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Abstract

Let M be the generic structure of an amalgamation class defined using
Hrushovski’s unbounded log-like function associated to an irrational num-
ber. Then the theory of M is model complete.

1 Introduction

We essentially use notation and terminology from Kikyo [12], Baldwin-Shi [3]
and Wagner [16]. We also use some terminology from graph theory [4].

Suppose A is a graph. V(A) denotes the set of vertices of A, and E(A) the set of
edges of A. If X C V(A), A|X denotes the substructure B of A such that V(B) = X.
If there is no ambiguity, X denotes A|X. We usually follow this convention. B C A
means that B is a substructure of A. A substructure of a graph is an induced
subgraph in graph theory. A|X is the same as A[X] in Diestel’s book [4].

We say that X is connected in A if X is a connected graph in the graph theoret-
ical sense [4]. A maximal connected substructure of A is a connected component
of A.



Let A, B, C be graphs such that A C C and B C C. AB denotes C|(V(A)UV(B)),
AN B denotes C|(V(A)NV(B)), and A — B denotes C|(V(A) —V(B)). We also
write X — Y in general for the relative compliment of ¥ in X also known as the set
difference of X and Y. If ANB = 0, E(A, B) denotes the set of edges xy such that
x€Aandye€ B. We put e(A,B) = |E(A,B)|. E(A,B) and ¢(A, B) depend on the
graph in which we are working.

Let D be a graph and A, B, and C substructures of D. We write D = B®y4 C if
D=BC,BNC=A,and E(D)=E(B)UE(C). E(D) = E(B) UE(C) means that
there are no edges between B— A and C — A. D is called a free amalgam of B and
C over A. If A is empty, we write D = B® C, and D is also called a free amalgam
of Band C.

Definition 1.1 Let o be a real number such that 0 < o < 1.

(1) For a finite graph A, we define a predimension function dy by 0y (A) =
Al —e(A)a.

(2) Let A and B be substructures of a common graph. Put 84(A/B) = 0¢(AB) —
Oua(B).

Definition 1.2 Let A and B be graphs with A C B, and suppose A is finite.

A <q B if whenever A C X C B with X finite then 64(A) < 0¢(X).

We say that A is closed in Bif A <y B. We also say that B is a strong extension
of A.

Let K be the class of all finite graphs A such that @ <, A.
Some facts about <, appear in [3, 16, 17]. Some proofs are given in [12].

Fact 1.3 Let A and B be disjoint substructures of a common graph. Then 6y (A/B) =
O0q(A) —e(A,B)a.

Fact14 I[fA<qBCDand CC Dthen ANC <g BNC.

Fact 1.5 Let D=B®4C.
(1) 6a(D/A) = 6a(B/A)+ 6a(C/A).



(2) If A <o Cthen B <y D.
(3) If A<qBand A <y, C then A <y D.

Let B, C be graphs and g : B — C a graph embedding. g is a closed embedding
of Binto C if g(B) < C. Let A be a graph with A C Band A C C. g is a closed
embedding over A if g is a closed embedding and g(x) = x for any x € A.

In the rest of the paper, K denotes a class of finite graphs closed under isomor-
phisms.

Definition 1.6 Let K be a subclass of K. (K, <) has the amalgamation prop-
erty if for any finite graphs A, B,C € K, whenever g; : A —+ B and g : A — C are
closed embeddings then there is a graph D € K and closed embeddings i1 : B — D
and g7 : C — D such that hjog; = hp o gs.

K has the hereditary property if for any finite graphs A, B, whenever A C B€ K
then A € K.

K is an amalgamation class if @ € K and K has the hereditary property and
the amalgamation property.

A countable graph M is a generic structure of (K, <) if the following condi-
tions are satisfied:

(1) If A C M and A is finite then there exists a finite graph B C M such that
ACB<gqM.

(2) f AC Mthen A € K.

(3) Forany A, B€ K, if A <¢ M and A < B then there is a closed embedding
of B into M over A.

Let A be a finite structure of M. There is a smallest B satisfying A C B <4 M,
written cl(A). The set cl(A) is called the closure of A in M.

Fact 1.7 ([3, 16, 17]) Let (K,<y) be an amalgamation class. Then there is a
generic structure of (K,<y). Let M be a generic structure of (K,<y). Then
any isomorphism between finite closed substructures of M can be extended to an
automorphism of M.



Definition 1.8 Let K be a subclass of Ky. (K, <) has the free amalgamation
property if whenever D = B®4 C with B,C € K, A <4 Band A <, C then D € K.

By Fact 1.5 (2), we have the following.

Fact 1.9 Let K be a subclass of Kq. If (K, <) has the free amalgamation prop-
erty then it has the amalgamation property.

Definition 1.10 Let R* be the set of non-negative real numbers. Suppose f :
Rt — R is a strictly increasing concave (convex upward) unbounded function.
Assume that f(0) =0, and f(1) < 1. We assume that f is piecewise smooth.
f%(x) denotes the right-hand derivative at x. We have f(x+h) < f(x) + f (x)h
for 1 > 0. Define Ky as follows:

K/ = {A€Kq |BCA= 8,(B) > f(|B])}.

Note that if K is an amalgamation class then the generic structure of (K, <q)
has a countably categorical theory [17].

A graph X is normal to f if 6(X) > f(|X|). A graph A belongs to K if and
only if U is normal to f for any substructure U of A.

2 Hrushovski’s Log-like Functions

Definition 2.1 ([7]) Let o be a positive real number with 1 > a > 0. We define
Xns €n, kn, dy for integers n > 1 by induction as follows: Put x; =2 and e; = 1.
Assume that x, and e, are defined. Let r,, be a smallest rational number » such
that » = k/d > o with d < e, where k and d are positive integers. Let k,,/d,, be a
reduced fraction with k,/d,, = ry,. Finally, let x, | = x, + k,,, and e, | = e, + d,,.

Letag = (0,0), and a, = (x,,,x, — e, &) forn > 1. Let f, be a function from R™
to R™ whose graph on interval [x;,x,1] with n > 0 is a line segment connecting
an and a,1. We call fy a Hrushovski’s log-like function associated to .

Fact 2.2 ([7]) Let fo be a Hrushovski’s log-like function and {x;}, {e;}, {ki}, {di}
sequences in the definition of fy.

Suppose C is an extension of B by x points and 7 edges, |B| > x, and x/z >
kn/dy for some n, and B is normal to fo. Then C is normal to fq.
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Fact 2.3 ([7]) Let D =B®4C. If 0q(A) < 8¢(B), 0¢(A) < 0¢(C), and A, B, C
are normal to fy then D is normal to fg.

Fact 2.4 ([7]) Let o be a real number with 1 > o > 0. Then fy is strictly increas-
ing and concave, and (Ky,,<q) has the free amalgamation property. Therefore,
there is a generic structure of (Ky,,<q). Any one point structure is closed in any
structure in Ky, . If o is rational then fq is unbounded.

The following is easy.

Lemma 2.5 Let f = fo be the Hrushovski’s log-like function with 1 > ot > 0.

(1) Suppose A € Ky. Then any point in A is closed in A. Note that any point in
closed in a tree with respect to <.

(2) Let C=A®p,B with p a point. If A,B € Ky then C € Ky.
(3) Any finite forests belong to Ky.

Lemma 2.6 Suppose2/3 > a >1/2.

(1) The first few terms of the sequences defining fo are given by the following

chart:
xi|2 3 4 6
e, |1 2 3 6
kil 1 2 kg
d|l 1 3 dy

(2) Let A be a graph which is normal to fo and a, b vertices of A with distance
at least 3 in A. Let B be an extension of A by a path from a to b of length at
least 3. Then B is normal to fg.

Proof. (1) is straightforward and (2) is by Fact 2.2 and (1). L]



3 Minimal Intrinsic Extensions

Definition 3.1 Suppose A is a substructure of B. B is called a minimal intrinsic
extension of A with respect to a real number « if 94 (B/A) < 0 but whenever X is a
proper substructure of B with A C X then A <y X. B is called a biminimal intrinsic
extension of A with respect to a real number « if 84(B/A) < 0 but whenever X is
a proper substructure of B thenANX <y X.

Definition 3.2 Let o be an irrational number. We call a fraction of integers p/q
a good approximation of o from below if B > p/q and whenever § > p’/q’ with

q <gthenp/q>p'/q.

Fact 3.3 ([12, 14]) Suppose 1 > p/q > 0 where p and q are coprime positive in-
tegers. Then there is a tree W with the following properties: Let L be the set of all
nodes of W and F the set of all leaves of W.

(1) Lis a pathin W with p vertices and p — 1 edges.
(2) |F|=q— p+ 1. Every leaf is adjacent to some vertex in L.
(3) SP/Q(W/F) =0.

(4) BNF <,,, B for any proper substructure B of W.

p/a
Note that W is a biminimal intrinsic extension of F. We call W a twig for p/q.

Lemma 3.4 Let o be an irrational number with2/3 > a > 1/2. Put B =20 — 1.
Then 1/3 > B > 0. Let p/q be a good approximation of B from below.

(1) Let W be the twig for p/q and F the set of leaves of W. Then W is a
biminimal intrinsic extension of F with respect to 3.

(2) Let W' be a subdivision of W such that there are exactly one subdividing
point on each edge of W. Then W' is a biminimal intrinsic extension of F
with respect to Q..



Proof. (1) Since B > p/q, we have 0 > p—¢gf3. Let B be a proper substructure of
W with B— F non-empty. Let p’ = |[B—F| and ¢’ = e(B, F). Then g(B/BNF) =
=4 (p/q) >0and ¢’ <gq. So, p'/q > p/q. Since ¢’ < g, we have ¢’ < g and
thus p’/q' > . Hence, 6g(B/BNF) = p'—¢'B > 0.

(2) Note that any extension by a path is a strong extension. It is enough to
show that BN F < B for any proper substructure B’ of W/ assuming that every
leaf of B’ belongs to F. In this case, B’ is a subdivision of a substructure B of W.
Therefore, 8¢ (B'/F) = 8g(B/F) > 0. O

Lemma 3.5 Let o be an irrational number with 2/3 > o > 1/2, f = fq the
Hrushovski’s log-like function associated to o, p/q a good approximation of
B = 2o — 1 from below, and A a member of Ky. If |A| < p, then there are exten-
sions A C F C B such that B € Ky, A <q F, B is a biminimal intrinsic extension
of F with respect to &, 0q(B/F)=p—qp =p+q—2qa, |B—F|=p+gq, and
|B| =2q+ 1.

Proof.  Let W’ be the subdivision of a twig for p/g from Lemma 3.4 (2).

Let L = bicibacy-+-bp_1cp—1b, be a new path with 2p — 1 vertices. Let
V(A) ={a1,ay,...,a;}. Connect each g; to b; with a new path of length 2. Let B}
be the resulting graph. B belongs to K by Lemma 2.6. By putting some paths of
length 2 at each b; with the other ends left as leaves, the resulting graph B belongs
to Ky by Lemma 2.5. Also, we can make B so that B//A is isomorphic to W’. Let
F be the set of points in B which will be leaves in B//A. Then A C F and F is a
extension of A by independent points in F. 0

Lemma 3.6 Assume that (Ky, <) has the free amalgamation property. Let B €
K and suppose B is biminimal intrinsic extension of F C B. Let

D =B ®F By ®F -+ QF By
where each B is isomorphic to B over F. If D is normal to f then D € Ky.

Proof.  Let C be a proper substructure of D. Let C; = CN B;.



Case CNF 1s a proper substructure of F. In this case, CNF < C; for each i
and CNF, and C; belong to K¢. Hence,

C=C1®cnr C2®cnF - @cnr Cr

belong to K¢ by the free amalgamation property.
Case CNF = F. In this case, 6¢(C) > 0¢(D) and |C| < |D|. Therefore, C is
normal to f because f is an increasing function. (]

4 Model Completeness

Definition 4.1 Let K be a subclass of K. A graph A € K is absolutely closed in
K if whenever A C B € K then A < B.

Note that the notion of being absolutely closed in K is invariant under isomor-
phisms.

Fact 4.2 [12] Let K be a subclass of Ky and M a generic structure of (K, <).
Assume that M is countably saturated. Suppose for any A € K there is C € K
such that A < C and C is absolutely closed in K. Then the theory of M is model
complete.

Theorem 4.3 Let a be an irrational number with 1 > o« > 0, f = f the Hrushov-
ski’s log-like function associated to o, and M the generic structure of (K7, <g).
If f is unbounded, then the theory of M is model complete. Note that it is already
known that the theory of M is not model complete if f is bounded [15].

Proof. ~ We assume 2/3 > « > 1/2. The proof will be similar for the case
n/(n+1)>a>(n—1)/n.

Let2a— 1 =[ag,a;,as,.. .| be the simple continued fraction. Let p, /g, be the
reduced fraction form of [ag,ay,...,a,]. Then we have p,i1/qn+1 < @ < pn/qn
if n 1s odd. Also for any n, we have

1
Gndn+1

Pn
dn

‘(205—1)— <
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Now, let A be a finite substructure of M. We want to show that there is some
DwithA<DCM

Since f is unbounded, there is an integer n4 > 0 such that f(n4) > 64 (A).

Let

€4 =min{dy(A) — g (X)|A C X C M, X finite, 6¢(X/A) < 0}.

If the set on the right hand side is empty then A is absolutely closed in M. So, we
can assume that €4 > 0.

Choose odd n such that g, > n4,0 < 1/p, < €4/2, and |A| < py.

It is known that p,,11/g,+1 is a good approximation of 2¢c — 1 from below.

Choose B € K¢ as in Lemma 3.5 with p = p,, | and ¢ = g, 1. Let F be as in
Lemma 3.5 also.

We have |B—F| = ppt1+qn+1- Let

Dj=B|®FByXF---QF B;

where each B; is isomorphic to B over F. Since 0y (B;/F) < 0, 8¢(D) decreases
as j increases. Hence, D; ¢ K eventually. Let k be such that Dy € K¢ but Dy ¢
K. We have

1 Ep

< —.

80 (Dx) — 6a(Di+1) = [8a(B/F)| = |pnt1 — (20 — 1)gn1] <
dn+2 2

Hence,
F(Dk| + pnv1+ani1) > Oa(Di) — €4/2.
We want to evaluate how the curve y = fy(x) behaves. Choose ¢ with x; | <
1Bl = 2qp1+1 < xp <ey.
We have p,/q, > 2o — 1. Hence, (p,+ qn)/(2gn) > o. Since 2q, < ey, we
have (pn+¢qn)/(2qn) > k¢/dy > . So,

ky—dyo dy
/ = = 1 — —O
J(xe0) T T
2qn 1
<]-———a=—"— —qn(200—1
Sl a= (20 1))
< 1
(Pn+Qn)Qn+l '



Hence,
1 €A
/
Xp) < ——— < —.
1S ( E) Pntqn 4
Therefore, for any x > xy,

€A
(pn—H "‘CIn—i-l)f,(x) < 2‘]n+1f/(x€) < 7

Hence,
8 (Dk) — f(IDi|) < éa.

Now, choose a sequence of biminimal intrinsic extensions starting from Dy in
K. Since the §4-values of these extensions are decreasing, we get an absolutely
closed structure D eventually. Since D belongs to K7, we have 8¢(Dy) > 8¢/(D) >
f(|Dg])- Hence,

|60 (D/Dy)| < &4

D is obtained by a sequence of minimal intrinsic extensions from a structure iso-
morphic to B. Hence, A < D. L]

Similar argument works for f which was modified by F. Wagner [16]. Our
proof depends heavily on the definition of f,. We still don’t know if the model
completeness of the generic structure of Ky is true in more general setting.
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