — =72/t |t — =7 | = —=\. (22)
dr t t t t (4

For any fixed v, we use 2;(7) and #/(7) to denote 2" V(7 2,t) and 2"V (+/(r): 2/, ') for

7

simplicity, where 7/(7) := tt—,T. Substracting (22) from (21), we get that

d (i —2)(t—7)= (N, — \i) + r- t)\' (23)
dr " ‘ B ! t "
The Lipschitz continuity of \; and (20) yields that
A; = Ail < Cs (I( — 2f)(t — )| + [t = t]) (24)

for some constant Cs. Applying the differential inequality on (23)-(24), we have that there
exists a constant chosen as Cg such that

|(z:(7), 7) — (25(7), 7'(7))| < Cedy <6y for 7 € [0,¢]. (25)

()

And (25) holds for any two points (x,t), (2/,t') € D such that |(z,t) — (2/,t')] < b9 if T
is a sufficiently small constant independent of v and 5.
We now prove by induction that, if there exists a d3 > 0 such that

|t (z) — @' (2')] < = for |v — 2’| < 93 and z,2" € [a,b], (26)

| ™

then, for every v > 0, we have
5
W (z,t) —u (2! )] < e if |(z,t) — (2/,1)] < 2 < 53 and (z,t), («/,t') € D (27),
6

provided that 7" is small enough. (26) follows directly from the assumption (A), because
@ (x) is uniformly continuous in D. In addition, it is easy to see that if (27), holds, then
we also have

|u£vy)($vt) - ugvy)(ljvt/” < ([07] + 1)8 if |<l’,t) - ($/7t1)| < C’752 and (I7t)7 (zlvtl) S D,
(28),
where [-] denotes the greatest integer function. (27), for the case v = 0 is obvious. We
assume that (27),_1 holds. To show that (27), is also true, we write v”(x,t) = ul) (x,1)
for simplicity. From (4),, we have

v v—1, v _ 1v-—1 v—1 v—1 v—1_ v v—1 v—1 v
Vit A; Uiz = hi,x + hi,u v - >‘z‘,x i (/\i,u v )U'

i (29)
where A/ ! and hY ! are defined in (15). We obtain from (29) that

%’U;’(l’i(T),T) = {hZ;l + hZ;l T AZ;l Y — (AZ;l ~U"_1) Ul»/} (i(1), 7). (30)

(2
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Since (1) = L7 and

d td
(), T (1) = el (), 7
/
= S R o = () ol ) (), (),
(31)
Let
w”(7) =" (2i(7),7) — 0" (2(7), 7'(7)) (32)
By (30)-(32), we get that
d hl/ 1 hu—l v—1 All—l v )\y—l v—1 v
E {[ iu U AT i_( iw U )Uz‘]@i(ﬂﬂ')
[hy 1 + hl/ 1 y—l o )\Z;1 ;/ o (/\Z;1 . Uu—l) Uly:| (I;(T),T%T))} (33)
R e i LR WS NCHCORLCH)
== Il + ]2.

The C' continuities of h, A, and (6) give that there exists a constant chosen as C7 such

that Crlt — | _ Oy
p< Gt Gibs 34
< T Gl 2 (349)

On the other hand, we write I; as
L=hh+Jd+Js+Js+Js+ Jg+ Jr + Jg, (35>
where
Jp = {h” ! :cl(T T) —hi, @), 7))}
Jy = {hi,u i T 77— - hiy,gl(m;(T)?T/(T))} 'Uy_l($i(7_)’7_)7
Ty = i (@), 7 (7)) - w (7))
Ty = = N (@a(r), 1) = AN (r), 7 (1)) o (a(7), 1),
Js = =N (@i (), 7 (7)wy (7),
Jo = — {(/\" l(fﬁz‘(T)yT) = AN @i (r), (1)) -0 T (), ) o (7)),
Jri=—{NL (@ )»T'(T))' - 1( )} vy (i(T), 7)),
Jg 1= — {/\"_ W), T (7)) T (@ (r), T () ! (T
Applying (6), (20), (25), (28),_1, and the assumption (A), we obtain that
|‘]1|7|‘]2|7|‘]4|7|‘]6| S09(52+61) §C10€, |J3|,|J7| SC10€. (36)
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for some constants Cy, Co. The uniform boundedness of u*) and ug) gives that
‘J5‘7’J8| SCH’UJ% (37>

for some constant C};. Using the differential inequality on (33)-(37) together with (26),
we have

0 (1) —ul) (@, #)] = [ (O] < = for t € [0,7]
> ’ n

if T is small enough, which is valid for ¢ = 1,...,n. Therefore, (27), is also true. By
induction, we get the equicontinuity of ul"’.
Step 5. We are in a position to prove the local existence of classical solution for

problem (1), (2). Since ) is uniformly convergent on D, we let
u(z,t) = lim u"(z,t) for (z,t) € D. (38)
V—00

On the other hand, since ul is uniformly bounded and equicontinuous on D, the Arzela-
Ascoli theorem says that there exists a subsequence {1} of N such that ugj’“) is uniformly

convergent on D. Thus, we get that
up(z,t) = lim ul" (z,1) (39)
k—o0

exists and is continuous on D. From (4) and the Lipschitz continuity of h;, A;, we find
that
lim ugy"’)(x,t) =h; (x,t, lim u(”’“)> -\ (x,t, lim u("’“)> lim u{"®) (z,t)

= hi(z, t,u) — N\i(z, ¢, u)u,.
Since the convergence in (40) is uniform with respect to x and ¢, we have

lim ugll’“)(x,t) = <klim u("’“)(x,t)> = ug(x,t) (41)
—00 t

k— o0

exists is continuous on D. Combining (40) and (41), we prove that u is a classical solution
for problem (1), (2) on D. Its uniqueness follows directly from [2, Theorem 1]. O

Remark 4. If ul) converges uniformly, we can deduce from (30)
t

vi(w4(t),t) — vi(2:(0),0) = /0 {hie + hiw -0 = Xigvi — N - v) i} (zi(7), T)dT. (42)

However, since we prove the uniform convergence of only the subsequence, we cannot
obtain (42).
We next consider the characteristic curve xl(»y) (t; &), which is the solution of

dX
=\ (X, t,u" (X, 1), X(0)=¢
Then, we cannot prove the uniform convergence of the derivative with respect to initial
data, t.e.,
lim :1;512 (t;€) = xie(t;€)  uniformly. (43)

[ Zandee]

We do not know whether (42) and (43) hold or not.
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