Model Completeness of Theories of Hrushovski's Pseudoplanes Associated to Irrational Numbers

Hirotaka Kikyo
Graduate School of System Informatics
Kobe University

Abstract

Let M be the generic structure of an amalgamation class defined using Hrushovski's unbounded log-like function associated to an irrational number. Then the theory of M is model complete.

1 Introduction

We essentially use notation and terminology from Kikyo [12], Baldwin-Shi [3] and Wagner [16]. We also use some terminology from graph theory [4].

Suppose A is a graph. V(A) denotes the set of vertices of A, and E(A) the set of edges of A. If $X \subseteq V(A)$, A|X denotes the substructure B of A such that V(B) = X. If there is no ambiguity, X denotes A|X. We usually follow this convention. $B \subseteq A$ means that B is a substructure of A. A substructure of a graph is an induced subgraph in graph theory. A|X is the same as A[X] in Diestel's book [4].

We say that *X* is *connected* in *A* if *X* is a connected graph in the graph theoretical sense [4]. A maximal connected substructure of *A* is a *connected component* of *A*.

Let A, B, C be graphs such that $A \subseteq C$ and $B \subseteq C$. AB denotes $C|(V(A) \cup V(B))$, $A \cap B$ denotes $C|(V(A) \cap V(B))$, and A - B denotes C|(V(A) - V(B)). We also write X - Y in general for the relative compliment of Y in X also known as the set difference of X and Y. If $A \cap B = \emptyset$, E(A, B) denotes the set of edges xy such that $x \in A$ and $y \in B$. We put e(A, B) = |E(A, B)|. E(A, B) and e(A, B) depend on the graph in which we are working.

Let D be a graph and A, B, and C substructures of D. We write $D = B \otimes_A C$ if D = BC, $B \cap C = A$, and $E(D) = E(B) \cup E(C)$. $E(D) = E(B) \cup E(C)$ means that there are no edges between B - A and C - A. D is called a *free amalgam of B and C over A*. If A is empty, we write $D = B \otimes C$, and D is also called a *free amalgam of B and C*.

Definition 1.1 Let α be a real number such that $0 < \alpha < 1$.

- (1) For a finite graph A, we define a predimension function δ_{α} by $\delta_{\alpha}(A) = |A| e(A)\alpha$.
- (2) Let *A* and *B* be substructures of a common graph. Put $\delta_{\alpha}(A/B) = \delta_{\alpha}(AB) \delta_{\alpha}(B)$.

Definition 1.2 Let A and B be graphs with $A \subseteq B$, and suppose A is finite.

 $A <_{\alpha} B$ if whenever $A \subsetneq X \subseteq B$ with X finite then $\delta_{\alpha}(A) < \delta_{\alpha}(X)$.

We say that *A* is *closed* in *B* if $A <_{\alpha} B$. We also say that *B* is a *strong extension* of *A*.

Let \mathbf{K}_{α} be the class of all finite graphs A such that $\emptyset <_{\alpha} A$. Some facts about $<_{\alpha}$ appear in [3, 16, 17]. Some proofs are given in [12].

Fact 1.3 Let A and B be disjoint substructures of a common graph. Then $\delta_{\alpha}(A/B) = \delta_{\alpha}(A) - e(A,B)\alpha$.

Fact 1.4 *If* $A <_{\alpha} B \subseteq D$ *and* $C \subseteq D$ *then* $A \cap C <_{\alpha} B \cap C$.

Fact 1.5 *Let* $D = B \otimes_A C$.

(1)
$$\delta_{\alpha}(D/A) = \delta_{\alpha}(B/A) + \delta_{\alpha}(C/A)$$
.

- (2) If $A <_{\alpha} C$ then $B <_{\alpha} D$.
- (3) If $A <_{\alpha} B$ and $A <_{\alpha} C$ then $A <_{\alpha} D$.

Let B, C be graphs and $g: B \to C$ a graph embedding. g is a closed embedding of B into C if $g(B) <_{\alpha} C$. Let A be a graph with $A \subseteq B$ and $A \subseteq C$. g is a closed embedding over A if g is a closed embedding and g(x) = x for any $x \in A$.

In the rest of the paper, \mathbf{K} denotes a class of finite graphs closed under isomorphisms.

Definition 1.6 Let **K** be a subclass of \mathbf{K}_{α} . $(\mathbf{K}, <_{\alpha})$ has the *amalgamation property* if for any finite graphs $A, B, C \in \mathbf{K}$, whenever $g_1 : A \to B$ and $g_2 : A \to C$ are closed embeddings then there is a graph $D \in \mathbf{K}$ and closed embeddings $h_1 : B \to D$ and $g_2 : C \to D$ such that $h_1 \circ g_1 = h_2 \circ g_2$.

K has the *hereditary property* if for any finite graphs A, B, whenever $A \subseteq B \in \mathbf{K}$ then $A \in \mathbf{K}$.

K is an *amalgamation class* if $\emptyset \in \mathbf{K}$ and **K** has the hereditary property and the amalgamation property.

A countable graph M is a *generic structure* of $(\mathbf{K}, <)$ if the following conditions are satisfied:

- (1) If $A \subseteq M$ and A is finite then there exists a finite graph $B \subseteq M$ such that $A \subseteq B <_{\alpha} M$.
- (2) If $A \subseteq M$ then $A \in \mathbf{K}$.
- (3) For any $A, B \in \mathbb{K}$, if $A <_{\alpha} M$ and $A <_{\alpha} B$ then there is a closed embedding of B into M over A.

Let *A* be a finite structure of *M*. There is a smallest *B* satisfying $A \subseteq B <_{\alpha} M$, written cl(A). The set cl(A) is called the *closure* of *A* in *M*.

Fact 1.7 ([3, 16, 17]) Let $(\mathbf{K}, <_{\alpha})$ be an amalgamation class. Then there is a generic structure of $(\mathbf{K}, <_{\alpha})$. Let M be a generic structure of $(\mathbf{K}, <_{\alpha})$. Then any isomorphism between finite closed substructures of M can be extended to an automorphism of M.

Definition 1.8 Let **K** be a subclass of \mathbf{K}_{α} . $(\mathbf{K}, <_{\alpha})$ has the *free amalgamation property* if whenever $D = B \otimes_A C$ with $B, C \in \mathbf{K}$, $A <_{\alpha} B$ and $A <_{\alpha} C$ then $D \in \mathbf{K}$.

By Fact 1.5 (2), we have the following.

Fact 1.9 *Let* \mathbf{K} *be a subclass of* \mathbf{K}_{α} . *If* $(\mathbf{K}, <_{\alpha})$ *has the free amalgamation property then it has the amalgamation property.*

Definition 1.10 Let \mathbb{R}^+ be the set of non-negative real numbers. Suppose f: $\mathbb{R}^+ \to \mathbb{R}^+$ is a strictly increasing concave (convex upward) unbounded function. Assume that f(0) = 0, and $f(1) \leq 1$. We assume that f is piecewise smooth. $f'_+(x)$ denotes the right-hand derivative at x. We have $f(x+h) \leq f(x) + f'_+(x)h$ for h > 0. Define \mathbf{K}_f as follows:

$$\mathbf{K}_f = \{ A \in \mathbf{K}_{\alpha} \mid B \subseteq A \Rightarrow \delta_{\alpha}(B) \ge f(|B|) \}.$$

Note that if \mathbf{K}_f is an amalgamation class then the generic structure of $(\mathbf{K}_f, <_{\alpha})$ has a countably categorical theory [17].

A graph X is normal to f if $\delta(X) \ge f(|X|)$. A graph A belongs to \mathbf{K}_f if and only if U is normal to f for any substructure U of A.

2 Hrushovski's Log-like Functions

Definition 2.1 ([7]) Let α be a positive real number with $1 > \alpha > 0$. We define x_n, e_n, k_n, d_n for integers $n \ge 1$ by induction as follows: Put $x_1 = 2$ and $e_1 = 1$. Assume that x_n and e_n are defined. Let r_n be a smallest rational number r such that $r = k/d > \alpha$ with $d \le e_n$ where k and d are positive integers. Let k_n/d_n be a reduced fraction with $k_n/d_n = r_n$. Finally, let $x_{n+1} = x_n + k_n$, and $e_{n+1} = e_n + d_n$.

Let $a_0 = (0,0)$, and $a_n = (x_n, x_n - e_n \alpha)$ for $n \ge 1$. Let f_α be a function from \mathbb{R}^+ to \mathbb{R}^+ whose graph on interval $[x_n, x_{n+1}]$ with $n \ge 0$ is a line segment connecting a_n and a_{n+1} . We call f_α a *Hrushovski's log-like function* associated to α .

Fact 2.2 ([7]) Let f_{α} be a Hrushovski's log-like function and $\{x_i\}$, $\{e_i\}$, $\{k_i\}$, $\{d_i\}$ sequences in the definition of f_{α} .

Suppose C is an extension of B by x points and z edges, $|B| \ge x_n$ and $x/z \ge k_n/d_n$ for some n, and B is normal to f_α . Then C is normal to f_α .

Fact 2.3 ([7]) Let $D = B \otimes_A C$. If $\delta_{\alpha}(A) < \delta_{\alpha}(B)$, $\delta_{\alpha}(A) < \delta_{\alpha}(C)$, and A, B, C are normal to f_{α} then D is normal to f_{α} .

Fact 2.4 ([7]) Let α be a real number with $1 > \alpha > 0$. Then f_{α} is strictly increasing and concave, and $(\mathbf{K}_{f_{\alpha}}, <_{\alpha})$ has the free amalgamation property. Therefore, there is a generic structure of $(\mathbf{K}_{f_{\alpha}}, <_{\alpha})$. Any one point structure is closed in any structure in $\mathbf{K}_{f_{\alpha}}$. If α is rational then f_{α} is unbounded.

The following is easy.

Lemma 2.5 Let $f = f_{\alpha}$ be the Hrushovski's log-like function with $1 > \alpha > 0$.

- (1) Suppose $A \in \mathbf{K}_f$. Then any point in A is closed in A. Note that any point in closed in a tree with respect to $<_{\alpha}$.
- (2) Let $C = A \otimes_p B$ with p a point. If $A, B \in \mathbf{K}_f$ then $C \in \mathbf{K}_f$.
- (3) Any finite forests belong to \mathbf{K}_f .

Lemma 2.6 *Suppose* $2/3 > \alpha > 1/2$.

(1) The first few terms of the sequences defining f_{α} are given by the following chart:

$\overline{x_i}$	2	3	4	6
e_i	1	2	3	6
$\overline{k_i}$	1	1	2	k_4
d_i	1	1	3	d_4

(2) Let A be a graph which is normal to f_{α} and a, b vertices of A with distance at least 3 in A. Let B be an extension of A by a path from a to b of length at least 3. Then B is normal to f_{α} .

Proof. (1) is straightforward and (2) is by Fact 2.2 and (1). \Box

3 Minimal Intrinsic Extensions

Definition 3.1 Suppose A is a substructure of B. B is called a *minimal intrinsic* extension of A with respect to a real number α if $\delta_{\alpha}(B/A) \leq 0$ but whenever X is a proper substructure of B with $A \subseteq X$ then $A <_{\alpha} X$. B is called a *biminimal intrinsic* extension of A with respect to a real number α if $\delta_{\alpha}(B/A) \leq 0$ but whenever X is a proper substructure of B then $A \cap X <_{\alpha} X$.

Definition 3.2 Let α be an irrational number. We call a fraction of integers p/q a good approximation of α from below if $\beta > p/q$ and whenever $\beta > p'/q'$ with $q' \le q$ then $p/q \ge p'/q'$.

Fact 3.3 ([12, 14]) Suppose 1 > p/q > 0 where p and q are coprime positive integers. Then there is a tree W with the following properties: Let L be the set of all nodes of W and F the set of all leaves of W.

- (1) L is a path in W with p vertices and p-1 edges.
- (2) |F| = q p + 1. Every leaf is adjacent to some vertex in L.
- (3) $\delta_{p/q}(W/F) = 0$.
- (4) $B \cap F <_{p/q} B$ for any proper substructure B of W.

Note that W is a biminimal intrinsic extension of F. We call W a twig for p/q.

Lemma 3.4 Let α be an irrational number with $2/3 > \alpha > 1/2$. Put $\beta = 2\alpha - 1$. Then $1/3 > \beta > 0$. Let p/q be a good approximation of β from below.

- (1) Let W be the twig for p/q and F the set of leaves of W. Then W is a biminimal intrinsic extension of F with respect to β .
- (2) Let W' be a subdivision of W such that there are exactly one subdividing point on each edge of W. Then W' is a biminimal intrinsic extension of F with respect to α .

- *Proof.* (1) Since $\beta > p/q$, we have $0 > p-q\beta$. Let B be a proper substructure of W with B-F non-empty. Let p'=|B-F| and q'=e(B,F). Then $\delta_{\beta}(B/B\cap F)=p'-q'(p/q)>0$ and $q'\leq q$. So, p'/q'>p/q. Since $q'\leq q$, we have q'< q and thus $p'/q'>\beta$. Hence, $\delta_{\beta}(B/B\cap F)=p'-q'\beta>0$.
- (2) Note that any extension by a path is a strong extension. It is enough to show that $B \cap F <_{\alpha} B$ for any proper substructure B' of W' assuming that every leaf of B' belongs to F. In this case, B' is a subdivision of a substructure B of W. Therefore, $\delta_{\alpha}(B'/F) = \delta_{\beta}(B/F) > 0$.

Lemma 3.5 Let α be an irrational number with $2/3 > \alpha > 1/2$, $f = f_{\alpha}$ the Hrushovski's log-like function associated to α , p/q a good approximation of $\beta = 2\alpha - 1$ from below, and A a member of \mathbf{K}_f . If $|A| \leq p$, then there are extensions $A \subseteq F \subseteq B$ such that $B \in \mathbf{K}_f$, $A <_{\alpha} F$, B is a biminimal intrinsic extension of F with respect to α , $\delta_{\alpha}(B/F) = p - q\beta = p + q - 2q\alpha$, |B - F| = p + q, and |B| = 2q + 1.

Proof. Let W' be the subdivision of a twig for p/q from Lemma 3.4 (2).

Let $L = b_1c_1b_2c_2\cdots b_{p-1}c_{p-1}b_p$ be a new path with 2p-1 vertices. Let $V(A) = \{a_1, a_2, \dots, a_k\}$. Connect each a_i to b_i with a new path of length 2. Let B_1 be the resulting graph. B_1 belongs to \mathbf{K}_f by Lemma 2.6. By putting some paths of length 2 at each b_i with the other ends left as leaves, the resulting graph B belongs to \mathbf{K}_f by Lemma 2.5. Also, we can make B so that $B/\!\!/A$ is isomorphic to W'. Let F be the set of points in B which will be leaves in $B/\!\!/A$. Then $A \subseteq F$ and F is a extension of A by independent points in F.

Lemma 3.6 Assume that $(\mathbf{K}_f, <)$ has the free amalgamation property. Let $B \in \mathbf{K}_f$ and suppose B is biminimal intrinsic extension of $F \subseteq B$. Let

$$D = B_1 \otimes_F B_2 \otimes_F \cdots \otimes_F B_k$$

where each B_i is isomorphic to B over F. If D is normal to f then $D \in \mathbf{K}_f$.

Proof. Let *C* be a proper substructure of *D*. Let $C_i = C \cap B_i$.

Case $C \cap F$ is a proper substructure of F. In this case, $C \cap F < C_i$ for each i and $C \cap F$, and C_i belong to \mathbf{K}_f . Hence,

$$C = C_1 \otimes_{C \cap F} C_2 \otimes_{C \cap F} \cdots \otimes_{C \cap F} C_k$$

belong to \mathbf{K}_f by the free amalgamation property.

Case $C \cap F = F$. In this case, $\delta_{\alpha}(C) > \delta_{\alpha}(D)$ and |C| < |D|. Therefore, C is normal to f because f is an increasing function.

4 Model Completeness

Definition 4.1 Let **K** be a subclass of \mathbf{K}_{α} . A graph $A \in \mathbf{K}$ is *absolutely closed* in **K** if whenever $A \subseteq B \in \mathbf{K}$ then A < B.

Note that the notion of being absolutely closed in K is invariant under isomorphisms.

Fact 4.2 [12] Let **K** be a subclass of \mathbf{K}_{α} and M a generic structure of $(\mathbf{K},<)$. Assume that M is countably saturated. Suppose for any $A \in \mathbf{K}$ there is $C \in \mathbf{K}$ such that A < C and C is absolutely closed in \mathbf{K} . Then the theory of M is model complete.

Theorem 4.3 Let α be an irrational number with $1 > \alpha > 0$, $f = f_{\alpha}$ the Hrushovski's log-like function associated to α , and M the generic structure of $(\mathbf{K}_f, <_{\alpha})$. If f is unbounded, then the theory of M is model complete. Note that it is already known that the theory of M is not model complete if f is bounded [15].

Proof. We assume $2/3 > \alpha > 1/2$. The proof will be similar for the case $n/(n+1) > \alpha > (n-1)/n$.

Let $2\alpha - 1 = [a_0, a_1, a_2, \ldots]$ be the simple continued fraction. Let p_n/q_n be the reduced fraction form of $[a_0, a_1, \ldots, a_n]$. Then we have $p_{n+1}/q_{n+1} < \alpha < p_n/q_n$ if n is odd. Also for any n, we have

$$\left|(2\alpha-1)-\frac{p_n}{q_n}\right|<\frac{1}{q_nq_{n+1}}.$$

Now, let A be a finite substructure of M. We want to show that there is some D with $A < D \subseteq M$

Since f is unbounded, there is an integer $n_A > 0$ such that $f(n_A) \ge \delta_{\alpha}(A)$. Let

$$\varepsilon_A = \min\{\delta_{\alpha}(A) - \delta_{\alpha}(X) \mid A \subseteq X \subseteq M, X \text{ finite, } \delta_{\alpha}(X/A) < 0\}.$$

If the set on the right hand side is empty then A is absolutely closed in M. So, we can assume that $\varepsilon_A > 0$.

Choose odd n such that $q_n > n_A$, $0 < 1/p_n < \varepsilon_A/2$, and $|A| < p_n$.

It is known that p_{n+1}/q_{n+1} is a good approximation of $2\alpha - 1$ from below.

Choose $B \in \mathbf{K}_f$ as in Lemma 3.5 with $p = p_{n+1}$ and $q = q_{n+1}$. Let F be as in Lemma 3.5 also.

We have
$$|B - F| = p_{n+1} + q_{n+1}$$
. Let

$$D_i = B_1 \otimes_F B_2 \otimes_F \cdots \otimes_F B_i$$

where each B_i is isomorphic to B over F. Since $\delta_{\alpha}(B_i/F) < 0$, $\delta_{\alpha}(D_j)$ decreases as j increases. Hence, $D_j \notin \mathbf{K}_f$ eventually. Let k be such that $D_k \in \mathbf{K}_f$ but $D_{k+1} \notin \mathbf{K}_f$. We have

$$\delta_{\alpha}(D_k) - \delta_{\alpha}(D_{k+1}) = |\delta_{\alpha}(B/F)| = |p_{n+1} - (2\alpha - 1)q_{n+1}| < \frac{1}{q_{n+2}} < \frac{\varepsilon_A}{2}.$$

Hence,

$$f(|D_k|+p_{n+1}+q_{n+1})>\delta_{\alpha}(D_k)-\varepsilon_A/2.$$

We want to evaluate how the curve $y = f_{\alpha}(x)$ behaves. Choose ℓ with $x_{\ell-1} < |B| = 2q_{n+1} + 1 \le x_{\ell} < e_{\ell}$.

We have $p_n/q_n > 2\alpha - 1$. Hence, $(p_n + q_n)/(2q_n) > \alpha$. Since $2q_n < e_\ell$, we have $(p_n + q_n)/(2q_n) \ge k_\ell/d_\ell > \alpha$. So,

$$f'(x_{\ell}) = \frac{k_{\ell} - d_{\ell}\alpha}{k_{\ell}} = 1 - \frac{d_{\ell}}{k_{\ell}}\alpha$$

$$\leq 1 - \frac{2q_n}{p_n + q_n}\alpha = \frac{1}{p_n + q_n}(p_n - q_n(2\alpha - 1))$$

$$< \frac{1}{(p_n + q_n)q_{n+1}}.$$

Hence,

$$q_{n+1}f'(x_\ell)<\frac{1}{p_n+q_n}<\frac{\varepsilon_A}{4}.$$

Therefore, for any $x \ge x_{\ell}$,

$$(p_{n+1}+q_{n+1})f'(x) < 2q_{n+1}f'(x_{\ell}) < \frac{\varepsilon_A}{2}.$$

Hence,

$$\delta_{\alpha}(D_k) - f(|D_k|) < \varepsilon_A.$$

Now, choose a sequence of biminimal intrinsic extensions starting from D_k in \mathbf{K}_f . Since the δ_{α} -values of these extensions are decreasing, we get an absolutely closed structure D eventually. Since D belongs to \mathbf{K}_f , we have $\delta_{\alpha}(D_k) \geq \delta_{\alpha}(D) \geq f(|D_k|)$. Hence,

$$|\delta_{\alpha}(D/D_k)| < \varepsilon_A$$
.

D is obtained by a sequence of minimal intrinsic extensions from a structure isomorphic to B. Hence, A < D.

Similar argument works for f which was modified by F. Wagner [16]. Our proof depends heavily on the definition of f_{α} . We still don't know if the model completeness of the generic structure of \mathbf{K}_f is true in more general setting.

Acknowledgments

The work is supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [1] J.T. Baldwin and K. Holland, Constructing ω -stable structures: model completeness, Ann. Pure Appl. Log. **125**, 159–172 (2004).
- [2] J.T. Baldwin and S. Shelah, Randomness and semigenericity, Trans. Am. Math. Soc. **349**, 1359–1376 (1997).

- [3] J.T. Baldwin and N. Shi, Stable generic structures, Ann. Pure Appl. Log. **79**, 1–35 (1996).
- [4] R. Diestel, Graph Theory, Fourth Edition, Springer, New York (2010).
- [5] D. Evans, Z. Ghadernezhad, and K. Tent, Simplicity of the automorphism groups of some Hrushovski constructions, Ann. Pure Appl. Logic **167**, 22–48 (2016).
- [6] G.H. Hardy, and E.M. Wright, *An Introduction to the Theory of Numbers*, Fifth Edition, Oxford University Press, Oxford (1979).
- [7] E. Hrushovski, A stable \$\infty_0\$-categorical pseudoplane, preprint (1988).
- [8] E. Hrushovski, A new strongly minimal set, Ann. Pure Appl. Log. **62**, 147–166 (1993).
- [9] K. Ikeda, H. Kikyo, Model complete generic structures, in the Proceedings of the 13th Asian Logic Conference, World Scientific, 114–123 (2015).
- [10] H. Kikyo, Model complete generic graphs I, RIMS Kokyuroku **1938**, 15–25 (2015).
- [11] H. Kikyo, Balanced Zero-Sum Sequences and Minimal Intrinsic Extensions, RIMS Kokyuroku **2079**, Balanced zero-sum sequences and minimal intrinsic extensions (2018).
- [12] H. Kikyo, Model Completeness of Generic Graphs in Rational Cases, Archive for Mathematical Logic **57** (7-8), 769–794 (2018).
- [13] H. Kikyo, Model completeness of the theory of Hrushovski's pseudoplane associated to 5/8, RIMS Kokyuroku **2084**, 39–47 (2018).
- [14] H. Kikyo, On the automorphism group of a Hrushovski's pseudoplane associated to 5/8, RIMS Kokyuroku **2119**, 75–86 (2019).
- [15] H. Kikyo, S. Okabe, On Hrushovski's pseudoplanes, Proceedings of the 14th and 15th Asian Logic Conferences, 175–194 (2019).

- [16] F.O. Wagner, Relational structures and dimensions, in *Automorphisms of first-order structures*, Clarendon Press, Oxford, 153–181 (1994).
- [17] F.O. Wagner, Simple Theories, Kluwer, Dordrecht (2000).

Graduate School of System Informatics Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 JAPAN kikyo@kobe-u.ac.jp

神戸大学大学院システム情報学研究科 桔梗 宏孝